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A hybrid algorithm is presented that combines strong points of 

Particle Swarm Optimization (PSO) and Generalized Reduced 

Gradient (GRG) algorithm to keep a good compromise between 

exploration and exploitation. The hybrid PSO-GRG quickly 

approximates the optimum solution using PSO as a global search 

engine in the first phase of the search process. The solution 

accuracy is then improved during the second phase of the search 

process using the GRG algorithm to probe locally for a proper 

solution(s) in the vicinity of the current best position obtained by 

PSO. The k-nearest neighbors (k-NN)-based Purely Uniform 

Distributed (PUD) initial swarm is also applied to increase the 

convergence speed and reduce the number of function evaluations 

(NFEs). Hybridization between both algorithms allows the 

proposed algorithm to accelerate throughout the early stages of 

optimization using the high exploration power of PSO whereas, 

promising solutions will possess a high probability to be exploited 

in the second phase of optimization using the high exploitation 

ability of GRG. This prevents PUD-based hybrid PSO-GRG from 

becoming trapped in local optima while maintaining a balance 

between exploration and exploitation. The competence of the 

algorithm is compared with other state-of-the-art algorithms on 

benchmark optimization problems having a wide range of 

dimensions and varied complexities. Appraising offered algorithm 

performance revealed great competitive results on the Multiple 

Comparison Test (MCT) and Analysis of Variance (ANOVA) test. 

Results demonstrate the superiority of hybrid PSO-GRG compared 

to standard PSO in terms of fewer NFEs, fast convergence speed, 

and high escaping ability from local optima. 
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1. Introduction 

Complex engineering optimization problems usually include a large number of non-convex, non-

linear and non-differentiable constraints and objective functions. Exact optimization algorithms 

do not efficiently solve Constrained Optimization Problems (COPs) that have nonlinear and non-

differentiable search space, objective and constraint functions [1]. Recently, many metaheuristic 

algorithms derived from nature have been developed and employed to cope with COPs [2–4]. 

Among them, the Swarm Intelligence Optimization (SIO) algorithms, inspired by natural 

phenomena and biological behaviors, are considered as a kind of bionic random method, which 

can deal with certain high-dimensional intricate and variable optimization problems due to its 

better computing performance and simple model [5]. Swarm intelligence systems typically 

comprise simple agents, that follow extremely simple rules and interact with each other and their 

surroundings. Although each agent alone can be considered unintelligent, interactions between 

multiple agents lead to the emergence of intelligent collective behavior [6]. Particle Swarm 

Optimization (PSO) [7], Ant Colony Optimization (ACO) [8], Artificial Bee Colony (ABC) 

algorithms [9], Firefly Algorithm (FA) [10], Glow Worm Optimization (GWO) algorithm [11], 

Bat Algorithm (BA) [12], Lion Optimization Algorithm (LOA) [13], Grey Wolf Optimization 

(GWO) algorithm [14], Monarch Butterfly Optimization (MBO) [15], Krill Herd Optimization 

(KHO) algorithm [16], Elephant Herding Optimization (EHO) [17], Cuckoo Search (CS) [18] are 

in the class of SIO algorithms. These algorithms have been analyzed over time by researchers in 

various areas [19–28]. The SIOs have exhibited good performance in different engineering fields 

including feature selection [29], structural weight minimization [30–34], shape and topology 

optimization [35–37], damage detection [38–40], and performance-based design optimization 

[41]. 

Among all global search algorithms, PSO has been applied and proven useful on a wide range of 

engineering COPs such as the optimal design of truss structures [42–45], structural damage 

detection [46], topology optimization [47–49], and reliability-based design optimization [50–52]. 

PSO algorithm can efficiently handle non-linear, non-convex, and non-differentiable design 

spaces since it does not require prior knowledge about the search space, internal variable 

transformations, or other manipulations to handle constraints [53].  

