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Freezing is one of the most effective natural and environmental factors 
on the physical and mechanical characteristics of dimension stones. 
Since, freezing is a destructive agent, thus causes the undesirable stone 
conditions and reduces quality and its efficiency. This study, it was 
aimed to evaluate and rank the dimension stones according to their 
changes in physical and mechanical properties due to freezing 
conditions. For this purpose, 14 rock types of the most widely used 
dimension stones in cold regions were collected and transferred to the 
laboratory to determine their physical and mechanical characteristics. 
In laboratory tests, standard samples of stones were prepared, and for 
all of the samples Uniaxial Compressive Strength (UCS), Durability 
Index (DI), Density (D), and Water absorption percentage (Wa) were 
determined before and after different freezing–thawing cycles. Then 
utility degree of studied stones in frost condition was assessed using 
the preference ranking organization method for enrichment of 
evaluations (PROMETHEE) multi-criteria decision-making method. 
The results of the study showed that samples of A3 (Piranshahr 
Granat), A10 (Hamadan black granite), A8 (Azarshahr yellow 
travertine), and A4 (Mahabad gray granite) are in order from the 
highest degree of desirability in a condition of freezing–thawing and 
for use in cold climates are especially suitable for use in outdoor and 
urban spaces. In addition, the results of the laboratory were evaluated 
by the PSO algorithm for clustering analysis and com-pared with the 
ranking result by PROMETHEE. The results obtained demonstrated 
the proposed approach could be an efficient tool in the evaluation of 
the freezing phenomenon on physical and mechanical properties of 
dimension stones. 
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1. Introduction 

One of the most important factors that influences the efficiency of industrial activities is climate-

related factors [1]. Temperature, as one of the climatic factors, has the greatest impact on mining 

activities, so that mining operations may be stopped in the event of severe temperature changes 

[2]. On the other hand, temperature changes cause the resistance of rocks to change [3]. Iran, 

located in Middle East, is famous for a diverse climate in the whole world that rapid temperature 

changes, the differences between hottest and coldest temp. During the day, hot sun and long 

freezes are sometimes diverse and conflicting climate properties of Iran [4]. The northwest and 

western provinces of Iran have mild summer and cold winters [5]. The high rainfall and cold 

climate are characteristics of the winter in these regions, and since the major potential and vast 

resources of decorative stones are located in these regions, stone owns a special place in the 

culture and art of housing in these regions. According to difficult climate conditions, facade 

stones suffer long-term freezing and multiple freezing–thawing cycles. This causes erosion and 

vast destruction of a variety of dimension stones of structures and reduces life and beauty [6,7]. 

A wide study on the effectiveness of freezing and thawing at the international level on the 

physical and mechanical properties of stones has taken place [8,9]. 

Many research works have been accomplished for the study of the impacts of freeze–thaw cycles 

on the physical and mechanical characteristics of dimension stones. Matsuoka (1990) studied the 

effectiveness of the freezing–thawing cycle according to water content in the stone [10]. In this 

regard, Nicholson and Nicholson (2000) inspected on decline mode for ten types of sedimentary 

rocks according to recrudescent cycles of freeze–thaw process [11]. In other studies, Mutluturk et 

al. (2004) offered a model to study the decay of stone during freezing–thawing cycles [12]. Then, 

Altindag et al. (2004) inspected it for the entirety damage of ignimbrite and specified the impacts 

of freeze–thaw cycles on Isparta ignimbrite, and this model was evaluated by these 

researchers[13]. Chen et al. (2004) study the welded porous of tuff from the viewpoint of the 

effect of water saturation to freeze–thaw cycles. The results indicate that both porosity and rock 

degrading significantly enhance when the saturation degree exceeds 70% [14]. Karaca (2010) 

inspected experimentally the effect of freeze–thaw cycles on the abrasion values [15]. Tan et al. 

(2011) studied the effect of freezing–thawing cycles on stone mechanical characteristics [16]. 

Also, Bayram (2012) presented a novel statistical model for estimating the percentage damage 

value in the uniaxial compressive strength of nine limestone examples after a freeze–thaw test 

[17]. Vehbi Gökçe et al. (2016) reviewed the impact of the number of freezing–thawing cycles on 

physical and mechanical travertine characteristics using statistical studies made in Turkey [18]. 

