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An extensive simulation program is used in this study to 

discover the best ANN model for predicting the compressive 

strength of concrete with respect to the percentage of mineral 

admixture and percentage of crystalline admixture. To 

accomplish this, an experimental database of 100 samples is 

compiled from the literature and utilized to find the best 

ANN architecture. The main aim of this paper was to predict 

the strength properties of self-healing concrete (SHC) with 

crystalline admixture and different mineral admixtures using 

an artificial neural network (ANN). The samples, 100 in 

Number, with different mixes, were analyzed after 28 days 

of curing of the samples. ANN was fed with the 

experimental data containing four input parameters: mineral 

admixture (MA), percentage of mineral admixture (PMA), 

Percentage of crystalline admixture (PCA), and type of 

exposure (TE). Correspondingly, strength (Fc) was the 

output parameter. The experimental data showed a good 

correlation with the values predicted by ANN. In conclusion, 

ANN could be used to accurately evaluate SHC strength 

characteristics. 
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1. Introduction 

Concrete is the most extensively used building material in the world. Despite being cost-effective 

and capable of supporting relatively large compressive loads, concrete is subject to micro-cracks, 

which may compromise the lifespan of civil infrastructure and result in multibillion-dollar losses 

due to early deterioration. Several causes may contribute to creating cracks in a concrete matrix, 

including mechanical stress, restricted shrinkage or thermal deformation, differential settlement, 

inadequate building techniques, and shoddy workmanship. Therefore, hazardous chemicals such 

as chloride ions, sulphates, and carbon dioxide may readily enter the concrete matrix, resulting in 

corrosion of the reinforcing steel and concrete degradation. In addition, typical concrete repair 

and rehabilitation treatments are generally ineffective and time-consuming. According to 

Franklin [1], the cost of maintenance and rehabilitation of existing civil infrastructure has 

surpassed the cost of creating new infrastructure, particularly in industrialized nations. A recent 

assessment by the American Society of Civil Engineers (ASCE) assigned a grade of D+ to the 

present state of the American national infrastructure (equivalent to poor condition). It is also 

anticipated that $3.6 trillion will be required by 2020 to restore the aging infrastructure. In fact, 

deteriorating civic infrastructure depletes financial resources and has social and environmental 

consequences. 

In recent years, research on the self-healing capabilities of concrete has acquired exponential 

importance. The concept of bio-mimicry and the natural healing process presented the 

stimulation [2–4]. For example, when cuts, scrapes, or scratches harm human or animal skin, it 

may self-heal naturally. Although it is challenging to duplicate this same biological healing 

process in concrete, several experiments have shown that a Portland cement concrete matrix may 

mend itself inherently. 

Developing a cement mixture including crystalline admixtures [5–8] and supplemental 

cementitious materials, which will replace the present mixes to improve the durability, quality of 

the structure, and construction costs, is a significant answer to the concerns mentioned above. 

Concrete is often susceptible to cracking. These fractures might develop at any point throughout 

their existence. The formation of polymers due to physical and chemical bonding may be 

attributed to the interaction of polymers with monomers and chains. Thermoplastic polymers are 

essential because they may be altered after being subjected to external temperature and 

transforming into a liquid state. This interaction between the polymer and the concrete gives 

fracture healing effectiveness. 

The fissures in the self-healing concrete are capable of sealing themselves. It works by hydrating 

previously unhydrated cementitious material and calcites, expanding concrete in fracture sides, 

closing cracks with loose concrete, and so on. When analyzing fracture widths, self-healing must 

be taken into account. Different studies have suggested various fracture widths ranging from 5 to 

300 µm. It has been observed that the proper crack width poses a substantial obstacle to complete 

fracture healing. Because regular concrete may become brittle when subjected to mechanical 

stress. These little fissures are of tremendous importance and are regarded as essential elements 

in the concrete's ability to self-heal. 
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2. Research significance 

Analysis of the relationship between strength and its affecting elements might aid in identifying 

SHC strength characteristics. Studies reveal that the strength characteristics of SHC largely 

depend on the type, nature, and amount of mineral admixtures. Several elements, such as mineral 

admixture, percentage of mineral admixture, percentage of crystalline admixture, kind of 

exposure, etc., considerably impact the strength [9,10]. Due to the nonlinear interplay of the 

components, it is difficult to develop semi-empirical or empirical equations for the SHC strength 

model. Moreover, the degree of interaction and non-linearity between the relevant elements 

remains unclear. 

