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Nowadays, technology has advanced, particularly in machine 

learning which is vital for minimizing the amount of human 

work required. Using machine learning approaches to estimate 

concrete properties has unquestionably triggered the interest of 

many researchers across the globe. Currently, an assessment 

method is widely adopted to calculate the impact of each input 

parameter on the output of a machine learning model. This 

paper evaluates the capability of various machine learning 

methodologies in conducting parametric assessments to 

understand the influence of each concrete constituent material 

on its compressive strength. It is accomplished by conducting a 

partial dependence analysis to quantify the effect of input 

features on the prediction results. As a part of the study, the 

effects of machine learning method selection for such analysis 

are also investigated by employing a concrete compressive 

strength algorithm developed using a decision tree, random 

forest, adaptive boosting, stochastic gradient boosting, and 

extreme gradient boosting. Additionally, the significance of the 

input features to the accuracy of the constructed estimation 

models is ranked through drop-out loss and MSE reduction. 

This investigation shows that the machine learning techniques 

could accurately predict the concrete's compressive strength 

with very high performance. Further, most analyzed algorithms 

yielded similar estimations regarding the strength of concrete 

constituent materials. In general, the study's results have shown 

that the drop-out loss and MSE reduction outputs were 

misleading, whereas the partial dependence plots provide a clear 

idea about the influence of the value of each feature on the 

prediction outcomes. 
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1. Introduction 

In the construction sector, there is no question that concrete is the most widely used material in 

the world [1,2]. In practice, the compressive strength of concrete is one of the most important 

factors to consider when it comes to mixture design and optimization, but getting it at mature age 

involves a lengthy experimental procedure [3,4]. However, mathematical modeling of this 

property using traditional approaches is deemed a significantly challenging task due to the 

nonlinear nature of the relation between the concrete's constituents and its characteristics. 

Recently, several studies have handled estimating the compressive strength of concrete to prove 

that machine learning-based modeling can substitute conventional methods [5–10]. Topcu & 

Saridemir [11] illustrated the capability of fuzzy logic for predicting the strength capacity of 

concrete containing fly ash. Chopra et al. [12] utilized a genetic programming approach for the 

same purpose. Moreover, Lee [13] and Habib & Yildirim [14] used artificial neural networks to 

estimate concrete characteristics. Barkhordari et al. [15] adopted ensemble machine learning 

models to estimate flyrock due to quarry blasting. The applications of bagging and boosting 

machine learning algorithms in simulating the properties of concrete were investigated by [16–

18]. 

Indeed, machine learning techniques are very effective in estimating concrete properties at 

various maturity ages, and they can be employed to conduct detailed parametric assessments by 

evaluating the interaction and correlation between each input variable and the outcome. 

Nevertheless, their abilities to quantify the percentage of the impact that each constituent 

material has on the compressive strength of a concrete mixture, as well as to provide a detailed 

understanding of the influence of each constituent material's content on the output of the 

estimation model by using feature importance and partial dependence analyses have rarely been 

discussed in the literature. For instance, Jha et al. [19] evaluated the factors affecting concrete 

strength using feature importance analysis for different machine learning models. Anysz et al. 

[20] discussed the capabilities of explicable artificial intelligence methods to assess factors 

influencing the compressive strength of cement stabilized rammed earth. Ly et al. [21] developed 

partial dependence plots for rubberized concrete's compressive strength using deep neural 

network models. Su et al. [22] performed the partial dependence analysis for the compressive 

strength of slag-metakaolin geopolymer pastes using multivariate polynomial regression models. 

Dao et al. [23] conducted a sensitivity analysis for the compressive strength of foamed concrete 

utilizing multiple partial dependence plots based on conventional artificial neural networks. 

Mane et al. [24] developed an artificial neural network model to predict the flexural strength of 

concrete mixtures with pozzolanic materials. Nayak et al. [25] utilized an extreme learning 

machine to predict the compressive strength of concrete mixtures. Pandey et al. [26] adopted 

various machine learning approaches to design concrete mixtures with and without plasticizer. 

Naderpour et al. [27] developed artificial neural network models to predict the shear strength of 

reinforced concrete shear walls. 