The research was done in Iran in regard of effect of freezing and thawing on physical and 

mechanical properties of dimension stones, studies of Jamshidi et al. (2013), and also researches 

of Khanlari et al. (2015) in Iran, can be noted [19,20]. Cyclic freeze–thaw event in the cold and 

wet areas, change mechanical and physical characteristics of rocks. When water freezes, its 

volume increases up to 9%, and consequently by erecting dividing force on the sidewall of 

fractures and pores, increases pore pressure [21]. New discontinuities create or old fissure 

developed when pressure passes the level of the tensile strength of the rock pore; as a result, 

these changes can affect the stone’s mechanical strength and thus its durability [22,23]. Also, 

Jamshidi et al. (2016) presented a new physicomechanical index for predicting the mechanical 
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strength of travertine after a freeze–thaw test. The results of this research indicated that the 

physicomechanical parameter is well precise for predicting the mechanical strengths of travertine 

such as, uniaxial compressive strength and point load strength and Brazilian tensile strength after 

a freeze–thaw test, and consequently present a rapid durability evaluation [24]. In the other 

studies, Li et al. (2018) examined the time-dependent behavior of quartz sandstone and quartzite 

according to chemical degradation and freeze–thaw cycles [8]. Liping et al. (2019) were studied 

the physical index change and triaxial compression test of intact hard rock subjected to freeze-

thaw cycles [25]. In another study, Peng et al. (2020), were evaluated the effect of rock freeze-

thaw in cold-region tunnels [26]. Also, a deformation property of coarse-grained sulfate saline 

soil based on the freeze-thaw-precipitation cycle was studied by Zhang et al. (2020) [27]. 

In all these studies, researchers aimed to evaluate and research the coherence between different 

cycles of freezing and thawing and physical and mechanical properties of dimension stones 

which has resulted in valuable results. This study aimed in addition to evaluate the effect of 

quantity of freezing on most widely used dimension stones of the country, degree of desirability 

of studied stones using the PROMETHEE method. So that the most desirable dimension stone 

for use in urban structures is determined and provides a clear vision about its impact on the stone 

selection. It must be noted that there has not been much research on the ranking of dimension 

stones in different freezing–thawing cycles. Therefore, the necessity of research in this regard is 

undeniable. It should be noted that extensive studies have been done on the use of the 

PROMETHEE method in evaluating various mining engineering problems, some of which are 

mentioned in Table 1. 

Table 1 
Some of the studied using the PROMETHEE method [28,29,38–44,30–37]. 

Researcher(s) Year Description 

Dağdeviren  2008 Equipment selection 

Athawale & Chakraborty 2010 Facility location selection 

Prvulovic et al. 2011 Choice of systems for drying paltry-seeds and powder materials 

Bogdanovic et al. 2012 Mining method selection 

Abedi et al. 2012 Copper exploration 

Shiriskar & Patil 2013 Optimization of energy charges 

Balali & Zahraie 2014 Selection of building structural system 

Mikaeil et al. 2015 Sawability of dimension stone 

Mladineo et al. 2016 Priority setting in management of mine action projects 

Balusa & Singam 2018 Underground mining method selection 

Mikaeil et al. 2018 Geotechnical risks assessment in tunneling projects 

Ghadernejad et al. 2019 Selection of optimal coal seam 

Iphar & Alpay 2019 Underground mining method selection 

Sitorus et al. 2019 Choice problem in mining and mineral processing 

Mikaeil et al. 2020 Evaluating the coal seam mechanization 

Dayo-Olupona et al. 2020 Selection of emerging technology in surface mines 

Dachowski & Gałek 2020 Selection of the Best Method for Underpinning Foundations 
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According to the results of research conducted with the PROMETHEE method (Table 1), it can 

be said that this method can evaluate and rank in solving various problems of mining 

engineering. On the other hand, the results of the research show that this method is compatible 

with real-world conditions and provides reliable results for researchers and designers of mines. 

2. Field and laboratory studies 

This research contained two main parts as field and laboratory studies. In the field study, rock 

samples are provided from studied quarries located in Iran. In the laboratory study, the 

characteristics of physical and mechanical are determined before and after freeze–thaw cycling. 

Finally, the desirability degree of studied dimension stones is deter-mined using the 

PROMETHEE method and clustering technique. The flowchart of the re-search procedure is 

illustrated in Figure 1. 

 
Fig. 1. Flowchart of the study. 
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In this study, the numbers of dimension stones of west and northwest regions of Iran are checked. 

Frequency, locality, beauty, color, and price for these stones are the reason. So, 14 dimension 

stones are selected. The studied dimension stones are given in Table 2. The location of the 

studied quarries is shown in Figure 2. 