Consequently, ANNs are used to create prediction models for SHC strength. In addition, no 

models were developed, and no significant research happened for predicting the strength of the 

SHC using ANN by considering the parameters mentioned above at the time. This makes the 

current study unique and highly advantageous for the research fraternity working on SHC. 

3. Methods 

Material characteristics were modelled using ANN. Kekez and Kubica [11] developed a concrete 

stress-strain model based on ANN. Mukherjee et al. [12] modelled and enhanced the mechanical 

properties of metal matrix composites using ANN. Chopra et al. [13] combined genetic 

programming (GP) and ANN to construct prediction models for concrete strength. Using ANN, 

they found that the Levenberg-Marquardt (LM) training function generated the most accurate 

forecasts of concrete strength. In addition, many studies [9,10,14] have focused on applying 

ANN modeling to improve the properties of concrete and other composites. In this study, the 

compressive strengths of SHC were predicted using ANN modeling. MA, PMA, PCA, and TE all 

influence compressive strength. The resultant parameters correspond to compressive strength 

(Fc). 

ANN models selected and trained based on earlier research were used to analyze the trial results. 

The data analysis revealed a significant connection between the ANN-predicted values and the 

experimental values using root mean square error to assess the predictive power of the models 

(RMSE). ANN has capabilities that are useful for modelling complex problems and solving those 

using conventional methods and mathematics [15,16]. ANN acts like a black box. The back 

propagation approach of ANN is applicable to the majority of civil engineering applications [17] 

because of its simplicity. To train an ANN using a supervised learning technique (such as back 

propagation), the rights of connections between nodes must be defined [18]. An error function is 

reduced iteratively by minimizing the sum of squared errors between the actual outputs and the 

calculated outputs. A typical ANN has three layers: the input layer, the output layer, and the 

hidden layer. The thresholds and connecting weights may be modified to produce an LM network 

[19] after sample training. During training, the LM network stores information on the strength of 

the weight matrix and impacting variables. The Network then generates an output based on the 

input parameters [20–27]. There are five components to ANN-based modelling: (1) data 

collection and analysis, as well as issue description; (2) selection of the architecture; (3) 

determination of the learning process; (4) network training; and (5) network testing for 
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generalization. The appropriateness of the ANN model was assessed using three statistical 

criteria. This comprises the root mean squared error (RMSE) and coefficient of determination 

(R
2
). In addition, testing and training data are represented by related images to evaluate the link 

between experimental and model outcomes. 

R2 = 1 −
∑ (ti−oi)𝟐𝐍

𝐢=𝟏

∑ (ti− tio)𝟐𝐍
𝐢=𝐢

 (1) 

RMSE = √
1

N
∑ (ti − oi)2N

i=1  (2) 

Where, 

N = Number of datasets 

ti = Target output 

oi = Network output 

tio= Average of target output  

To prepare a predictive model for concrete strength, a multi-layered feed-forward network 

trained with Levenberg–Marquardt function was used. The development approach of an ANN 

has been shown in Fig. 1. 

 

Fig. 1. ANN development approach. 
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3.1. Development of data sets of ANN 

For developing a prediction model, a comprehensive strength data set that accounts for the 

microstructural factors that govern SHC behaviour are necessary. 100 SHC mixes were used in 

experiments to generate the required data set. The impact of mineral admixture, mineral 

admixture percentage, crystalline admixture percentage, and exposure type on the SHC strength 

characteristics was examined for each combination. The data sets were randomly divided for use 

in neural network training (75 percent), validation (15 percent), and testing (15 percent). Table 1 

presents an assortment of common statistics. 

Test Program 

The various parameters studied were: 

1) Mineral Admixtures (MA) 

2) Percentage in Mineral Admixture (PMA) 

3) Percentage in Crystalline admixture (PCA) 

4) Type of exposure (TE) 

Table 1 

Parameters Data Set. 

D
a

ta
 

S
et

s S. 

No. 