Thus, it can be seen that multiple studies have adopted feature importance analysis to conduct a 

parametric assessment for concrete constituent materials, although partial dependence analysis is 

more sensitive for such applications. Moreover, it can be seen that the literature is still lacking a 
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study that evaluates and compares the capability of various machine learning models in reporting 

the effects of concrete's mixture proportioning on its compressive strength through partial 

dependence analysis. Accordingly, the primary objective of this contribution is to evaluate the 

influence of machine learning model selection on the results of the feature significance and 

partial dependency analyses. A key component is developing and evaluating several prediction 

techniques involving a decision tree, random forest, adaptive boosting, stochastic gradient 

boosting, and extreme gradient boosting. Hence, the investigations of feature importance and 

partial dependence analyses are carried out, and their findings are compared against each other. 

On the other hand, the limitation of the scope of the study is in the types of machine learning 

algorithms adopted for the investigations since it will mainly focus on commonly utilized models 

and will not go into detail about the current state-of-the-art approaches, thus will leave this point 

for future studies. Another limitation of the study is conducting a sensitivity analysis for which a 

method such as the cheap-to-evaluate uncertainty-aware global sensitivity analysis discussed by 

Amini et al. [28] can be utilized. 

2. Materials and methods 

Cement-based materials have traditionally been designed and characterized by experiments for 

decades [29]. As a result, significant discoveries were achieved through emerging modern 

computational approaches in construction materials science [30]. Currently, there is rising 

attention to scaling up the commonly utilized machine learning algorithms for classification, 

regression, clustering, or dimensionality to decrease tasks of massive datasets [31]. Indeed, 

machine learning is a powerful tool in artificial intelligence that combines statistics and 

computer science to develop more effective models that rely on training data to achieve a 

specific activity [32,33]. It is a fast-developing field that enables computer systems to gain 

knowledge directly from data and experience without programming [34]. The key target is to 

build a model that estimates the required parameter value by learning machine techniques 

inferred from the data characteristics and then using these models to perform feature importance 

and partial dependence analyses. Figure 1 represents the general methodology used in this study. 

2.1. Machine learning algorithms 

The decision tree (DT) regressor may be described according to the principle of divide and 

conquer to identify characteristics and model the relationships between them in big data [35]. 

The term comes from a tree structure in which the dataset (root node) is repeatedly divided into 

smaller subsets based on specific values of this property, and the initial group of tree branches is 

generated [36–38]. In practice, a training dataset is utilized to create a decision tree, and if all 

objects have the same decision class, the tree will only get a single node (leaf node) with the 

suitable decision, as described in Figure 2. On the other side, a separate feature is chosen whose 

value belongs to at least two distinct decision classes, and a collection of objects is partitioned 

into categories based on the value of the picked feature in order to construct a test node in a 

growing decision tree [39]. Every branch from the test node is followed by a series of prompting 

approaches that are performed on the remaining objects in terms of split until a leaf is attained 
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depicting the decision. There are many types of decision tree algorithms; however, the 

classification and regression tree (CART) will be used in this research owing to its capabilities. 

 
Fig. 1. General descriptive illustration of the research methodology. 

 
Fig. 2. Illustrative concept of decision tree (reproduced from Janikow [40]). 

With an n-dimensional sample of training data  1 1 n n(x , y ), , (x , y ) R  and the space of 

input patterns , the decision tree technique splits the attributes in a recursive procedure resulting 

in the output being assembled together based on their similarity. At a particular node m, the data 

is defined by Qm with Nm samples, divided into two subsets 
f

m

le tQ ( ) , and 
h

m

rig ttQ ( ) in Eq. 1 and 2, 

where each candidate split  = (j, tm) includes a j feature and tm threshold. 

 m m

left

iQ ( ) (x, y) | x t    (1) 

right left

m m mQ ( ) Q Q ( )    (2) 

Using the impurity function H() in Eq. 3, it is possible to determine the quality of a candidate 

split of node m. 

   gm m
m m m

m m

left right
left ri htN N

G(Q , ) H Q ( ) H Q ( )
N N

      (3) 
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Hence, from Eq. 4, the parameters that reduce the impurity are picked, and the procedure is 

repeated for 
f

m

le tQ ( ) and 
h

m

rig ttQ ( ) until the tolerance depth m samplesN  min or 
mN  1 . 

*

marg min G(Q , )    (4) 

A random forest (RF) is a massive number of single decision trees that serve as an ensemble 

where each unique tree votes to predict the most common class as the output of the random 

forest [41,42]. As the ensemble decreases the instability related to the building of individual 

decision trees, the random forest can deal with high-dimensional datasets and complicated 

relationships and frequently produces precise models [43,44]. The decision tree model has a 

single tree, but a random forest is made up of several trees, which is the most significant 

conceptual difference between them. The training dataset is randomly sampled from the original 

data to develop the algorithm, and any ignored data is specified as out-of-bag. The random forest 

has become more prevalent in the civil engineering field during the past several years, mainly to 

deliver practical models. As a result, it is implemented by creating many CARTs and integrating 

bootstrap and aggregation concepts [45]. 

