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Manufactured sand has high potential for replacing natural 

sand and reducing the negative impact of the construction 

industry on the environment. This paper aims at developing a 

novel deep learning-based approach for estimating the 

compressive strength of manufactured-sand concrete. The 

deep neural networks are trained by the advanced optimizers 

of Root Mean Squared Propagation, Adaptive Moment 

Estimation, and Adaptive Moment Estimation with Nesterov 

momentum (Nadam). In addition, the activation functions of 

logistic sigmoid, hyperbolic tangent sigmoid, and rectified 

linear unit activation are employed. A dataset including 132 

samples has been used to train and verify the deep neural 

networks. Stone powder content, sand ratio, quantity of 

cement, quantity of water, quantity of coarse aggregate, 

quantity of water-reducer, quantity of manufactured sand, 

concrete slump, unit weight of concrete, and curing age are 

utilized as predictor variables. Based on experiments, the 

Nadam-optimized model used with the sigmoid activation 

function has achieved the most desired performance with 

root mean square error (RMSE) = 1.95, mean absolute 

percentage error (MAPE) = 3.04%, and coefficient of 

determination (R
2
) = 0.97. Thus, this neural computing 

model is recommended for practical purposes because it can 

help to mitigate the time and cost dedicated to laboratory 

work. 

Keywords: 

Compressive strength; 

Manufactured-sand concrete; 

Deep learning; 

 Neural network; 

Advanced optimizers. 

https://doi.org/10.22115/scce.2022.349837.1485
https://doi.org/10.22115/scce.2022.349837.1485
http://creativecommons.org/licenses/by/4.0/
http://www.jsoftcivil.com/
mailto:hoangnhatduc@duytan.edu.vn
https://doi.org/10.22115/SCCE.2022.349837.1485


 N.D. Hoang, V.D. Tran/ Journal of Soft Computing in Civil Engineering 7-1 (2023) 114-134 115 

1. Introduction 

Concrete has been extensively employed in the construction industry because it features many 

advantageous engineering properties. When combined with steel reinforcement, reinforced 

concrete achieves high strength and durability. In addition, concrete material offers good 

resistance to water and high temperature. Usual concrete mixtures include binding material (e.g. 

Portland cement), coarse aggregate, fine aggregate, and water. The components of a concrete 

mixture is typically not costly and can be easily assessed. The aforementioned features of 

concrete make this construction material highly suitable for a wide range of civil and 

infrastructure projects [1,2]. 

In Vietnam as well as in other countries around the globe, demand for sand rises at a fast pace 

due to the rapid infrastructure development. Therefore, natural sources of sand barely satisfy the 

domestic demand and sand dearth becomes apparent [3,4]. Accordingly, researchers and 

practicing engineers have resorted to using manufactured sand made from crushed rocks (e.g. 

granite, basalt, and other sand stones) as an alternative to natural sand [5,6]. 

Since concrete using manufactured sand is highly potential for solving the issue of sand dearth 

and mitigating the effect of the construction industry on the natural environment, various studies 

have dedicated to the investigation of this material’s mechanical properties [7,8] . In concrete 

design, compressive strength (CS)is widely regarded as the most crucial index [9–11]. Other 

properties such as elastic modulus and water tightness can be inferred via their correlations with 

the CS [12]. Estimating the CS of a concrete mixture containing manufactured sand based on its 

components is particularly important for mixture design. It is because if this parameter is 

correctly predicted, time and cost dedicated to laboratory works can be reduced or even avoided 

[13,14]. 

Nevertheless, estimation of CS is a challenging task. The reason is that this mechanical property 

is dependent on various factors such as mix proportions and concrete age. Concrete is a highly 

nonhomogeneous material with a diverse set of constituents. Furthermore, the mapping function 

between the CS of a concrete mix and its components has been generally demonstrated to be 

complex and nonlinear [15]. Therefore, conventional regression analysis and equation-based 

models used for estimating the CS of concrete mixes often fall short of the industry's 

requirements [16–19]. 

In recent years, with the advancements of machine learning (ML) and computing power, 

researchers have increasingly relied on intelligent data-driven approach for predicting CS of 

concrete mixes based on their constituents and age [20,21]. ML-based models have demonstrated 

promising capabilities in capturing the nonlinear and multivariate relationships between concrete 

strength and its influencing factors. State-of-the-art regression analysis approaches such as 

artificial neural networks, fuzzy neural network, deep neural computing, boosting machines, 

ensembles of decision trees, etc. can not only learn these functional relationships with a high 

degree of precision in the learning phase but also perform well in the estimation of unseen data 

in the testing phase [22–31]. 