Despite the efficiency of the SIO algorithms, none of these algorithms is capable of offering 

adequately superior performance to solve all optimization problems [2,23]. There are also some 

disadvantages to SIO utilization. First, effective parameters tuning of SIO algorithms is a 

challenging task for various swarm-based algorithms. Premature convergence and/or trapping in 

local optima is also another problem encountered when using SIO algorithms. For instance, 

although BA is potent in local search, occasionally it may get trapped in some local optimum, 

thus it is not capable of carrying out global search well [54,55], PSO can sometimes find local 

optima or exhibit slow convergence speed.  

In recent years, many algorithms with different strategies have been proposed to cope with the 

above-mentioned issues [56–59]. Parameter tuning, hybridization, and better initializing are the 

most common methods that have been used in literature. Gupta and Deep have proposed a hybrid 
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algorithm based on the combination of the ABC with the sine cosine algorithm aiming to 

improve both the local and global search capabilities of the standard ABC algorithm [60]. In 

2020, Yildizdan and Baykan have suggested a new hybrid BA-ABC algorithm to improve the 

diversity and global search capability of the BA using the ABC algorithm, while the inertia 

weight was also added to the velocity formula to enhance the exploration ability of BA [61]. Yue 

and Zhang [62] were proposed a hybrid Grasshopper Optimization Algorithm (GOA) with BA 

for global optimization. In this study, the local search operation of the BA and the Levy flight 

with variable coefficient together with the random search strategy was employed to balance the 

exploration and exploitation capability of the proposed hybrid algorithm. Yue et al. have 

introduced a novel hybrid algorithm named FWGWO, which accordingly, the exploration 

capability of the fireworks algorithm with the exploitation ability of the GWO has been 

combined through the setting a balance coefficient [63]. Authors in [64–66] employed several 

PSO-based hybridized algorithms such as the PSO-SA, PSO-GA, and PSO-GSA, for different 

optimization problems. Fuzzy logic, Chaos strategy, Elitism approach, Quantum strategy, and 

opposite-based learning are some other methods that have been utilized by researchers to 

ameliorate the performance of the standard PSO [67–69]. 

In this study, a new hybrid optimization algorithm is proposed based on the PSO and Generalized 

Reduced Gradient (GRG) algorithm to improve the local search ability of the standard PSO. The 

Purely Uniform Distributed (PUD) initial swarm is also implemented as an efficient strategy to 

enhance the convergence speed of the optimization procedure. The proposed hybrid PSO-GRG 

algorithm with PUD operator is called the PGP method and introduced in detail and implemented 

successfully for some mathematical and engineering COPs having various dimensions and varied 

complexities. The efficiency and accuracy of the proposed algorithm are also compared with 

other state-of-the-art algorithms by performing the Multiple Comparison Test (MCT) and 

Analysis of Variance (ANOVA) test.  

The remainder of the paper is organized as follows. Details of the original PSO and GRG 

algorithms are presented in Sect. 2 and 3, respectively. In Sect. 4, the proposed hybrid PSO-GRG 

with the PUD operator is presented. In Sect. 5, the experimental results are provided for the 

nonlinear benchmark functions. Finally, the summary and concluding remarks are discussed in 

Sect. 6. 

2. Particle swarm optimization (PSO) 

The PSO algorithm was proposed by Kennedy and Eberhart [7] based on the flocking behavior 

and social cooperation of birds. In this algorithm, the position of each particle is considered as a 

potential solution to the optimization problem. In PSO, the position of each particle in a swarm 

approaches the optimum solution using its velocity vector (𝑉), personal experience (𝑃𝑏𝑒𝑠𝑡), and 

the best experience of the swarm (𝐺𝑏𝑒𝑠𝑡). 