The extremely randomized trees (ERT) technique randomizes choosing splits in a tree's nodes 

[46]. The ERT approach differs from the random forest algorithm in that the thresholds for each 

candidate's feature are picked randomly, and the best of them is used as the splitting criterion 

rather than searching for the most distinctive thresholds. The significance of this fact lies in its 

capacity to reduce model variance while slightly raising the bias. 

Freund and Schapire [47] introduced the concept of adaptive boosting (AdaBoost), which was 

designed to fit the original dataset utilizing the defined regressor. The method serves by creating 

new copies of the regression algorithm employing the same training dataset while modifying the 

model weights based on the results of the previous trial. The implantation of this algorithm is 

conducted in relevance to Drucker [48]. An n-dimensional training dataset (specified before) is 

used in AdaBoost's formula, and the error ei for the whole dataset is produced by training a base 

estimator (weak learner) f(x). Hence, a series of weak learners is built and integrated to construct 

a strong model H(x) using the technique described in Eq. 5. 

N

k 1 k

1
H(x) ln g(x)



 
   

 
  (5) 

In this equation,  is the learning rate, k denotes the weight of the base estimators calculated 

from Eq. 6, and g(x) represents the median of all  k kf x . 

i
k

i

e

1 e
 


 (6) 

Like adaptive boosting, stochastic gradient boosting (SGBoost) creates a new model ensemble to 

correct the residual error of the existing one but with a substantial variation that relies on 

reducing an objective function. In contrast to the regressor in the AdaBoost algorithm, the fragile 
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predictor in the gradient boosting method is a bigger decision tree with numerous layers. For the 

training dataset (defined above), the gradient boosting estimator iŷ with xi input variable is 

specified by Eq. 7. Gradient boosting is generally a greedy procedure, as stated in Eq. 8. 

   
M

i M i m i

m 1

ŷ F x h x


   (7) 

       
n

argmin

m m 1 h H i m 1 i i

i 1

F x F x L y ,F x h x  



      (8) 

M is the total number of estimators delivered in the algorithm, hm refers to a weak learner, h(x) is 

the base predictor, and L () is the loss function with the negative gradient identified in Eq. 9. 

 

 
i m 1

m

m 1

L y ,F x
g

F x





    


 (9) 

eXtreme gradient boosting (XGBoost) is a machine learning approach that is both efficient and 

scalable, and it is used for tree boosting [49]. In general, both gradients boosting and XGBoost 

adhere to the gradient boosting concept, except that XGBoost utilizes a more regularized model 

to govern over-fitting cases to obtain better outcomes. The XGBoost method employs the exact 

greedy tree approach, and the expression in Eq. 10 denotes the goal function of this method. 

   
n n

i i t

i 1 i 1

ˆobj L y , y f
 

     (10) 

Where L () denotes the loss function of the model's bias, and  is a regular term applied for 

suppressing the algorithm's complexity. 

2.2. Feature importance and partial dependence analyses 

Indeed, model interpretation is a significant step that guides the development of various models 

and decision-making strategies. It can also construct trust between the trained algorithm and 

users [50]. As mentioned previously, developed machine learning models are used in performing 

parametric assessments and reporting the influence of each input feature on the compressive 

strength of concrete. Feature importance and partial dependence analyses were adopted for 

multiple studies within this context. However, the latter is more sensitive for such applications. 

Feature importance analysis is an approach commonly adopted for the direct ranking of each 

feature on the final prediction and has three methods: drop-out loss, MSE reduction, and 

accumulated dependency. The Drop-out loss evaluates the feature importance of a specific set of 

input variables by first computing the loss in the model with and without the input parameter and 

then finding the difference between these errors [51]. In reality, a high value of drop-out loss 

implies that the variable has a considerable influence on the model's behavior, which afterward 

evaluates the variable's true implications on the target, indicating that the model is well fitted. 

The negative value of drop-out loss reveals that the existing variable within the dataset reduces 
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the model accuracy and should be eliminated. More to the point, whenever there are variables 

with a large correlation size, the feature importance propagates asymmetrically, accordingly 

causing the measure to be unreliable. 

The mean squared error (MSE) reduction is a procedure to determine the most critical 

characteristic of the dataset [52]. In general, this approach is performed by the tree traversed. 