Mineral 

admixture 

(MA) 

Percentage of mineral 

admixture (PMA) 

Percentage of 

crystalline 

admixture (PCA) 

Type of 

exposure 

(TE) 

Compressive 

Strength 

(MPa) 

T
ra

in
in

g
 D

at
a 

S
et

s 

1 1 0 0 8 35.6 

2 1 0 0 9 34.32 

3 1 0 0 11 31.11 

4 2 5 0 8 42.13 

5 2 5 0 9 41.35 

6 2 5 0 11 39.05 

7 2 10 0 8 54.31 

8 2 10 0 9 53.88 

9 2 10 0 11 48.29 

10 2 15 0 8 47.77 

11 2 15 0 9 45.63 

12 2 15 0 11 44.56 

13 3 10 0 8 39.35 

14 3 10 0 9 37.41 

15 3 10 0 11 34.02 

16 3 15 0 8 50.92 

17 3 15 0 9 48.38 

18 3 15 0 11 38.22 

19 3 20 0 8 48.56 

20 3 20 0 9 46.55 
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21 3 20 0 11 36.44 

22 4 10 0 8 32.81 

23 4 10 0 9 29.77 

24 4 10 0 11 23.56 

25 4 20 0 8 34.6 

26 4 20 0 9 31.11 

27 4 20 0 11 26.3 

28 4 30 0 8 33.25 

29 4 30 0 9 30.26 

30 4 30 0 11 24.55 

31 5 20 0 8 44.13 

32 5 20 0 9 43.35 

33 5 20 0 11 41.05 

34 5 30 0 8 56.31 

35 5 30 0 9 55.88 

36 5 30 0 11 50.29 

37 5 40 0 8 49.77 

38 5 40 0 9 47.63 

39 5 40 0 11 46.56 

40 1 0 1.1 8 88.17 

41 1 0 1.1 9 86.83 

42 1 0 1.1 11 63.22 

43 2 5 1.1 8 89.03 

44 2 5 1.1 9 87.41 

45 2 5 1.1 11 63.51 

46 2 10 1.1 8 92.29 

47 2 10 1.1 9 89.55 

48 2 10 1.1 11 65.32 

49 2 15 1.1 8 90.17 

50 2 15 1.1 9 88.36 

51 2 15 1.1 11 64.35 

52 3 10 1.1 8 88.91 

53 3 10 1.1 9 87.52 

54 3 10 1.1 11 63.47 

55 3 15 1.1 8 91.56 

56 3 15 1.1 9 89.03 

57 3 15 1.1 11 64.88 

58 3 20 1.1 8 89.42 

59 3 20 1.1 9 88.11 

60 3 20 1.1 11 63.82 

61 4 10 1.1 8 85.04 
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62 4 10 1.1 9 77.27 

63 4 10 1.1 10 71.41 

64 4 10 1.1 11 61.87 

65 4 20 1.1 8 89.35 

66 4 20 1.1 9 85.15 

67 4 20 1.1 10 72.98 

68 4 20 1.1 11 63.82 

69 4 30 1.1 8 78.17 

70 4 30 1.1 9 79.25 

V
al

id
at

io
n

 D
at

a 
S

et
s 

71 4 30 1.1 10 72.13 

72 4 30 1.1 11 62.66 

73 5 20 1.1 8 89.96 

74 5 20 1.1 9 89.25 

75 5 20 1.1 10 75.92 

76 5 20 1.1 11 65.98 

77 5 30 1.1 8 93.25 

78 5 30 1.1 9 90.12 

79 5 30 1.1 10 78.25 

80 5 30 1.1 11 69.72 

81 5 40 1.1 8 91.67 

82 5 40 1.1 9 88.65 

83 5 40 1.1 10 77.12 

84 5 40 1.1 11 68.66 

85 1 0 0 10 33.87 

86 2 5 0 10 39.98 

87 2 10 0 10 52.67 

88 2 15 0 10 44.91 

89 3 10 0 10 35.18 

90 3 15 0 10 46.47 

T
es

ti
n

g
 D

at
a 

S
et

s 

91 3 20 0 10 43.47 

92 4 10 0 10 27.6 

93 4 20 0 10 29.22 

94 4 30 0 10 28.11 

95 5 20 0 10 41.98 

96 5 30 0 10 54.67 

97 5 40 0 10 46.91 

98 1 0 1.1 10 72.77 

99 2 5 1.1 10 74.57 

100 2 10 1.1 10 77.89 

Note :- 1 -No Admixture; 2 -Silica fume; 3 -Metakaolin; 4 -Fly ash; 5 -GGBS; 

Type of Exposure Indication: 8 - WI; 9 - WD; 10 - WC; 11 - AE. 
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3.2. Preparation of concrete specimens 