Table 2 
Studied dimension stones. 

Province City Rock-type Sample ID 

Ardabil Khalkhal Cream travertine  A1 

East-Azerbaijan Azarshahr Walnut travertine A2 

West-Azerbaijan Piranshahr Olive granite A3 

West-Azerbaijan Mahabad Gray granite A4 

Isfahan Naein Red granite A5 

Zanjan Zanjan Spring White granite A6 

West-Azerbaijan Tekab White travertine A7 

East-Azerbaijan Azarshahr Yellow travertine A8 

East-Azerbaijan Azarshahr Red marble A9 

Hamadan Hamadan Black granite A10 

Zanjan Khoramdare Chocolate granite A11 

Kermanshah Harsin Cream marble A12 

Isfahan Anarak Chopanan Cream Pink travertine A13 

Isfahan Anarak Haftoman Pink marble A14 

 

 
Fig. 2. Flowchart of the study. 

According to the nature of the freezing experiment, the need to control the uniformity of samples 

is of utmost importance. So, in this research to ensure the accuracy of the samples and to obtain 

uniform samples, instead of gathering samples from quarries, samples from stones factories in 
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Tabriz city were collected and transported to the rock mechanic laboratory. In total, a block with 

an average size of 40×40×50 cm
3
 was selected from each type of stone. To begin studies in the 

laboratory, the 8 NX diameter cores and a length to diameter ratio of 5/2 were prepared. In all 

experiments, all steps have been according to Laboratory ISRM Standards [45]. According to 

ISRM, freezing experiment is performed at a temperature of –15ºC, however in this study, 

considering that at least 20 nights a year at some of the cities in West and northwest of the 

country temperature reach –20ºC even less, therefore, the temperature suitable for the simulation 

and realistic study of stones, laboratories were asked to test freezing and thawing in 5 courses at 

a temperature of –20ºC. All tests were done once on the control samples and the samples which 

were spent freezing test and a week normally lost their moisture. It should be noted that the five 

of experiments for each sample before and after the freezing–thawing were conducted and the 

average of the results for each sample are shown in Table 3. Also, the results of tests on stone 

samples before and after the freezing–thawing are given in and Figures 3 to 6. 

Table 3 
Physical and mechanical properties of the studied stones before and after the freezing-thawing. 

DI (%) UCS (MPa) Wa (%) D (gr/cm
3
) 

Sample ID After 

freezing 

Before 

freezing 

After 

freezing 

Before 

freezing 

After 

freezing 

Before 

freezing 

After 

freezing 

Before 

freezing 

96.12 97.69 43.5 50.5 2.8 2.1 2.38 2.46 A1 

97.67 98.87 41 48.5 2.95 2.72 2.48 2.52 A2 

98.68 99.38 95.5 105.5 0.43 0.41 3.13 3.18 A3 

98.07 99.57 182.5 189 0.31 0.30 2.98 3.23 A4 

98.86 99.72 169 177.5 1.1 1.02 2.87 3.31 A5 

98.49 99.43 111.5 121 1.05 0.96 2.69 2.87 A6 

97.64 98.73 82.5 89 1.81 1.56 3 3.06  A7 

97.29 98.43 32 33 2.76 2.61 2.31 2.56 A8 

98.18 99.12 48 52.5 2.63 2.54 2.43 2.6 A9 

98.88 99.56 166.5 173 0.265 0.25 3.01 3.26 A10 

98.1 99.31 126.3 133 1.05 0.98 2.74 2.95  A11 

97.94 98.79 62 71.5 1.7 1.57 2.6 2.86  A12 

98.23 99.14 65.5 73 2.03 1.94 2.72 3.07  A13 

97.93 99.42 68 74.5 1.305 1.2 3.094 3.23 A14 

D: Density, Wa: Water absorption percentage, UCS: Uniaxial compressive strength, DI: 

Durability index 
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As can be seen in Table 3, freezing–thawing more seriously affects the mechanical and physical 

properties of stones. Two important physical properties such as density and water absorption 

properties seem to be more effective by freezing–thawing. When the stones are wet, water 

permeates in stone pores and micro-cracks and causes freezing and the volume increase of 

existing water in these spaces increases internal tensions and affects the macroscopic structure of 

the stone. With ice thawing in these spaces, the structure of the stone releases from ice pressure, 

and very mild tension relief is created in the stone. This phenomenon increases stone micro-

cracks and gets flaky inside and outside. A rapid freezing–thawing cycle toughens up the 

destruction of freezing. All the process alters the physical properties of stone, especially the two 

mentioned parameters and decreases in mechanical properties including compressive strength 

and durability index. 