116 N.D. Hoang, V.D. Tran/ Journal of Soft Computing in Civil Engineering 7-1 (2023) 114-134 

Artificial neural network (ANN) has been used in [32] to estimate the CS prediction of 

environmentally friendly concrete. ANN and adaptive fuzzy neural inference system (ANFIS) 

have been used in [33] to construct models for predicting the CS of regular and high-

performance concretes. The authors compare different training schemes including the Grey Wolf 

Optimizer metaheuristic and the Levenberg-Marquardt (LM) algorithm. It is experimentally 

found that the ANN model trained with the LM algorithm achieves the most desired outcome. 

Czarnecki et al. [20] presents an integration of the self-organizing feature map and ANN to 

predict the CS of cementitious composites with ground granulated blast furnace slag. 

Shahmansouri et al. [34] and Moradi et al. [35] both demonstrate the potentiality of ANN in 

modeling the CS of concrete mixes. The former work shows that ANN can achieve predictive 

performance that is better than that of gene expression programming. The latter once again 

confirms the finding of [33] which shows good outcomes obtained from the LM-based ANN 

model. Nevertheless, one notable disadvantage of the LM algorithm is that it requires the 

computation and storage of the Jacobian matrices. These matrices often become enormously 

large for big datasets and deep neural networks that involve multiple hidden layers. In addition, 

limitations of the conventional shallow backpropagation ANN in modeling complex engineering 

processes were also pointed out in [28–36]. 

Golafshani and Behnood [37] proposes a novel integration of ANN and multi-verse optimizer for 

predicting mechanical properties of sustainable concrete containing waste foundry sand. The 

capability of neural networks to model complex estimation tasks in civil engineering was 

demonstrated in [38]. Faraj et al. [39] constructs a data-driven approach for inferring the CS of 

eco-friendly self-compacting concrete incorporating ground granulated blast furnace; the ANN 

has been used as the function approximator and has achieved a good correlation of determination 

with R
2
 = 0.955. Rezazadeh et al. [40] recently demonstrated the superiority of ANN over the 

Genetic Programming and the Combinatorial Group Method of Data Handling approaches. 

Ahmed et al. [41] investigates the capability of an ANN model and a M5P-tree for predicting the 

CS of geopolymer concrete incorporated with nano-silica. Pan et al. [42] successfully integrates 

genetic algorithm (GA) and ANN to establish a hybrid intelligent model for estimating the CS of 

green concrete. Zhang et al. [43] develops a model for predicting the mechanical properties of 

manufactured-sand concrete using tree-based models. These tree-based models include 

regression tree, random forest, and gradient boosted regression tree. In addition, the Firefly 

algorithm (FA) has been integrated with the tree-based models to optimize their model selection 

phases. Although the hybrid GA-ANN and FA-tree models demonstrate good predictive 

outcomes, the main concern of the proposed framework is the high computational cost required 

for training or optimizing the prediction models. It is because both GA and FA are population-

based metaheuristics. Therefore, a large number of function evaluations is required to adapt the 

ML-based models. 

Recently, deep artificial neural network regression (DANNR) has gained the increasing attention 

of researchers in the field of modeling concrete strength. The basic idea of a deep ANN is to 

create a network with a deep hierarchical organization of hidden layers. Each layer can distill and 

generalize data from the previous layers to more informative signals that is transferred to the 
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subsequent layers. Each hidden layer plays the role of a feature learning or engineering operator. 

In a normal shallow ANN, there is only one hidden layer that extracts and learns the feature from 

the input data. Meanwhile, in a DANNR, various feature learners can be stacked to generate 

increasingly informative signals used for function approximation. With such advantages, 

DANNR-based models are capable of coping with nonlinear and multivariate datasets [44]. 

Accordingly, ML-based models for estimating the CS of concrete incorporating waste marble 

powder have been recently put forward in [45]. The authors rely on a neural computing model 

with 3 hidden layers and this deep ANN model is trained by the Adaptive Moment Estimation 

(Adam). This deep ANN model demonstrates a competitive performance compared to the 

Extreme Gradient Boosting Machine (XGBoost). However, this study has not explored the 

potentiality of other state-of-the-art optimizers (e.g. Root Mean Squared Propagation or Adaptive 

Moment Estimation with Nesterov momentum) for training the deep ANN model. Haque et al. 

