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In the 1993 AASHTO flexible pavement design equation, the 

structural number (SN) cannot be calculated explicitly based 

on other input parameters. Therefore, in order to calculate 

the SN, it is necessary to approximate the relationship using 

the iterative approach or using the design chart. The use of 

design chart reduces the accuracy of calculations and, on the 

other hand, the iterative approach is not suitable for manual 

calculations. In this research, an explicit equation has been 

developed to calculate the SN in the 1993 AASHTO flexible 

pavement structural design guide based on response surface 

methodology (RSM). RSM is a collection of statistical and 

mathematical methods for building empirical models. 

Developed equation based on RMS makes it possible to 

calculate the SN of different flexible pavement layers 

accurately. The coefficient of determination of the equation 

proposed in this study for training and testing sets is 0.999 

and error of this method for calculating the SN in most cases 

is less than 5%. In this study, sensitivity analysis was 

performed to determine the degree of importance of each 

independent parameter and parametric analysis was 

performed to determine the effect of each independent 

parameter on the SN. Sensitivity analysis shows that the 

log(W8.2) has the highest degree of importance and the ZR 

parameter has the lowest one. 
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1. Introduction 

Highway pavement plays a significant role in national profit-making activities. About one-fifth 

of mean household expenditure is directly associated with transportation. Personal transportation 

mainly includes private cars, which account for more than 90% of the total vehicle miles traveled 

(VMT). In addition, on average, about 90% of cargo transport is done using road systems [1]. 

Pavements are engineering structures that are important to our daily lives, commerce and trade, 

and national defense and we use them as roads, runways, parking lots, and driveways. Like any 

other engineering structure, the pavement is expected to be well built and durable enough for its 

lifetime. They are expected to perform well by providing a smooth running surface for traffic in 

various environmental conditions. To ensure this the pavement must be designed correctly [2]. 

To design the pavement, one must determine the thickness of different layers to avoid problems 

or failures on the pavement due to traffic loads and environmental issues [3,4]. The factors that 

affect the thickness of the pavement could be classified into four different categories: load and 

traffic, environment, materials, and failure criteria [5]. 

The earliest technique for pavement design was according to the basic principles of soil 

mechanics so that no satisfactory application results were obtained before 1960. In early 1970s, 

the officials and researchers reviewed and developed new design methods to achieve cost-

effective pavement design resistant to traffic conditions [6,7]. 

The road test of the American Association of State Highway and Transportation Officials 

(AASHO) is perhaps the biggest and most prosperous test of controlled civil engineering in 

history, which took place more than half a century ago [8]. The 1993 AASHTO design guide is 

based originally on information obtained from the AASHO road test. This design guide is still a 

favorable standard for designing flexible pavements and has been used by many transportation 

agencies around the world [9]. The design equation used for this guide has been the subject of 

several studies [10–12]. In order to structural design of pavement, it is necessary to solve the 

1993 AASHTO design equation with the aim of determining the structural number (SN). 

However, due to the complex and non-linear relationships in the design equations, determining 

the SN is a technical challenge. In addition, no research has been found to provide an explicit 

equation for determining the SN. 

So far, various statistical and machine learning methods have been used with the aim of building 

empirical relationships in civil engineering [6,13–25]. One of the powerful methods for 

establishing empirical relationships between a number of input parameters and a response 

parameter is the response surface methodology (RSM), which is usually used as a design of 

experiment method. This method is a set of statistical and applied mathematics methods which is 

used to develop empirical models consisting of polynomial terms and the interaction between 

them. This method has recently attracted the attention of researchers in pavement engineering 

[13,18–21]. The RSM is classified as a statistical learning method, which is a subset of machine 

learning methods. Machine learning methods are also considered as a subset of soft computing. 
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In this paper, an explicit equation is developed to determine the SN for flexible pavements based 

on response surface methodology (RSM). Using this equation, one can determine the SN with 

high precision to design flexible pavements. 

In this paper, first the response surface methodology is described and then the method of 

building the optimal RSM model to calculate the SN of flexible pavements is introduced. Then, 

in order to examine the developed model in more depth, sensitivity analysis and parametric 

analysis have been performed. Finally, the conclusions and recommendations for further research 

are presented. 