 
Fig. 3. The effect of the freezing–thawing on density. 

 
Fig. 4. The effect of the freezing–thawing on water absorption percentage. 
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Fig. 5. The effect of the freezing–thawing on uniaxial compressive strength. 

 
Fig. 6. The effect of the freezing–thawing on durability index. 

As can be seen in Table 3, the effects of freezing-thawing on the physical and mechanical 

characteristics are clear. After freezing-thawing, density, durability index, and uniaxial 

compressive strength are decreased and water absorption is increased. The percentage changes of 

studied parameters affected by freezing-thawing are given in Table 4 and Figure 7. 

As seen in Table 4, A5(Naein red granite) with a 13% reduction in the density highest, and A2 

(Azarshahr walnut travertine) and A3 (Piranshahr olive granite) have the lowest density 

reduction. Also, the average density of stones decreased by 7.02% due to freezing. It can be seen 

that A1 (Khalkhal cream travertine) with 33%, the highest, and A4 (Mahabad gray granite) by 

3%, have the lowest increase water absorption, on average, water absorption percentage in the 

studied stones by freezing is 9.01%. 
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Table 4 
Physical and mechanical properties percentage changes of studied stone after freezing-thawing. 

Change (%) 
Sample ID 

DI UCS Wa D 

–1.6 –13.86 33 –3 A1 

–1.21 –15.46 8 –2 A2 

–0.7 –6.63 5 –2 A3 

–1.5 –3.43 3 –8 A4 

–0.86 –4.78 8 –13 A5 

–0.94 –7.85 9 –6 A6 

–1.1 –7.3 16 –2 A7 

–1.16 –3.03 6 –10 A8 

–0.95 –8.57 4 –7 A9 

–0.6 –3.75 6 –7.6 A10 

–1.22 –5.03 7 –7.1 A11 

–0.86 –13.28 8 –9 A12 

–0.91 –10.27 4.5 –11.4 A13 

–1.49 –8.72 8.7 –4.2 A14 

 

 
Fig. 7. The percentage changes of studied parameters after freezing-thawing. 

Also, according to Table 4, A2 (Azarshahr walnut travertine) with 15.46%, the highest reduction 

in compressive strength, and A8 (Azarshahr yellow travertine) with 3.03%, have the lowest 

decrease in compressive strength in the effect of freezing. The mean decrease in the compressive 

strength of stones in the effect of freezing is 8.01%. Also, A1 (Khalkhal cream travertine) with a 

1.57 drop in durability index has the highest, and A10 (Hamadan black granite) with a 0.6%, has 

the lowest decrease in durability index, in the effect of freezing the durability index drops into 

1.07% on average. 
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3. Determining the desirability degree of studied stones using PROMETHEE 

The PROMETHEE is a method for making multi-criteria decisions as an efficient solves method, 

using two words preferred and indifference to choose the best option. The method is applied in 

many fields of engineering such as operations research and dynamic management. This method 

has been well-attended because of its mathematical properties and its ease of use. According to 

the PROMETHEE method (Eq 1): 

  1 2( ), ( ),..., ( )kMax Min f a f a f a a A  (1) 

A represents a set of decision options. 

The ( )jf a  shows (j) indicator value in option a, and 1,2,...,j k is the set of indicators or criteria 

that evaluates the options. Rating options by comparing the test is done on each indicator that 

this ranking is done in three steps as follows [42]: 

First step: Compare options using a pre-defined preference function with [0, 1]  domain. For 

example, the preference function P, to examine options a and b and j indicator is as follows: 

   , ,j j jP a b P d a b     (2) 

So that:  , ( ) ( )j j jd a b f a f b  represents the difference in the J indicator. Of course, for each fj 

indicator a weight (wj) also is considered. 

Second step: Calculating the overall preference of ( , )a b or each option. The higher ( , )a b , the 

more preferable. The value of ( , )a b is calculated as follows: 

1

( , ) . ( , )
k

j j

j

a b w p a b


  (3) 

Where: 
1

1
k

j

j

w


 , and J is weight indicator ( jw ). 