[46] relies on a DANNR for estimating the strength of fly ash-based magnesium phosphate 

cement mortar. This study shows the desired performance of a deep ANN with two hidden layers 

and the hyperbolic tangent sigmoid activation function. Nevertheless, the effectiveness of other 

activation functions has not been explored in this paper. Asghari et al. [44] proves the superiority 

of DANNR-based models in predicting the undrained shear strength of clays; the DANNR-based 

models have outperformed conventional regression and equation-based approaches. 

According to the existing works, an increasing trend of utilizing sophisticated ML models and 

deep neural networks for predicting the CS of concrete can be observed. However, few studies 

have explored the potentiality of advanced gradient descent based-optimizers for training 

DANNR models. With such motivations, this study aims to compare the performances of 

DANNR models using different advanced optimizers in estimating the CS of concrete containing 

manufactured sand. The optimizers of the Adam, Root Mean Squared Propagation (RMSprop) 

and Adaptive Moment Estimation with Nesterov momentum (Nadam) are employed. Although 

deep learning has been used to estimate the CS of concrete, few studies have been dedicated to 

comparing the performance of different advanced optimizers used for training DANNR-based 

CS prediction models. Therefore, the current work is an attempt to fill this gap in the literature. 

The subsequent sections of the study are presented as follows: The next section summarizes the 

research method that covers the DANNR, the used optimizers, and the employed datasets of 

concrete containing manufactured sand. The third part presents the findings of the current work. 

The conclusion is provided in the final section. 

2. Research method 

2.1. Deep artificial neural network regression (DANNR) 

A deep neural network model generally comprises an input layer, a set of hidden layers, and an 

output layer [47]. The input layer is basically an external signal receiver and the output layer 

simply processes the results of the last hidden layer and yields the predicted dependent variable 

(e.g CS). In deep neural networks, there are multiple hidden layers containing neurons for 

processing a dataset and generalizing a mapping function between the input signal x (e.g 
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concrete constituents and age) and the output y (e.g CS). Generally, the stacked hidden layers 

enhance the network’s robustness in generalizing non-linear mapping functions; the suitable 

numbers of hidden layers and neurons in each hidden layer are data-dependent and should be 

determined experimentally [48]. A typical DANNR’s structure is depicted in Fig. 1. Herein, there 

are D input variables (x1,x2,…,xD) that represent the characteristics of a concrete mix. 
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Fig. 1. A DANNR’s structure. 

Table 1 
Activation functions used in a DANNR. 
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In Fig. 1, fA denotes an activation function. In the input and hidden layers, nonlinear activation 

functions are often used to learn a nonlinear target function. The commonly used activation 

functions may include logistic sigmoid, hyperbolic tangent sigmoid, and rectified linear unit 

activation (ReLU) [47–49]. For a DANNR that performs function approximation tasks, the 

output layer simply employs a linear activation function. The used activation functions and their 

derivatives are summarized in Table 1. 

To train a DANNR model used for estimating the CS of concrete mixes consisting of 

manufactured sand, the back-propagation and gradient-descent algorithms are used to adapt the 

connection weights between different layers. Herein, the connection weights in each layer is 
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stored in the form of a matrix W. In the forward pass, the input layer obtains the signals 

representing the characteristics of a concrete mix (x) and transfers them through the hidden 

layers and the output layer. The output layer yields the estimated CS (y). To reduce the error ( ) 

between the observed CS (t) and the predicted one (y), the backward pass is performed. In the 

backward pass,   is reversely transmitted to each precedent layer and the network’s weights W 

are optimized via the gradient-descent algorithm. 

The back-propagation algorithm requires the calculation of the gradient of a loss function which 

is used to determine the direction and the amount of the update for each weighting value [49]. 

For regression analysis, the commonly-used loss function is the Squared Error Loss (SEL) 

[35,36,45–50,37–44]. This loss function basically yields the squared difference between the 

actual and predicted CS. The SEL is given by: 

2)(
2

1
),( ytytSEL   (1) 

Additionally, a common problem faced during the training phase of a DANNR is how to 

alleviate overfitting. This phenomenon usually occurs when a deep learning model performs 

exceptionally well in the model construction phase but the model’s estimations of unseen data 

are highly inaccurate. One effective method for mitigating overfitting is weight regularization. 