Self-healing studies were conducted on a pre-cracked concrete cube specimen of 100 mm × 100 

mm × 100 mm size. After 28 days of aging, a controlled injury was inflicted on the concrete 

using a compression test to initiate the formation of structural fissures. During compression, a 

test setup for the production of cracks and the specified goal width of the crack (0.01–0.4 mm) 

were monitored using an optical micrometer calibration ruler. The surface was divided prior to 

cracking. Here, a maximum fracture width of 0.05 mm was created. After 42 days, a compressive 

testing machine was used to evaluate the concrete's self-healing. The effect of varied durations of 

exposure to air exposure (AE), water contraction (WC), wet-dry cycles (WD), and water 

immersion (WI) conditions on through-crack compressive stress and the possibility of various 

combinations to promote self-healing were examined. 

3.2.1. Input and Output data sets 

The present work aimed to design an SHC strength predictive model that can predict the 

strengths for a particular input (MA, PMA, PCA and TE). The compressive strength (Fc) was the 

corresponding output parameter. Therefore, for this model, the input vector was: 

IP = {MA, PMA, PCA, TE} 

And the output vector was: 

OP = {Fc} 

Table 2 and Table 3 depict the input and output parameters, respectively, normalized within the 0 

to +1 range with the aid of appropriate scaling or neutralization factors. 

Table 2 

Input data sets. 

Node Number Input parameters 
Minimum 

value 

Maximum 

value 
Mean 

1 Mineral Admixture (MA) 1 5 3.307 

2 Percentage of Mineral Admixture (PMA) 0 40 17.30 

3 Percentage of Crystalline admixture (PCA) 0 1.1 0.55 

4 Type of exposure (TE) 8 11 9.50 

 

Table 3 

Output data sets. 

Node Number Output parameter 
Minimum 

value (MPa) 

Maximum 

value (MPa) 
Mean 

1 Compressive Strength (Fc) 25.56 93.250 59.488 
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4. Results 

4.1. Network training 

The architecture was determined, and the network was trained to assess the output-to-input 

correlation. The training was undertaken using MATLAB software, and Figure 2 depicts the 

convergence of the solution. Using just 100 data sets for network training, the Network learned 

to accurately predict concrete strength, which was confirmed using training (75 percent), 

validation (15 percent), and testing (15 percent). Testing a network involves examining parameters 

that were not used during training. Fifteen data sets that had not been used during network 

training were utilized during network testing. The network-based projected values for these data 

sets are comparable to their experimental values. Therefore, the ANN model may be used to 

anticipate the intensity of SHC (Figure 4). 

 
Fig. 2. Correlation between predicted and actual compressive strength. 
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Fig. 3. Illustration of absolute error in experimental and predicted data. 

 
Fig. 4. Testing dataset for regained compressive strength. 

4.2. ANN model development 

The number of layers in a network, the number of neurons in a layer, the activation function of 

each layer, and the connection between layers are determined by ANN architecture. The ideal 

ANN design is determined by the nature of the network's problem. Therefore, the optimal design 

of an ANN is entirely governed by its application domain. The architecture of an ANN is dictated 

by the number of networks used for testing and training in various circumstances (Fig 5). 

MATLAB was used to analyze neural networks (2019a). 
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Fig. 5. ANN model architecture. 

The values of parameters used in this research are as follows: 

 Number of input layer unit = 4. 

 Number of hidden layers = 1. 

 Number of first hidden layer units = 14. 

 Number of output layer units = 1. 

 Learning algorithm = Levenberg–Marquardt (LM) 
 

In addition, test networks with one or two hidden layers and a number of hidden nodes were used 

to compare the aforementioned methods. If the number of nodes in a network is very small, it 

may not be suitable for training or educational purposes. With a high number of nodes, 

computation time may increase [28–34]. Alternatively, a high number of nodes and layers may 

help minimize the number of training input samples required. Even if such a network performs 

badly on fresh test samples, showing that its generalization is severely affected, the data structure 

of the problem must be considered when establishing the network size. The approach of trial-

and-error must be used to identify the number of hidden nodes, which, for the majority of 

applications, should be fewer than the number of training samples [35–41]. The networks were 

trained to minimize the difference between goal output and ANN output. As the objective of 
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network training was to identify the correction weights (hidden neurons) that could reduce MSE 

in the shortest period of time, the training operation has concluded. Since hidden neurons or 

connection weights are used to store information, increasing their number allows the network to 

collect more data [42]. Table 4 shows that each network trained with a single hidden layer differs 

considerably in terms of computational time and accuracy. 