When the outcomes of a particular node are dependent on the specified input variable, its error 

drop is multiplied by the number of samples routed to that node to its feature importance is 

added. The error decrease is computed by subtracting the MSE of data routed to that node from 

the MSE of its child nodes. In a multi-tree model, the resulting feature importance is an average 

of the feature importance of the developed trees. Generally, the feature importance obtained 

using the MSE reduction approach is sometimes misleading, especially in high cardinality 

features (many unique values) [53]. 

The cumulative effect, commonly called cumulative dependency, shows how much a given 

variable influences the model's mean expectation [54]. It is possible to emulate what the 

algorithm would estimate for a specific dataset if the value of the assigned feature varies (this 

process is called Ceteris Paribus). If the samples and their simulations are averaged, partial 

dependency for the selected feature is detected. Indeed, partial dependency is inconsistent and 

susceptible to linear correlation in some instances; hence a weighted mean should be used with 

weights corresponding to the inverse of the distances between the original samples. The 

accumulated dependency outcomes are similar to the partial dependence analysis. In this 

investigation, two methods of feature importance assessment are utilized and compared: the 

drop-out loss with 100 permutations and the MSE reduction to evaluate the significance of the 

predictors. 

Typically, feature importance analysis determines whether or not the features are necessary for 

producing the model to be successful. On the other hand, it cannot indicate how the feature's 

value impacts the prediction results. Hence, partial dependency analysis is usually performed to 

evaluate this point. The partial dependency diagram depicts the feature's marginal influence on 

the estimated result of machine learning techniques and reveals whether the interaction between 

the target and a feature is linear, monotonic, or more complicated. The partial function shows the 

average limit impact on estimating a particular feature value. It may provide answers to concerns 

about how the model's prediction results differ for a feature, allowing the influence of the 

predictor to be clearly expressed. In the beginning, the partial dependency of a specific input x is 

derived by first substituting its values with a constant one, such as x1. Then it is required to train 

the model and evaluate how much the prediction results have changed. After that, progressively 

modifying x1 shows how the estimation results change depending on the investigated feature. 

Notably, one of the fundamental assumptions behind this form of analysis is that features are 

uncorrelated with one another. If this presumption is broken, the averages computed for the 

partial dependency graph will contain data points that are improbable or even impossible. 
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2.3. Dataset acquisition 

This study intends to conduct a sensitivity assessment of concrete compressive strength using 

machine learning techniques to extract the model's cause and effect relationship between the 

inputs and outputs. In order to carry out the research, a dataset with a large sample size is 

utilized, and the descriptive statistics of the developed dataset are shown in Figure 3. This dataset 

has been used previously in various research studies [55–58]. It consists of 1005 mixtures with 

their corresponding compressive strengths. The constituent materials of each concrete specimen 

were adopted as an input feature of the machine learning techniques, while the compressive 

strength capacity was selected as the outcome of the prediction model. 

 
Fig. 3. Visual descriptive statistics of the utilized dataset. 



 Y. Alzubi et al./ Journal of Soft Computing in Civil Engineering 6-3 (2022) 39-62 47 

2.4. Model development and hyperparameters tunning 

The behavior of the machine learning technique is highly impacted by the selected 

hyperparameter values that should be tuned. In this study, the grid search technique with k-fold 

cross-validation was applied in the training stage to optimize the hyperparameters of the 

methods. As a result, the suggested methodology for building machine learning algorithms 

(Figure 4) initially begins by splitting the dataset into two groups: 70% training and 30% testing 

data. A cross-validation approach with 10-folds repetitions is conducted to ensure a suitable 

parameter choice. Once the hyperparameters of each approach are determined, the final tuned 

model performance is assessed by comparing the results of various scoring parameters on the test 

dataset. 

 
Fig. 4. Illustrative description for constructing machine learning model. 
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2.5. Quality assessment 

Statistical measures and visual representations are adopted to analyze the performance of 

machine learning techniques. The goodness-of-fit is checked using the coefficient of 

determination, Eq. 11. The root mean square error (RMSE), Eq. 12, and mean absolute error 

(MAE), Eq. 13, were used for the error analysis. 

 

 

2

i i2

2

i i

x y
R 1

x x


 






 (11) 

 

1 2
n

2

i i

i 1

1
RMSE x y

n 

 
  
 
  (12) 

n

i i

i 1

1
MAE y y

n 

   (13) 

xi is the measured value, ix is the mean of the measured values, yi is the predicted value iy is the 

mean of the predicted values, 𝑛 is the number of observations, and 𝑚20 is the number of samples 

with a measured to the predicted ratio between 0.8 and 1.20. 