This approach prevents overfitting by constraining the magnitude of the network’s weights. To 

do so, additional terms are included in the loss function [49–52]. Generally, there are two forms 

of weight regularization: L1 and L2. In the former case, the L1-norm of a network weight w is 

added to the loss function. In the latter case, the L2-norm of a network weight w is used. 

Accordingly, the modified loss functions are given by: 

L1-norm: 
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L2-norm:
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where λ is a hyper-parameter of the loss functions. A large λ significantly prohibits a large value 

of the network weight. 

Using the backpropagation framework, the partial derivatives of the loss function with respect to 

each connection weight must be specified. The readers are guided to the previous works of [53] 

and [47] to acquire the equations employed for adapting a model’s weights. Herein, we focus on 

the equation used to update the connection weights in the output layer. These connection weights 

are directly associated with the derivative of the loss function L() with respect to the predicted 
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2.2. Advanced optimizers for training deep neural networks 

2.2.1. Root mean squared propagation (RMSprop) 

RMSprop, described in [54], is an improved gradient descent algorithm with the use of adaptive 

learning rate. Herein, the gradient at time step t ( wLgt  / ) is divided by a running average of 

its magnitude [49]. This running average at time step t is given by: 
2

1)1()1()(  tgtvtv   (5) 

where )1,0(  and 
2

1tg  denotes the element-wise square of the gradient tg . 

The equation used to revise the model’s weights is given by: 
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where   is the learning rate; 81  e  is a small number to guarantee the numerical stability of 

the calculation process. 

2.2.2. Adaptive moment estimation (Adam) 

The Adam optimizer, presented in [55], utilizes the estimation of the first and second moments of 

the gradient via exponential moving averages and bias corrections. This algorithm also employs 

an exponentially decaying average of past gradients [56]. To update the network’s weights, it is 

first required to compute the 1
st
 biased moment estimation as follows: 
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2.2.3. Nesterov-accelerated adaptive moment estimation (Nadam) 

The Nadam [57] combines Nesterov accelerated gradient and the Adam optimizer. Herein, 

Nesterov momentum is used to consider the gradient at the projected future position [56]. 

Therefore, the Nadam optimizer can be effective to perform the searching process in regions of 

the loss function where the gradient is flat. The equation used to update the network’s weight 

according to the Nadam algorithm is given by: 


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m
ww
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ˆ
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where   is also the learning rate parameter; 81  e . 
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 moment estimate tm̂ is given by: 

))1/()1(())1/((ˆ
1

1

1

1











t

i

it

t

i

itt gmm   (13) 

where 1)1(  ttt mgm  and  = 0.975 denotes a hyper-parameter. 

The 2
nd

 biased moment estimation nt and corrected moment estimation tn̂  are given by: 
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where  = 0.999 is a hyper-parameter of the Nadam algorithm. 

2.3. The collected dataset 

The dataset consisting of testing results of manufactured-sand concrete samples has been 

collected and compiled in the previous works of [58] and [59]. The aforementioned works 

carried out experimental studies on the development of CS of concrete containing manufactured 

sand. There are 132 testing records that provide the concrete mixes’ constituents and the CS 

corresponding to different curing ages. The input factors of stone powder content, sand ratio, 

quantity of cement, quantity of water, quantity of coarse aggregate, quantity of water-reducer, 

quantity of manufactured sand, concrete slump, unit weight of concrete, and curing age are used 

as independent variables to estimate the CS as a dependen variable. Herein, the manufactured 

sand is obtained from crushed limestone with the particle size of 0–4.75 mm. Table 2 provides 

the detailed information on the CS and its predictor variables. 
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Table 2 
Statistical description of the collected dataset. 

Variables Note Min Average Std. Skewness Max 

X1 Stone powder content (%) 5.000 9.000 3.278 0.000 13.000 

X2 Sand ratio (%) 34.000 37.636 3.999 0.883 44.000 

X3 Quantity of cement (kg/m
3
) 321.000 397.182 52.638 -0.324 462.000 

X4 Quantity of water (kg/m
3
) 180.000 181.364 2.235 1.032 185.000 

X5 Quantity of coarse aggregate (kg/m
3
) 1091.000 1166.182 46.306 -1.019 1197.000 