Table 4 

The R
2
 and RMSE statistics. 

 Training Testing Validation 

R
2
 0.99989 0.99596 0.99923 

RMSE 0.99450 0.99548 0.99982 

 

Due to low relative testing error and low testing and training RMSE, the ANN using the 

Levenberg-Marquardt method was the optimal choice. RMSE and R
2
 values were determined by 

comparing planned and actual data with the supplied equation. 1 and 2, Figure 3 depicts a 

correlation between anticipated and actual data for testing and training models in terms of 

compressive strength. Figure 4 depicts the entire database, including predicted and observed 

outputs, and the absolute error for each data point to highlight the model's error percentage. As 

seen in the graph, the expected and actual outputs were comparable, and the frequency of 

maximum error was minimal. Approximately 80% of the predicted values have errors of less 

than 5MPa. Data from the training, validation, and testing phases were very similar, 

demonstrating a high capacity for generalization and accurate prediction of new data. During the 

process of addressing the data overfit, which validated the performance of three models, the 

predicted values of all models approached zero. 

5. Discussion 

Artificial neural networks can learn, generalize, and generate solutions from natural instances 

and experiences. This characteristic enables the ANN to serve as a tool for resolving some 

complex issues for which no information is accessible about their operational approaches. The 

research proved that ANNs are effective for civil engineering challenges. In this work, a multi-

output ANN was created to predict the concrete mix composition of SHC based on criteria that 

are effective and determinants of concrete quality, taking into account these factors. To achieve 

this objective, 100 unique S-HC combinations with MA, PMA, PCA, and TE property 

characteristics were compiled from the scientific literature. The data was then separated into 

three sections. The first portion consisted of 70 data sets used to train the ANN, the second 

consisted of 15 data sets used to verify the trained ANN. The last consisted of 15 data sets used 

to test the trained and validated ANN model. After these procedures, the ANN was able to 

understand the issue and predict the SHC concrete mix composition from the data set. The 

correlation between real data and the anticipated outputs of the ANN model was 95.35 percent 

for training data, 94.87 percent for testing data, and 74.66 percent for validation data, which is an 

acceptable result. This is a significant achievement in terms of ANN model problem learning. 

Here, the generated ANN model learned 95% of the training data and reacted accurately to 95% 
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of the validation and test data. Notably, one of the most important findings of the completed 

investigation is that the results of ANN with LM networks seem to be practically independent of 

the learning method and number of hidden nodes (as long as this number is in the acceptable 

range determined by the widely used heuristics). This claim is supported by the results of ANN 

training in each of the investigated situations, which show a high coefficient of determination for 

each training, validation, and testing set. This is further reinforced by the positive outcomes of 

training, testing, validation data sets, and MSE and R
2
 adjustments. Despite the proposed ANN 

with LM network's strong predictive potential, one of the primary constraints of the investigation 

is undoubtedly the simple composition of the concrete samples. Future analyses should use 

physical samples with varying characteristics in order to extend the current models and make 

them more applicable in everyday life. By using an ANN model for the design of SHC, it is 

possible to minimize the process time and the number of trial mixes. Thus, an economical design 

technique may be used without material loss. 

6. Conclusions 

In this study, an ANN-based model was designed for the prediction of the comprehensive strengths 

of SHC. Among the experimental data, 100 data sets were used for ANN training. The following 

conclusions could be deduced from this work: 

 Utilizing an ANN method, prediction models for the compressive strength of SHC were 

developed. The suggested models were empirical and based on a widely scattered 

collection of experimental data. 

 With a strong correlation value of R
2
 = 0.9998 for training, R

2 
= 0.9985 for validation, 

and R
2
 = 0.9191 for testing, ANN accurately predicted the SHC strength parameters. 

Consequently, when compared to the experimental data, all predicted values were very 

trustworthy and precise. 

 From an engineering perspective, an ANN model might be used to identify SHC with an 

accuracy of 80%. 

 Finally, by incorporating a principal component analysis into the development of the 

Artificial Neural Network technique, it should be possible in the near future to reduce the 

number of parameters to those identified as dominant, thereby reducing the number of 

laboratory tests required to predict the compressive strength of SHC. 
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