3. Results and discussions 

3.1. Estimation performance of the ınvestigated models 

Indeed, the reliability of the decision on which input is more significant on the outcome of the 

machine learning technique is highly affected by the accuracy of the developed estimation 

model. Accordingly, measuring the performance of the investigated methods in predicting the 

compressive strength of concrete is considered essential. In general, the results of the estimations 

are shown in Figure 5 for both the training and testing stages. As seen there, the DT model was 

capable of reaching a significantly high accuracy in the training case. Whereas its performance 

dropped significantly for the testing dataset, which represents the existence of an overfitting 

issue. Similar trends can be observed for the cases of the ERT, AdaBoost, and SGBoost but with 

more controlled overfitting. On the other hand, the RF and XGBoost models resulted in lower 

training capabilities, while their testing results represented comparable performance to the ERT 

and SGBoost. This means that the RF and XGBoost techniques are more sensitive to overfitting 

issues. The residual plots for the considered models are provided in Figure 6. In general, it can be 

seen that most of the developed estimation models yielded similar results, with the exception that 

the DT model had the highest distortions in the residuals as compared to others. 



 Y. Alzubi et al./ Journal of Soft Computing in Civil Engineering 6-3 (2022) 39-62 49 

 
Fig. 5. Actual versus predicted plots for the investigated models. 
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Fig. 6. Residual plots for the estimation results of the investigated models. 

The error assessment of the fitting rates of the developed prediction techniques is shown in Table 

1. Generally, it can be seen that there are drops in the performances of all models when 

comparing the training to the testing results, which is usually expected but should be controlled 

to avoid overfitting issues. Indeed, the fitting rate of the DT algorithm for the testing subset of 

data was the lowest among others, while the XGBoost reached the highest one. On the other 

hand, the maximum error achieved in the DT model was about 5% lower than the XGBoost 

model. Using the XGBoost model reduced the RMSE value by almost 43%, 22%, and 23% 

compared to the DT, ERT, and SGBoost models. Moreover, the ERT approach had higher 

capabilities than the RF model, which can be attributed to the enhanced randomization abilities 

of the ERT method. 



 Y. Alzubi et al./ Journal of Soft Computing in Civil Engineering 6-3 (2022) 39-62 51 

Table 1 

Performance of the investigated models in predicting concrete's compressive strength. 

 

 

3.2. Feature ımportance 

As highlighted previously, feature importance analysis can be used to rank input parameters 

based on their impact on the performance of the machine learning models and identify whether 

or not a specific input variable is necessary for producing the model to be successful. This study 

utilized two approaches to feature importance assessment: drop-out loss and MSE reduction. The 

results of these methods and their comparison are shown in Figure 7 and Table 2, respectively. In 

general, it can be seen that there are some fluctuations in the ranks obtained using each of the 

approaches to feature importance assessment in a particular machine learning model. For 

instance, the drop-out loss in the case of the DT model ranked the water as the fourth while the 

MSE reduction ranked it as the third among the input parameters. Additionally, by comparing the 

results of the machine learning models for the drop-out loss case, each one of the estimation 

techniques has its own ranking. In contrast, the ranks obtained using the DT and RF cases for the 

MSE reduction approach were identical, and the AdaBoost and SGBoost outcomes in that 

method were the same even though their coefficients of determination are different. This 

observation proves the known fact that it has a lower sensitivity as compared to the drop-out loss 

approach. 
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Fig. 7. Feature importance scoring for input parameters of the machine learning models. 
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On the other hand, it can be seen that using feature importance to conduct a parametric 

assessment of the concrete constituent materials is somehow misleading. It can be understood by 

comparing the knowledge available in the literature to the results presented in Table 3. For 

example, in most machine learning models, the fly ash ranked as the least essential variable, 

while blast furnace slag was ranked as the third or fourth in some cases. However, it was 

presented in many studies that the fly ash causes a similar or higher impact than the blast furnace 

slag [59,60]. 

Table 2 

Comparison of drop-out loss and MSE reduction approaches to feature importance analysis. 
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Table 3 

Ranks of the input features using machine learning techniques. 