2. The 1993 AASHTO design guide 

Many agencies around the world apply the 1993 AASHTO Guide to design flexible pavement 

[8,26,27]. This guide is on the basis of a road test under a supervision of the AASHO. This road 

test has been designed to find the association between the sum of load repetitions and the 

function of pavements with different materials and thicknesses. The AASHO road test was 

carried out on six diverse loops built along Interstate 80 near Ottawa, Illinois and loading started 

in 1958 and was over in 1960 [28]. 

The major indices of the AASHO road test included the thicknesses of hot-mix asphalt (HMA), 

base, subbase and, diverse axle configurations used in various test loops. The impressions and 

information found in the experiment are then incorporated in various segments of the design 

equation that links the amount of applied axle load to the necessary pavement thickness. The 

AASHO road test has achieved significant results in pavement engineering, including the 

association between load and distress, known as the 4th power law. Furthermore, AASHO road 

test introduced noteworthy indices like serviceability, equivalent single axle load (ESAL), and 

SN. AASHO pavement design guideline document was first issued in 1961 under AASHO 

Interim Guide for the Design of Rigid and Flexible Pavements. Given that the equations achieved 

in the AASHO test had been on the basis of limited data obtained from loading for two years and 

just under one climatic situation (Ottawa, Illinois), the design guide has been remarkably 

upgraded in1972 and1993 to fulfill various needs and climatic circumstances at the national 

level. The newest reform is the 1993 AASHTO flexible pavement structural design and has not 

been replaced ever since. Though significant measures have been taken in this path in the last 30 

years to move from this empirical guide to a mechanistic-empirical pavement design guide 

(MEPDG), high cost and lack of a database that can be used for regional calibration of the design 

guide has become a problem for many agencies. Thus, the AASHTO 1993 design equation 

(equation 1) is yet applied as a trustworthy designing equipment for the structural design of 

pavements in several states in the United States and different countries in the world [8,26,29]. 

The main equation for designing flexible pavements is as follows: 

   

 

8.2
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Where: 

W8.2: The number of permittable equivalent single axle loads (8.2 ton) during the 

designing life. 

ZR: Standard normal distribution, defined according to the level of reliability in this 

design. 

So: Overall standard deviation in this design. 

ΔPSI: Permittable loss of serviceability at the end of the life of design. 

Mr: Resilient modulus of subgrade soil (in kg/cm
 2

). 

Reliability (ZR) is the probability that a designed pavement section will perform well under 

traffic and environmental conditions during the design period. Design reliability is considered to 

make sure the real ESALs in the life cycle of the design do not surpass the calculated ESALs 

[10,30]. 

Loss in Serviceability (ΔPSI) is the amount of serviceability loss over the life of the pavement 

section. The serviceability of the road is basically assessed by the driving condition of the users 

of roads. The serviceability index is scored from 5 to 1, in which 5 indicates the best and 1 

indicates the worst quality of ride [4,30]. 

Resilient Modulus (Mr), which is a significant index based on the 1993 AASHTO design 

guidelines, reflects the engineering properties of the subgrade soil. Because of weather 

fluctuations throughout a year, the resilient modulus of subgrade soil will change significantly. 

Thus, the efficacious resilient modulus is the value of the representative modulus under diverse 

climatic circumstances, and is determined according to possible damage to the pavement caused 

by various soil modules of the subgrade in different seasons [30]. 

Structural Number (SN) is a number representing the overall structural requirements of the 

pavement section. The SN is considered as an indicator to assess the pavement stability to the 

applied load. The SN value of a pavement section depends on the type of materials, thicknesses, 

and drainage capacity used in the pavement layers. The weaker the subgrade soil, the higher the 

SN needed under the same climate and load conditions [26,30]. 

For pavement design using the 1993 AASHTO design method, in equation 1, the parameters ZR, 

So, W8.2, PSI, and Mr are known, while the parameter SN is unknown. When the structural 

number SN of the design for primary pavement structure is found, it is essential to choose a set 

of thicknesses so that the presented SN, which is the result of thicknesses and the layer 

coefficients as well as the drainage coefficients, is greater than the required SN [1,31]. 

It can be seen that to determine the parameter SN, equation 1 is not written explicitly. One can 

use an iterative method to solve equation 1 to determine SN, or get the SN value from the 

nomogram given in the AASHTO guide. Huang pointed out in his famous book Pavement 

Analysis and Design [31] that the nomogram is highly suitable for finding SN, as the SN solution 

is very troublesome and requires a trial & error process. However, using the design chart will 
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reduce the precision and leads to tedious and time-consuming calculations. Therefore, an explicit 

and direct formula to determine SN is beneficial for designing purposes. 