X6 Quantity of water-reducer (kg/m
3
) 2.247 2.997 0.358 -0.122 3.696 

X7 Quantity of manufactured sand (kg/m
3
) 613.000 707.091 96.040 0.799 858.000 

X8 Concrete slump (mm) 30.000 75.909 42.506 1.035 160.000 

X9 Unit weight of concrete (kg/m
3
) 2410.000 2443.758 16.647 -0.889 2463.000 

X10 Curing age (day) 3.000 132.159 120.968 0.703 388.000 

Y Compressive strength (CS) (MPa) 28.500 55.840 11.793 -0.250 78.200 

 

2.4. The metrics used for performance measurement 

To evaluate of the performance of the deep learning models used in this paper, a set of three 

indicators are considered; they include coefficient of determination (R
2
), root mean square error 

(RMSE), and mean absolute percentage error (MAPE). These indicators are widely used for 

assessing the predictive capability of regression models [45,46,55–60,47–54]. The equations 

used to compute these three indicators are presented in Table 3. It is worth noticing that that the 

closer the R
2
 to 1, the better the prediction outcome. In addition, small values of RMSE and 

MAPE reflect low prediction errors. R
2
 and MAPE are unitless. Meanwhile, the unit of the 

RMSE is MPa. 

Table 3 
The employed performance indicators. 

Indices Equation Range Ideal value 
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Note: ti and yi are the observed and predicted CS values of the i
th

 data instance. N denotes the 

number of data records. 
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3. Experimental results and discussion 

This part of the paper presents the experimental outcomes of the DANNR used for predicting the 

CS of manufactured-sand concrete. The deep learning models use three activation functions in 

the hidden layers: the logistic sigmoid (Sigmoid), the hyperbolic tangent sigmoid (Tanh), and 

rectified linear unit activation (ReLU). The state-of-the-art RMSprop, Adam, and Nadam 

optimizers are used to adapt the deep networks with respect to the collected dataset. Hence, there 

are nine DANNR models (RMSprop-Sigmoid-DANNR, RMSprop-Tanh-DANNR, RMSprop-

Tanh-ReLU, Adam-Sigmoid-DANNR, Adam-Tanh-DANNR, Adam-Tanh-ReLU, Nadam-

Sigmoid-DANNR, Nadam-Tanh-DANNR, and Nadam-Tanh-ReLU) are constructed and used for 

result comparison. It is noted that the employed deep learning models have been developed in 

MATLAB programming environment. In addition, the computational experiments in this study 

are performed with a desktop computer using the Intel(R) Core(TM) i7-10700F CPU @ 

2.90GHz and 16GB RAM. 

As mentioned earlier, the dataset includes 132 records and ten predictor variables. These 

predictor variables provide information on the concrete mix and curing age with respect to the 

output variable of the CS. In this study, to standardize the ranges of the predictor and predicted 

variables, the Z-score normalization equation is used. Thus, the orginal variables are normalized 

as follows: 

X

XO
Z

X
X




  (16) 

where ZX  and OX  denote the standardized and the original variables, respectively. X  and 

X  are the mean and standard deviation of the original variable. 

The aforementioned deep learning models are trained by the stochastic gradient descent method 

with the three optimizers (RMSprop, Adam, and Nadam). The batch-size used in the stochastic 

gradient descent method is 16. In addition, the deep learning models have been trained during 

500 epochs. Furthermore, the DANNR models require the setting of their hyper-parameters 

including the learning rate, the regularization type (L1 or L2), the regularization parameter, the 

number of hidden layers as well as the number of neurons in each hidden layer. This study has 

carried out a five-fold cross validation process [61] to identify suitable settings of the DANNR 

models. Based on this cross validation process, the suitable learning rate and regularization 

parameter are 0.01 and 0.001, respectively. In addition, the configurations of the DANNR 

models are summarized in Table 4. 
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Table 4 
Configurations of the DANNR models. 

Models 
Regularization 

type 

Number of hidden 

layers 

Number of neurons in each 

hidden layer 

RMSprop-Sigmoid-DANNR L2 3 12 

RMSprop-Tanh-DANNR L1 2 10 

RMSprop- ReLU-DANNR L2 2 10 

Adam-Sigmoid-DANNR L2 4 12 

Adam-Tanh-DANNR L2 2 8 

Adam-ReLU-DANNR L1 2 8 

Nadam-Sigmoid-DANNR L2 3 12 

Nadam-Tanh-DANNR L1 2 10 

Nadam-ReLU-DANNR L1 2 12 

 

Table 5 

Prediction results of the DANNR models. 