 

 

3.3. Partial dependence analysis 

Indeed, the partial dependency plots represent the marginal influence a certain input parameter 

has on a machine learning model's outcome and illustrate whether the interaction between the 

target and a feature is linear, monotonic, or more complicated. Moreover, it can answer questions 

on how the model's estimation results vary for a feature so that the impact of the predictor is 

clearly stated. The results of this analysis are shown in Figure 8 for the DT and RF models, 

Figure 9 for the ERT and AdaBoost ones, and Figure 10 for the SGBoost and XGBoost ones. It 

can be seen that the trends in all machine learning techniques are primarily similar in terms of 

positive and negative impacts. Generally, the cement, blast furnace slag, and superplasticizers 

positively impacted the concrete's compressive strength in all the investigated models with an 

average peak partial dependence of 30%, 10%, and 5%, respectively. Additionally, an exception 

to these observations is obtained from the XGBoost model for the case superplasticizer, which 

positively impacted specific content and then started reducing considerably. It simulates the 

practical scenario presented in the literature in which a high dosage of chemical admixtures 

harms the strength of concrete [61]. In contrast, the water content had a negative influence on all 

models. 

Rank DT RF ERT AdaBoost SGBoost XGBoost

1 Cement Age Age Age Age Age

2 Age Cement Cement Cement Cement Cement

3 Blast Furnace Slag Blast Furnace Slag Blast Furnace Slag Water Blast Furnace Slag Water

4 Water Water Superplasticizer Blast Furnace Slag Water Blast Furnace Slag

5 Superplasticizer Superplasticizer Water Fine Aggregate Superplasticizer Fine Aggregate

6 Fine Aggregate Fine Aggregate Fine Aggregate Superplasticizer Fine Aggregate Coarse Aggregate

7 Coarse Aggregate Coarse Aggregate Fly Ash Coarse Aggregate Coarse Aggregate Superplasticizer

8 Fly Ash Fly Ash Coarse Aggregate Fly Ash Fly Ash Fly Ash

Rank DT RF ERT AdaBoost SGBoost XGBoost

1 Age Age Age Cement Cement Age

2 Cement Cement Cement Age Age Cement

3 Water Water Water Water Water Water

4 Blast Furnace Slag Blast Furnace Slag Blast Furnace Slag Blast Furnace Slag Blast Furnace Slag Fly Ash

5 Superplasticizer Superplasticizer Superplasticizer Superplasticizer Superplasticizer Superplasticizer

6 Fine Aggregate Fine Aggregate Fine Aggregate Fine Aggregate Fine Aggregate Blast Furnace Slag

7 Coarse Aggregate Coarse Aggregate Fly Ash Coarse Aggregate Coarse Aggregate Fine Aggregate

8 Fly Ash Fly Ash Coarse Aggregate Fly Ash Fly Ash Coarse Aggregate

Drop-Out Loss

MSE Reduction
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Fig. 8. Partial dependence curves for the DT and RF models. 
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Fig. 9. Partial dependence curves for the ERT and AdaBoost models. 
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Fig. 10. Partial dependence curves for the SGBoost and XGBoost models.
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Additionally, the influences of the contents of fine and coarse aggregates and fly ash fluctuated 

in most models. However, research in the literature concluded that the high content of fly ash 

harms the strength of the concrete. This point was only obtained in the case of the XGBoost 

model, while other approaches showed almost no impact at will. 

4. Conclusion 

In conclusion, this study has focused on evaluating the application of machine learning 

techniques for conducting a parametric assessment to evaluate the influence of concrete mixture's 

consistent materials on its compressive strength. 

 Within the research context, six different machine learning models were developed and 

assessed their performance. After that, two different methods were used in conducting a 

parametric assessment in the artificial intelligence environment. The first one was the 

feature importance which tries to rank the inputs of the estimation model for their 

contribution to the model's accuracy. In contrast, the second one illustrates the effect of 

variation in each input feature on the model's outcomes. 

 In general, the study results have shown that using the feature importance to understand 

which parameter affects the strength of concrete is somehow misleading in the drop-out 

loss, and MSE reduction approaches since their outcomes did not match the expectations 

based on the knowledge available in the literature. 

 Nevertheless, the partial dependence plots provide a clear idea about the influence of the 

value of each feature on the prediction outcomes, especially in the case of the XGBoost, 

in which the results were the closest to the conclusions of previous research. 

 Accordingly, this study recommends utilizing partial dependence analysis with the 

XGBoost model to evaluate the constituent materials' influence on the compressive 

strength of concrete. 

Data availability 

The raw data that were used to support the findings of the study can be obtained from the 

following link: "https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength" 
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