3. The response surface methodology (RSM) 

The RSM includes a series of statistical and math-based methods that can be used to develop, 

improve and optimize processes. RSM uses specially designed experiments to develop 

alternative models in such a way that engineers are able to study the relation between inputs and 

outputs throughout designing space [32,33]. In the present study, a second-order RSM is used to 

unfold the non-linear association between parameters of pavement design and SN. The variables 

used in the 1993 AASHTO flexible pavement design equation cab mentioned as Mr, W18, ZR, So, 

ΔPSI, and SN. In addition, the SN of the layer is regarded as an output variable. In order to 

establish a suitable approximation between the dependent variable Y and the independent 

variables or predictors, the relation can be shown like this: 

 R 0 8.2 rY f Z ,S , PSI, log(w ), log(M )     (2) 

The type of the real response function f is yet to be known and can be extremely complex, and 𝜀� 
is a key letter which indicates other resources of variability which are not included in f. As a 

result, 𝜀� includes the impact of measurement errors in responses, other sources of diversity 

during the process or in the system, and any other (probably unknown) variable. We regard 𝜀� as 

a statistical error, and in general, we suppose it includes a normal distribution with an average 

value of 0 and a variance of 𝜎� 2. If the average value of 𝜀� is 0, we have: 

0 8.2

0 8.2

( ) [ ( , , , log( ), log( ))] E( )

( , , , log( ), log( ))

   

 

R r

R r

E Y E f Z S PSI w M

f Z S PSI w M

 
 (3) 

The variables used in equation 3 are generally mentioned as natural variables, as we show them 

in natural measurement units such as pounds per square inch (psi). According to various RSM 

models, converting natural variables to coded variables x1, x2, ..., xk is much more convenient. 

These variables are basically determined as dimensionless, with an average value of 0 and a 

similar standard deviation. Based on coded variables, the real response function is shown as: 

 1 2, ,...., kf x x x   (4) 

RSM abilities are directly associated with the type of response function. In general, low-order 

polynomials are suitable for several fairly small-scale regions of the independent variable space. 

First-order and second-order models are used in a lot of cases. In cases where we have 2 

independent variables, the first-order model is presented based on the coded variables: 

0 1 1 2 2x x       (5) 

The first-order model in equation 5 is often mentioned as the main effects model, as it just 

consists of the major results of the two variables x1 and x2. When we see an interconnection 

between these variables, it can be simply added to the model as follows: 
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0 1 1 2 2 12 1 2x x x x         (6) 

The curve in the real response surface is generally so robust that the first-order model (even 

when containing the interconnection term) is insufficient. A second-order model is probably 

necessary under such conditions. Regarding the two variables, the second-order model is 

presented as follows: 

2 2

0 1 1 2 2 11 1 22 2 12 1 2x x x x x x       (7) 

The second-order model is broadly applied in RSM for various reasons, which includes the 

following [32]: 

1. The second-order model is highly flexible. It may include many different functional 

forms; thus, it usually works fine as an estimation of real response surface. 

2. It is not difficult to approximate the parameters (the 𝛽�’s) in the second-order model. 

The least squares method must be utilized for this goal. 

3. One will find much substantial practical experience showing that second-order 

models work quite fine for solving the problems related to real response surface. 

Generally, first-order and second-order models could be shown as equations (8) and (9), 

respectively: 

0 1 1 2 2 .... k kx x x          (8) 

2

0

1 1 1 2

k k k

j j jj j ij i j

j j i j

x x x x    
   

       (9) 

In this study, to build the RSM model, Design-Expert software version 13 was used. This 

software allows the adjustment, analysis, and comparison of various functions, including linear, 

interactive (2FI), and quadratic polynomials. In addition, the significance of the model was 

measured by Fisher's exact test, and the precision of model function was examined by regression 

coefficient of determination (R
 2

). In addition, the effect of the input variables on the SN was 

studied using analysis of variance (ANOVA). 