Optimizer Phase Indices 
Sigmoid-DANNR Tanh-DANNR ReLU-DANNR 

Mean Std Mean Std Mean Std 

RMSprop 

Training 

RMSE 1.360 0.115 1.427 0.105 1.677 0.262 

MAPE (%) 2.009 0.195 2.077 0.184 2.409 0.363 

R
2
 0.986 0.002 0.985 0.002 0.979 0.007 

Testing 

RMSE 2.399 0.571 3.230 1.502 2.944 0.764 

MAPE (%) 3.720 1.056 4.060 1.605 4.580 1.658 

R
2
 0.955 0.019 0.903 0.090 0.929 0.037 

Adam 

Training 

RMSE 1.255 0.098 1.331 0.149 2.444 0.726 

MAPE (%) 1.863 0.149 1.951 0.234 3.527 1.052 

R
2
 0.989 0.002 0.987 0.003 0.953 0.028 

Testing 

RMSE 2.098 0.540 2.881 1.167 3.203 1.035 

MAPE (%) 3.105 0.763 4.193 1.685 4.798 1.999 

R
2
 0.958 0.032 0.921 0.085 0.912 0.045 

Nadam 

Training 

RMSE 1.364 0.075 1.452 0.130 2.320 0.393 

MAPE (%) 2.011 0.140 2.152 0.227 3.382 0.573 

R
2
 0.986 0.001 0.985 0.003 0.960 0.013 

Testing 

RMSE 1.952 0.683 2.698 0.773 3.847 1.128 

MAPE (%) 3.043 1.261 3.878 1.178 5.825 1.826 

R
2
 0.970 0.018 0.922 0.050 0.861 0.095 

 

Using the configurations identified by the cross validation processes, a repeated sampling of the 

collected data in which 90% of the dataset is used for model training and 10% of the dataset is 

used for model testing is carried out 20 times. This repeated sampling process aims at mitigating 

the bias in model evaluation due to the randomness in data selection. The prediction results of the 
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nine DANNR models used for predicting the CS of manufactured-sand concrete are reported in 

Table 5. Overall, all deep learning models yield accurate and reliable predictions of the CS as 

shown by low values of RMSE and MAPE as well as high values of R
2
. Nevertheless, the 

DANNR using the logistic sigmoid function and trained by the Nadam optimizer outperforms 

other benchmark approaches. The Nadam-Sigmoid-DANNR yields the highest predictive 

accuracy with the average RMSE = 1.952, MAPE = 3.043%, and R
2
 = 0.97. Notably, R

2 
is the 

proportion of the variation in the CS that can be estimated from the DANNR that uses the set of 

the ten predictor variables. This means that 97% of the total variation in the CS of manufactured-

sand concrete can be explained by the deep learning model. 

The Adam-Sigmoid-DANNR (with RMSE = 2.098, MAPE = 3.105%, R
2
 = 0.958) and 

RMSprop-Sigmoid-DANNR (with RMSE = 2.399, MAPE = 3.725%, R
2
 = 0.955) are the second 

and third best models, respectively. This fact point outs that DANNR used with the logistic 

sigmoid activation function is highly suitable with the dataset at hand. The DANNR with the 

ReLU activation function (RMSE = 2.944) is slightly better than the one with the Tanh function 

(RMSE = 3.230) when the RMSprop is used. However, when the DANNR models are trained by 

the Adam and Nadam algorithms, the models using the Tanh function always excel the ones 

using the ReLU function. 

Table 6 

The computational (com.) time of the DANNR models. 

DANNR 

models 

RMSprop

-Sigmoid 

RMSprop-

Tanh 

RMSprop-

ReLU 

Adam-

Sigmoid 

Adam-

Tanh 

Adam-

ReLU 

Nadam-

Sigmoid 

Nadam-

Tanh 

Nadam-

ReLU 

Average 

com. time 

(s) 

2.19 1.60 1.59 2.51 1.55 1.58 2.05 1.62 1.66 

 

Moreover, the average computational time of the DANNR models is reported in Table 6. In 

general, the computational times of the DANNR models using the Sigmoid function are higher 

than those of other models. The training progresses of the deep learning models are demonstrated 

in Fig. 2. Apparently, the convergence rates of the deep learning models using Sigmoid and Tanh 

functions are faster than those of the models employing the ReLU function. Therefore, it can be 

observed that the Sigmoid and Tanh functions are more suitable for modeling the current dataset 

than the ReLU function. Compared to the ReLU function, the Sigmoid and Tanh activation 

functions can help attain better prediction accuracy with a slight increase in computational 

expense. 