Third step: Calculating the overall preference of option a on other options. In this section output 
flow and also preferred the other choices on the option a is calculated as follows: 
for positive or output flow ratings: 

1
( ) ( , )

1 x A

a a x
n





 

  (4) 

It shows how much priority an option a has over others. It shows the real power of option a. The 

( )a  largest amount means the best option. 

for negative input flow ratings: 

1
( ) ( , )

1 x A

a x a
n





 

  (5) 
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This shows that other options to what extent have priority over option a. In reality, this shows 

option a’s weaknesses. The smallest ( )a  represents the best option. 

Minor ratings of options can be done by positive or negative flow PROMETHEE I. 

For complete rankings of all options the net flow ranking must be defined for each option 

PROMETHEE II: 

( ) ( ) ( )a a a     (6) 

The resulting flow balance of positive and negative and net flow ranking higher, indicating a 

better option. For ranking and determining the desirability of studied stones by PROMETHEE 

the steps are to follow: 

Step 1. Forming decision matrix: This matrix indicates studied stones and their percentage 

change in density, water absorption, durable creep, and uniaxial compressive strength during 

different freezing–thawing cycles (Table 4). 

Step 2. Forming normalized decision matrix: For normalizing the data relating the value of 

each element is divided into the square root of the sum of squared elements in each column. The 

normalized decision is shown in Table 5. 

Table 5 
Normalized decision matrix. 

Sample ID D Wa UCS DI 

A1 0.108 0.760 0.417 0.384 

A2 0.072 0.184 0.465 0.290 

A3 0.072 0.115 0.199 0.168 

A4 0.287 0.069 0.103 0.359 

A5 0.467 0.184 0.144 0.206 

A6 0.215 0.207 0.236 0.226 

A7 0.072 0.369 0.220 0.264 

A8 0.359 0.138 0.091 0.276 

A9 0.251 0.092 0.258 0.226 

A10 0.273 0.138 0.113 0.143 

A11 0.255 0.161 0.151 0.291 

A12 0.323 0.184 0.400 0.205 

A13 0.409 0.104 0.309 0.217 

A14 0.151 0.200 0.262 0.356 

 

Step 3. Forming weighted normalized decision matrix: Each element in relating column in 

normalized matrix multiplied in the weight of every indicator. In this part the weight is assumed 

variable. Table 6 indicates the equal weight index weighted normalized decision matrix. 
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Table 6 
Weighted normalized decision matrix. 

Sample ID D Wa UCS DI 

A1 0.027 0.190 0.104 0.096 

A2 0.018 0.046 0.116 0.072 

A3 0.018 0.029 0.050 0.042 

A4 0.072 0.017 0.026 0.090 

A5 0.117 0.046 0.036 0.051 

A6 0.054 0.052 0.059 0.056 

A7 0.018 0.092 0.055 0.066 

A8 0.090 0.035 0.023 0.069 

A9 0.063 0.023 0.064 0.057 

A10 0.068 0.035 0.028 0.036 

A11 0.064 0.040 0.038 0.073 

A
12

 0.081 0.046 0.100 0.051 

A13 0.102 0.026 0.077 0.054 

A14 0.038 0.050 0.066 0.089 

 

Step 4. Calculating ( , )jP a b  and ( , )a b : In this part after calculating differences of options, 

the amount ( , )jP a b  for each of the options about each indicator according to the first function 

would be achieved. In continue values for the options were calculated according to overall 

priority. The results of this review for option 1, according to Eqs 2 and 3, are shown in Table 7. 

Table 7 

Option 1 comparison with other options using the first ( , )a b function with the value. 

 D Wa UCS DI ( , )a b  

(A1,A2) 0.009 0.144 – 0.012 0.023 0.75 

(A1,A3) 0.009 0.161 0.054 0.054 1 

(A1,A4) – 0.045 0.173 0.078 0.006 0.75 

(A1,A5) – 0.090 0.144 0.068 0.044 0.75 

(A1,A6) – 0.027 0.138 0.045 0.040 0.75 

(A1,A7) 0.009 0.098 0.049 0.030 1 

(A1,A8) – 0.063 0.155 0.081 0.027 0.75 

(A1,A9) – 0.036 0.167 0.040 0.039 0.75 

(A1,A10) – 0.041 0.155 0.076 0.060 0.75 

(A1,A11) – 0.037 0.150 0.066 0.023 0.75 

(A1,A12) – 0.054 0.144 0.004 0.045 0.75 

(A1,A13) – 0.075 0.164 0.027 0.042 0.75 

(A1,A14) – 0.011 0.140 0.039 0.007 0.75 

 

Step 5. Calculating minor ranking input and output flow: For selecting the best option, n–1 

options of A collection must be rejected. For this purpose, two priority flows are defined. 