4. Establishing dataset for model training 

To develop the RSM model, Eq. 1 was solved by considering the acceptable range of the 

parameters used in Eq. 1 and, the value of W8.2 was determined for each set of the input 

parameters. This operation was carried out 20,000 times with respect to different parameters, 

including ZR, So, PSI, Mr, and SN (right side of equation 1) and thus, a dataset made up of 

20,000 records consisting of five input variables (ZR, So, PSI, Mr and W8.2) and one output 

parameter (SN) were created. 
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(a) (b) 

  
(c) (d) 

 

 

(e) (f) 

Fig. 1. Histogram and cumulative frequency plot for training set data for (a) ZR, (b) So, (c) PSI, (d) 

log(W8.2), (e) Mr, and (f) SN. 

50% of the data points (10,000 records) were used for training and developing the model, and the 

other 50% (10,000 records) were used for testing and validating the model. The statistical 

characteristics of each input and output parameter, as well as the histogram and cumulative 

frequency plot of the training set data, are presented in Figure 1. 

Mr (MPa)

Min: 13.80                     Max: 344.67                  Mean: 179.31

S.D.:  95.55                   Median: 179.31
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5. Modeling and evaluation 

The RSM is a trial & error procedure. In the first place, a primary model containing every 

important factor is proposed according to the engineering experience. Then, the suitability of the 

model will be evaluated using residual plots, goodness-of-fit tests, and ANOVA. Subsequently, 

other models with more variables, fewer variables, or changed variables will be designed and 

compared with the original model. In this procedure, some variables may need to be transformed 

(e.g., logarithm). Finally, a model of RSM with the acceptable function will be selected for more 

analyses. 

In this research, the second-order response function was used to establish a model based on the 

RSM for calculating the SN for flexible pavements. The modeling results based on this response 

function are presented in Table 1. In Table 2, in addition to the results of the second-order model, 

the results related to the first-order model are also provided. The coefficient of determination for 

the second-order model is 0.999, while this value is 0.960 for the first-order model, confirming 

that the relations between some input parameters and the output parameter are non-linear. The 

results of ANOVA for the second-order model are shown in Table 3. The table illustrates that just 

the overall standard deviation (So) term has been eliminated in the developed model. The reason 

for omitting this variable is that the existence of this parameter in the model has little effect on 

the accuracy of the model. It is also observed that the P-values are approximately equal to zero, 

excep for the term So
2
, which indicates that the term So

2 
is not as important as the other terms in 

the equation. 

Table 1 

Statistical metrics for the final second-order model. 

Multiple 

R 
 

Multiple 

R² 
 

SS 

Model 
 

df 

Model 
 

MS 

Model 
 

SS 

Residual 
 

df 

Residual 
 

MS 

Residual 
 

0.999 0.999 29616 19 1558 12 9980 0.001 

R2: Coefficient of determination 
SS: Sum of square 

df: degrees of freedom 

MS: SS divide by the df 

 

Table 2 

Comparison  of 1
st
 order and 2

nd
 order models for predicting SN. 

Adj. R
2 R

2 P-value F df model 

0.999 0.999 0.000 1272521 9980 2
nd

 order Model 

0.942 0.960 0.000 53.61 14 1
st
 order Model 

df: degrees of freedom of residuals 

F: F-Statistic 

P-value: Probability value or Significant Level 
Adj. R2: Adjusted R2 
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Table 3 

Analysis of variance for the proposed model. 

Model terms 
 

SN 

Param. 
 

SN 

standard error 
 

SN 

t-statistics 
 

SN 

p-value 
 

-95.00% 

confident limit 
 

+95.00% 

confident limit 
 

Intercept 
  

1.52245 0.026802 56.803 0.000000 1.46991 1.57499 

ZR 
  

0.27167 0.010457 25.979 0.000000 0.25117 0.29217 

ZR
2 

  
0.02945 0.001200 24.551 0.000000 0.02710 0.03180 

So
2 

  
-0.53748 0.120725 -4.452 0.000009 -0.77412 -0.30083 

PSI 
  

-0.61230 0.014674 -41.727 0.000000 -0.64107 -0.58354 

PSI2 
  

0.35531 0.002105 168.779 0.000000 0.35118 0.35943 

log (w8.2) 
  

0.94638 0.005364 176.447 0.000000 0.93587 0.95690 

log (w8.2) 
2 

  
0.17009 0.000296 574.448 0.000000 0.16951 0.17067 

log (Mr) 
  