The boxplots illustrating the prediction performances of the DANNR models after 20 

independent runs are shown in Fig. 3. Based on the boxplots, the RMSprop-Tanh-DANNR, 

Adam-ReLU-DANNR, and Nadam-ReLU-DANNR demonstrate relatively unstable 

performances; their ranges between the minimum RMSE and maximum RMSE are considerably 

wider compared to those of other models. Additionally, the median (shown as a red line) of the 

Nadam-Sigmoid-DANNR is the lowest among all of the employed models. 
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Fig. 2. Training progresses of the DANNR models. 
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(a) 

 
(b) 

 
(c) 

Fig. 3. Boxplots of the models’ performance obtained from 20 independent runs: (a) RMSprop optimizer, 

(b) Adam optimizer, and (c) Nadam optimizer. 
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As mentioned earlier, the Nadam-Sigmoid-DANNR has obtained a good prediction performance 

with RMSE = 1.952, MAPE = 3.043%, and R
2
 = 0.97. This result can be benchmarked with 

machine learning models previously used for estimating the CS of manufactured sand concrete. 

In [19], Adaptive Neuro Fuzzy Inference System (ANFIS) and feedforward Artificial Neural 

Network (ANN) have been employed. ANFIS and ANN attain the RMSE = 6.46 and 7.67, 

respectively. In addition, Ly et al. [19] also enhances the ANFIS model by using the Teaching-

Learning-Based Optimization (TLBO); the hybrid ANFIS-TLBO yields a better data fitting with 

RMSE = 4.93. The model proposed by Zhang et al. [43] combines gradient boosted regression 

tree (GBRT) and Firefly algorithm (FA); The latter algorithm is employed to optimize the tuning-

parameters of the former algorithm. The model has yielded the RMSE = 3.346 [43]. Based on the 

results reported in the previous studies, it can be seen that the Nadam-Sigmoid-DANNR 

proposed in this study has provided a promising prediction performance in estimating the CS of 

manufactured sand concrete. 

Fig. 4 and Fig. 5 demonstrate the goodness of fit obtained by the Nadam-Sigmoid-DANNR 

model. Although the proposed method has attained a high degree of fit, its results show certain 

deviations from the actual CS. The absolute deviations (or residuals) of the proposed deep 

learning model is demonstrated in Fig. 6. The histogram of the model’s residuals is presented in 

Fig. 7. The maximum, minimum, and average residual are 8.4540 MPa, 0.001 MPa, and 1.4321 

MPa, respectively. This discrepancy between the estimated and observed CS is understandable. It 

is because the prediction of CS is highly complex due to the nonlinear and multivariate nature of 

the estimation task [15]. Moreover, a certain degree of uncertainty always exists in the 

experimental and testing processes used to measure the CS value of a concrete mix. 

 
Fig. 4. Correlation between actual output and predicted output obtained by the Nadam-Sigmoid-DANNR 

model. 
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Fig. 5. Actual output vs. predicted output obtained by the Nadam-Sigmoid-DANNR. 

 
Fig. 6. Absolute residuals of the Nadam-Sigmoid-DANNR model. 

 
Fig. 7. Histogram of the Nadam-Sigmoid-DANNR model. 
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4. Conclusion 

Prediction of the CS of manufactured-sand concrete based on its constituents and curing age is 

crucial for concrete mix design. In addition, the development of the CS at various ages is a 

complex phenomenon that involves the interplay of multiple predictor variables. Although 

various machine learning methods have been put forward to construct data-driven tools for 

concrete strength estimation, few studies have investigated the capabilities of deep neural 

network regression models in the task of interest. 

This paper has proposed and verified a deep learning-based solution for achieving accurate 

estimations of the CS of manufactured-sand concrete. The DANNR models are trained with the 

advanced RMSprop, Adam, and Nadam optimizers. The research findings show that the Nadam-

optimized DANNR with the Sigmoid activation function can help achieve the most accurate 

predictions of the CS with RMSE = 1.952, MAPE = 3.043%, and R
2
 = 0.97. Therefore, the 

Nadam-Sigmoid-DANNR model is recommended for practical purposes because it can help to 

mitigate the time and cost dedicated to laboratory work. 
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