Prioritizing output flow shows how much each choice has priority over other choices. 

Prioritizing input flow also shows how much of a particular option is superior to other options. 

So, the largest output and lowest input belong to the best option. Results of calculating the 

prioritized using Eqs 4 and 5 are shown in Table 8. 

Step 6. The net flow calculation and rating options: PROMETHEE I method calculates net 

flow options rating and represents each option’s superiority over other options. In this case, 

larger net flow represents the option’s superiority. The result of the calculation of net flow 
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prioritization using Eq 6 and ranking of studied dimension stones are shown in Table 8, Figures 8 

and 9. 

Table 8 
Input and output flow and net flow and final options ranking. 

Sample ID Output flow (positive) Input flow (negative) Net flow Ranking 

A1 0.788 0.212 0.577 11 

A2 0.558 0.365 0.192 9 

A3 0.173 0.788 – 0.615 1 

A4 0.423 0.577 – 0.154 4 

A5 0.500 0.462 0.038 7 

A6 0.538 0.462 0.077 8 

A7 0.481 0.481 0 6 

A8 0.442 0.538 – 0.096 5 

A9 0.404 0.596 – 0.192 3 

A10 0.269 0.712 – 0.442 2 

A11 0.519 0.481 0.038 7 

A12 0.577 0.385 0.192 9 

A13 0.538 0.462 0.077 8 

A14 0.654 0.346 0.308 10 

 

 
Fig. 8. Input, output, and net flow of studied dimension stones. 

 
Fig. 9. Ranking of studied dimension stones. 
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As mentioned, indicators had the same importance. To review indicators’ importance in ranking 

in studied samples, sensitivity in indicators weight is considered. The results of the review 

showed in 13 states shown in Table 9. 

Table 9 
Ranking the options according to different weights assigned to the indicator. 

Indicators weight 

D 0.25 0.500 0.750 1 0.166 0.084 0 0.167 0.083 0 0.167 0.083 0 

Wa 0.25 0.167 0.083 0 0.05 0.750 1 0.166 0.084 0 0.187 0.083 0 

UCS 0.25 0.167 0.083 0 0.167 0.083 0 0.500 0.750 1 0.166 0.084 0 

DI 0.25 0.166 0.084 0 0.167 0.083 0 0.167 0.083 0 0.500 0.750 1 

Sample 

ID 
Net flow 

A1 0.577 0.205 –0.167 –0.538 0.719 0.858 1 0.666 0.757 0.846 0.718 0.859 1 

A2 0.192 –0.154 –0.500 –0.846 0.206 0.217 0.231 0.461 0.731 1 0.266 0.321 0.385 

A3 –0.615 –0.699 –0.770 –0.846 –0.590 –0.564 –0.538 –0.487 –0.359 –0.231 –0.693 –0.769 –0.846 

A4 –0.154 0.024 0.206 0.385 –0.436 –0.718 –1 –0.384 –0.616 –0.846 0.180 0.512 0.846 

A5 0.038 0.359 0.679 1 0.102 0.168 0.231 –0.154 –0.346 –0.538 –0.153 –0.347 –0.538 

A6 0.077 –0.025 –0.129 –0.231 0.282 0.487 0.692 0.076 0.078 0.077 –0.026 –0.128 –0.231 

A7 0 –0.282 –0.564 –0.846 0.283 0.564 0.846 –0.026 –0.050 –0.077 0.026 –0.128 0.077 

A8 –0.096 0.166 0.430 0.692 –0.167 –0.236 –0.308 –0.397 –0.699 –1 0.014 0.121 0.231 

A9 –0.192 –0.154 –0.115 –0.077 –0.410 –0.628 –0.846 –0.051 0.089 0.231 –0.154 –0.115 –0.077 

A10 –0.442 –0.218 0.006 0.231 –0.398 –0.352 –0.308 –0.526 –0.609 –0.692 –0.628 –0.815 –1 

A11 0.038 0.051 0.065 0.077 0 –0.038 –0.077 –0.102 –0.244 –0.385 0.205 0.372 0.538 

A12 0.192 0.308 0.422 0.538 0.205 0.218 0.231 0.359 0.526 0.692 –0.103 –0.397 –0.692 

A13 0.077 0.334 0.590 0.846 –0.180 –0.435 –0.692 0.231 0.384 0.538 –0.077 –0.230 0.385 

A14 0.308 0.077 –0.154 –0.385 0.385 0.461 0.538 0.333 0.359 0.385 0.436 0.564 0.692 

 