-2.14573 0.023067 -93.024 0.000000 -2.19094 -2.10051 

log (Mr) 2 
  

0.89462 0.004082 219.156 0.000000 0.88662 0.90262 

ZR×So 
  

-1.74840 0.021547 -81.144 0.000000 -1.79063 -1.70616 

ZR×PSI 
  

0.14573 0.001468 99.270 0.000000 0.14285 0.14860 

So×PSI 
  

-0.36025 0.028160 -12.793 0.000000 -0.41545 -0.30505 

ZR×log (w8.2) 
  

-0.13652 0.000604 -226.026 0.000000 -0.13770 -0.13533 

So×log (w8.2) 
  

0.33252 0.010922 30.445 0.000000 0.31111 0.35393 

PSI×log (w8.2) 
  

-0.36868 0.000772 -477.709 0.000000 -0.37019 -0.36716 

ZR×log (Mr) 
  

0.31574 0.002454 128.661 0.000000 0.31093 0.32055 

So×log (Mr) 
  

-0.80112 0.044918 -17.835 0.000000 -0.88916 -0.71307 

PSI×log (Mr) 
  

0.84713 0.003107 272.655 0.000000 0.84104 0.85322 

log (w8.2) ×log (Mr) 
  

-0.78185 0.001688 -463.209 0.000000 -0.78516 -0.77855 

 

Equation 10 shows the final second-order RSM model developed in this research to calculate the 

SN for flexible pavement. 

2 2
R R o

2
10 8.2

2 2
10 8.2 10 r 10 r

R o R o

R 10

SN 1.52245 0.27167Z 0.02945Z 0.53748S

0.61230 PSI 0.35531 PSI 0.94638log (w )

0.17009log (w ) 2.14573log (M ) 0.89462log (M )

1.74839Z .S 0.14573Z . PSI 0.36025S . PSI

0.13652Z .log

   

    

  

    

 8.2 o 10 8.2

10 8.2 R 10

o 10 10

10 10 8.2

(w ) 0.33252S .log (w )

0.36868 PSI.log (w ) 0.31574Z .log (Mr)

0.80112S .log (Mr) 0.84713 PSI.log (Mr)

0.78185log (Mr).log (w )



  

  



 (10) 

The performance of the model developed in association with the training and testing sets is 

illustrated in Figure 2. In this figure, different error-related performance metrics, including 

coefficient of determination (R
2
), mean squared error (MSE), root mean square error (RMSE), 

and mean absolute percentage error (MAPE), are also given. These parameters can be calculated 

using Equations (11) to (14). 
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Where N denotes the number of observed data, Ti denotes the predicted values, Oi denotes the 

measured values, and  O  denotes the mean of the measured values. 

It is evident that the proposed model can foretell the SN with an error percentage of less than 

10%. For SN values greater than 4, the percentage of prediction error is even lower. 

Residual frequency histogram for training and testing sets are illustrated in Figure 3. The normal 

distribution diagram fitted to the residual frequency histogram is also shown in this figure. The 

relatively good fit of the normal distribution diagram to the residual frequency data indicates that 

the proposed equation is reliable. It is also observed that in most cases, the residual frequency is 

less than 0.15. In practice, the value of the SN for a road with medium or heavy traffic is more 

than 3, and therefore in most of the cases, using the proposed equation contributes to the 

prediction of the SN of flexible pavements with an error percentage less than 5%. 

  
(a) (b) 

Fig. 2. Accuracy of the proposed equation for predicting SN based on (a) the training set, and (b) the 

testing set. 
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(a) (b) 

Fig. 3. Residual frequency histogram for (a) the training set, and (b) the testing set, and its comparison 

with normal distribution diagram. 

6. Sensitivity analysis 

In the present study, the cosine amplitude method (CAM) is applied for sensitivity analysis in the 

presented model. Based on all the methods below, this index of similarity makes use of a group 

of data samples, particularly n data samples. If these data samples are gathered, they can create a 

data array, X [6,34]. 