4. Particle Swarm Optimization 

In recent decades, artificial intelligence (AI) techniques, have played a significant role in solving 

complex problems in industry and science in theory and practice [46–53]. Numerous studies 

were conducted in a wide range of sciences that demonstrated the practical applications of these 

methods [54–59]. The Particle Swarm Optimization (PSO) is one of the most widely used and 

effective algorithms in solving various problems in conditions of uncertainty, which can be 

considered in the Swarm Intelligence (SI) which was first proposed by Kennedy and Eberhart 

(1995) [60]. This algorithm is based on the pattern of mass movement of fish in water or birds 

during migration to find its way to evolution and achieve the most optimal answer or answers. In 

this algorithm, starting with the optimization process, a set of particles (answers) are generated 

randomly. These particles move in set to get the best possible position in a D-dimensional space 

[61–63]. Each particle is represented by two vectors of position and velocity that represent the 

direction of its flight and velocity based on Figure 11. 
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Fig. 11. New velocity and position vectors of a set of particles. 

Each particle, after moving at any moment, the velocity and position vectors are updated 

according to Eqs 7 and 8, respectively. Two components of the velocity vector are the personal 

best position (Pbest) and global best position (Gbest). 

( 1)

1 1 2 2.( ) .( )k k k k

i i i i iV wV c r pbest X c r gbest X       (7) 

( 1)k k k

i i iX X V    (8) 

Where 
( 1)k

iV 
,and 

( 1)k

iX 
 represent the new velocity vector, and new position. Also, 

k

iV , and 
k

iX  

express the initial velocity vector and position of particles. The 1r  and 
2r  are random numbers 

with uniform distribution with a range between 0 and 1. The w expresses the inertia weight to 

ensure convergence in the particle set. In addition, 
1c and 2c  are positive constants that called the 

individual learning factor and the social learning factor, respectively. Generally, the values of 
1c

and 2c  are considered equal to 2, while Eq 9 must be met [64,65]. 

1 2 4c c   (9) 

Position and velocity vectors of particles constantly being updated, and the optimization process 

is stopped when the best possible answer is achieved. It is worth mentioning that the PSO 

algorithm is used to train other algorithms such as artificial neural networks, neuro-fuzzy 

inference systems, and support machine vectors. Hence, in this study, the particle algorithm is 

used in training the Lloyd algorithm for clustering and data analysis, which is described in the 

following section. 

5. Clustering model and discussion 

As mentioned earlier, the PSO has a wide range of applications. Therefore, in this study, the PSO 

is employed to train Lloyd’s algorithm (k-means clustering). Clustering is one of the most 

effective methods in data analysis that the particle algorithm with the training of the Lloyd 

algorithm (one of the most popular clustering algorithms) increases the ability to classify analyze 

data to a desirable level [66]. Lloyd's algorithm is considered as a fitness function that is shown 

in Eq 10. 
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. min ( , )
11

n
Obj Function d x mi jj ki


 

 (10) 

Where d(xi,mi) represents the Euclidean distance of each member from each class’s center. j 

expresses the amount of clusters j=(1,2,3,…,k)[67–69]. 

For maximum algorithm efficiency in data analysis, the algorithm's control parameters must be 

determined that play an effective role in algorithm convergence. Since there are no specific 

relationships to determine these control parameters, a set of these parameters were selected based 

on previous studies [70–72]. Then, according to the data set and after trial and error, the most 

appropriate ones were selected including the number of clusters c=2, minimum acceptance 

precision of εL=0.00001, the initial population of 100, and maximum iteration of 150. The rock 

samples are classified into two classes based on the amount of physical and mechanical 

properties percentage changes after freezing-thawing. The results of this classification are 

demonstrated in Table 10 and compared with the results of ranking the rocks based on the 

permutation method. 

Table 10 
Comparison of the results of clustering by PSO in two classes with the results of ranking by 

PROMETHEE. 
PROMETHEE technique 

Clustering by PSO Sample ID 
Net flow Ranking 

0.577 11 2 A1 

0.192 9 1 A2 

– 0.615 1 1 A3 

– 0.154 4 1 A4 

0.038 7 1 A5 

0.077 8 1 A6 

0 6 1 A7 

– 0.096 5 1 A8 

– 0.192 3 1 A9 

– 0.442 2 1 A10 

0.038 7 1 A11 

0.192 9 1 A12 

0.077 8 1 A13 

0.308 10 1 A14 
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According to Table 3, the results of clustering by PSO algorithm showed that the rock sample A1 

was classified alone in one class and the other samples in another class together. Also, in a 

comparison with the results obtained from the PROMETHEE method, it is determined that the 

sample of A1, which is classified separately in the second class, has the lowest rank and has the 

highest amount of net flow compared to other samples. 

Finally, the following remarks can be concluded: 

The results of the experiments showed that after freezing density, uniaxial compressive strength, 

and durability index of stone are reduced and water absorption is increased. The reason for these 

changes can be analyzed in continuous periods of freezing and thawing that process of freezing 

and thawing sequence created and a series of large and small joints and cracks in the stone. 

However, if the joints and cracks appear on the surface small pieces of stone sometimes appear 

in the form of powder. If the cracks are within the volume of stone and the stone porosity is 

increased. The combination of these states reduces mass and increases the volume of sample 

stones and finally, characteristics such as density, strength, and durability of stone are decreased. 

Also, due to the formation of cracks in the stone, stone absorbs more water in free spaces and 

water absorption is increased. Studies on the rock-mechanical test of stone samples showed that 

A5 (Naein red granite) with 13% decrease in density is highest and three walnut travertine, A3 

(Piranshahr Granat) and A7 (Tekab White travertine) with 2% have lowest density decrease 

during freezing. Also, in average stones density in freezing conditions decreased by 7.02%. 

Differences between the highest and lowest density percentage among studied stones were 11%. 

A1 (Khalkhal cream travertine) with 33% increase and A4 (Mahabad gray granite) with 3%, in 

order, had the highest and lowest water absorption percentage increase. On average, the water 

absorption percentage showed a 9.01% increase in freezing conditions. Differences between the 

highest and lowest water absorption percentages among studied stones were 3%. A2 (Azarshahr 

walnut travertine) with 15.46% and A8 (Azarshahr yellow travertine) with 3.03 in order had 

highest and lowest compressive strength in freezing condition. The average reduction in stones 

compressive strength was 8.01. Also, A1 (Khalkhal cream travertine) with 1.57% durability 

Index drop was highest and A10 (Hamadan black granite) with 0.6% had the lowest drop and in 

average durability index in freezing condition drops by 1.07. Then, using PROMETHEE multi-

criteria decision-making with varied weights, the 14 samples were used to determine the degree 

of desirability of the stones. In most circumstances, the options A3, A10, A8, and A4 have the 

maximum degree of freezing–thawing desire. Finally, classifying of laboratory data using PSO 

algorithm and comparison with the results of PROMETHEE ranking showed that the used 

methods can be considered as a suitable tool for assessing dimension stone according to 

resistance to freeze–thaw cycling to use in cold regions. 

6. Conclusions 

Freezing is one of the most effective environmental factors to the physical and mechanical 

properties of dimension stones. Since freezing is a destructive agent, thus causes the undesirable 

stone conditions and reduces quality and its efficiency. In this study, freezing effects on the 

physical and mechanical dimension stones were evaluated and the desirability degree of these 
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stones was ranked according to four percentage changes of important physical and mechanical 

such as density, water absorption, uniaxial compressive strength, durability index. For this 

purpose14 rock types of the most widely used dimension stones in cold regions were collected 

and transferred to the laboratory. To analyze the actual conditions of freezing in the cold areas 

that face freezing in winter, stones were studied at –20ºC. Determining the degree of desirability 

studied stones using PROMETHEE multi-criteria decision-making with different weights for the 

14 cases studied and evaluated. The results of this study showed that in most cases the option A3 

(Piranshahr Granat), A10 (Hamadan black granite), A8 (Azarshahr yellow travertine), and A4 

(Mahabad gray granite) have the highest degree of desirability in terms of freezing–thawing. 

Thus, sample stones of A3, A10, A8, and A4 are the most desirable stones in cold climates 

among studied stones. Then, the results of the laboratory were classified by PSO algorithm and 

compared with the results of PROMETHEE. Consequently, it could be recognized as the lowest 

rank in a separate class. This study indicated that the proposed approach can be applied as a 

reliable tool for evaluating freezing phenomena in rock mechanics engineering. 
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