 1 2, ,..., nX x x x  (15) 

every element xi, in the data array X is a vector of length m itself, i.e., 

 1 2, ,...,i i i imx x x x  (16) 

Therefore, every data sample can be considered a point in an m-dimensional space, in which 

every point requires m coordinates to achieve a full representation. Every factor in a relation, rij, 

is the outcome of a pairwise comparing of two data samples, xi and xj, in which the power of the 

association between data sample xi and data sample xj is provided based on the following 

sensitivity index: 
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 (17) 

Detailed assessment of Equation 17 demonstrates that the presented technique is associated with 

the scalar product for the cosine function. Once two vectors are collinear, their scalar product is 

unity; once the two vectors are at the correct angles to each other, their scalar product is 0 [34]. 
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Figure 4 shows the sensitivity index values according to the figures achieved in the proposed 

equation and the sensitivity index values obtained using the 1993 AASHTO equation, and the 

significance of the input variables. According to this figure, the sensitivity index of all data 

inputs is greater than 0.8, which shows that each of these parameters has a significant impact on 

the SN. However, according to the CAM, the parameter log (W8.2) is the most significant, while 

the parameter ZR is the least significant parameter in predicting the SN. Furthermore, the 

sensitivity index values obtained from the proposed equation and the corresponding values 

obtained from the1993 AASHTO design equation are equal, indicating that the proposed 

equation has high accuracy in predicting the SN. 

 

Fig. 4. Sensitivity index (rij) between SN and input parameters for the proposed equation and the 1993 

AASHTO design equation. 

7. Parametric analysis 

In this study, we used parametric analysis  to evaluate the influence of every pavement design 

input parameter (W8.2, ZR, S0, Mr, ΔPSI) on the SN. To this end, the average value of each input 

parameter of the pavement design is considered, and the combined effect of changing the two 

input parameters on the SN is plotted by changing these two parameters within the ranges of 

minimum and maximum possible values. The assumed average value of each design input 

parameter is given in Table (4). Furthermore, the variation of SN caused by the simultaneous 

changes of the two input parameters is shown in Figure 5. 

It can be seen that increasing S0, decreasing ZR (increasing reliability), increasing W8.2, 

decreasing Mr, and decreasing ΔPSI increase the SN. Figure 5a shows that at low reliability 

values (ZR = 0), increasing S0 has little effect on increasing the SN. With increasing reliability (ZR 

decreases), the influence of the parameter S0 on the SN increases. It is also observed that the 

changes of the parameters S0 and ZR with SN are linear, while the changes of the parameters 

ΔPSI, W8.2, and Mr with SN are non-linear. It is worth noting that the design period traffic of 

fewer than 1 million ESALs has a completely non-linear relationship with SN, and as the traffic 

increases beyond this amount, the relationship between SN and traffic changes linearly (Figures 

5d, Figure 5e, and Figure 5f). The reason is that the development of the AASHTO pavement 

design model is based on traffic of less than 1 million ESALs. Therefore, it can be assumed that 

the SN is not actually sensitive to traffic if this equation is extrapolated to determine the SN. 

Moreover, we observe that at low values of Mr, SN has a non-linear relationship with the variants 

of Mr, and if the value of Mr increases, the relationship between Mr and SN will be non-linear 

(Figures 5c and 5f). In fact, the AASHTO equation was developed for clay with low bearing 
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capacity, and therefore, as the bearing capacity increases, it gradually becomes insensitive to 

changes in Mr. 

Table 4 

Assumed value of input parameters for parametric analysis. 

Mr PSI S0 ZR W8.2 model 
34.5 MPa 2 0.45 -0.841 10

6 1
st
 order Model 

 

   
(b) (a) 

  
(d) (c) 

  
(f) (e) 

Fig. 5. Interactive effects of different input parameters on the SN. 
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8. Conclusion 

This study was conducted to present an explicit equation for determining the SN for flexible 

pavement design using the RSM. Using the proposed equation, it is possible to accurately 

determine the SN with other inputs such as ZR, So, W8.2, ΔPSI, and Mr. The coefficient of 

determination of the equation proposed in this study for training and testing sets is 0.999. 

Furthermore, the residual frequency distribution shows that in the worst case, the proposed 

equation with an error of 5% allows a fast and precise SN prediction. Sensitivity analysis based 

on the CAM shows that the parameter log(W8.2) has the highest degree of importance and the ZR 

parameter has the lowest one. Parametric analysis showed the non-linear relationship between 

the SN and the three parameters Mr, ΔPSI, W8.2, and the linear relationship between the SN the 

two parameters S0 and ZR. The use of the proposed equation in this research eliminates the need 

for the iteration process to solve the 1993 AASHTO flexible pavements design equation and 

provides higher speed and accuracy than the 1993 AASHTO design chart. In the continuation of 

this research, the developed equation can be used for optimal design of flexible pavements. It is 

also suggested to use other machine learning methods to directly solve the 1993 AASHTO 

flexible pavement design equation. 
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