In the first iteration of the PSO, the initial swarm with 𝑃 particles is generated by distributing a 

uniform random population in the search space. During the optimization process, the position 

vector 𝑋𝑖 = [𝑥𝑖1, … , 𝑥𝑖𝐷] and velocity vector 𝑉𝑖 = [𝑣𝑖1, … , 𝑣𝑖𝐷] of each particle is updated concerning 
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the personal best position 𝑃𝑏𝑒𝑠𝑡𝑖 = [𝑥𝑖1
𝑃𝑏𝑒𝑠𝑡 , … , 𝑥𝑖𝐷

𝑃𝑏𝑒𝑠𝑡], and best position of the swarm 𝐺𝑏𝑒𝑠𝑡𝑖 =

[𝑥𝑖1
𝐺𝑏𝑒𝑠𝑡 , … , 𝑥𝑖𝐷

𝐺𝑏𝑒𝑠𝑡] as follows: 

𝑉𝑖
𝑘+1(𝑗) = 𝜆[𝜔𝑘𝑉𝑖

𝑘(𝑗) + 𝑟1𝑐1(𝑃𝑏𝑒𝑠𝑡𝑖
𝑘(𝑗) − 𝑋𝑖

𝑘(𝑗)) + 𝑟2𝑐2(𝐺𝑏𝑒𝑠𝑡𝑖
𝑘(𝑗) − 𝑋𝑖

𝑘(𝑗))] (1) 

𝑋𝑖
𝑘+1(𝑗) = 𝑋𝑖

𝑘(𝑗) + 𝑉𝑖
𝑘+1(𝑗) (2) 

where 𝑃 is the swam size; D is the dimension of the search space, k is the current iteration 

number; 𝑋𝑖
𝑘(𝑗) and 𝑉𝑖

𝑘(𝑗) are the position and velocity of the i-th particle (𝑖 = 1, 2, … , 𝑃) in the j-th 

dimension, respectively (𝑗 = 1, 2, … , 𝐷); 𝜆 is the constriction factor; 𝑐1 and 𝑐2, respectively, are the 

personal (cognitive) and social learning constant; 𝑟1 and 𝑟2 are random numbers between [0-1], 

and 𝜔 is the inertia weight factor used to keep a balance between the exploration and exploitation 

power of the algorithm. The linearly decreasing inertia weight factor is applied in this study 

[51,52]. 

𝜔(𝑘) = 𝜔𝑚𝑎𝑥 −
(𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) × 𝑘

𝐾
 (3) 

where 𝐾 is the maximum iteration number; and 𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛 denoted the maximum and 

minimum values for inertia weight factor, used in the first and last iterations, respectively.  

In this algorithm, the velocity vector is limited to 10 − 20% of each dimension size to control 

the particle's step size of each particle. After updating the velocity and position, the existent 

particles within the search space are evaluated. If the objective function related to the current 

position is better than the individual best position, the 𝑃𝑏𝑒𝑠𝑡 of each particle will be replaced by 

the current position. Moreover, if a particle position is better than the current best solution 

obtained by the entire swarm, the 𝐺𝑏𝑒𝑠𝑡 will also be updated. The search process will be 

continued until the stop conditions are met. 

3. Generalized reduced gradient (GRG) algorithm 

The GRG algorithm is robust local search algorithms, which is based on the linearizing of the 

non-linear objective function and constraints at a local solution by applying the Taylor expansion 

equation and the linear optimization methods [70]. Given that inequality constraints can always 

be converted to equalities through the addition of slack variables (𝑠), an equality-constrained 

NLP model can be formed as follows: 

𝑀𝑖𝑛: 𝑓(𝑤)   

(4) 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ℎ𝑖(𝑤) = 0     𝑖 = 1,2, … , 𝑛𝑒𝑞 

𝑙 ≤ 𝑤 ≤ 𝑢 

where 𝑤 = [𝑤1, 𝑤2, … , 𝑤𝑛 ]𝑇 contains the original design variables 𝑥 and the slack variables 𝑠, and 

the vectors 𝑙 and 𝑢 denote the lower and upper bounds for 𝑠, respectively. The gradient of the 𝑓 

can be defined as: 

∇𝑇𝑓(𝑧) = [
𝜕𝑓

𝜕𝑧1
,

𝜕𝑓

𝜕𝑧2
, … ,

𝜕𝑓

𝜕𝑧𝑁𝐼
 ] (5) 
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∇𝑇𝑓(𝑦) = [
𝜕𝑓

𝜕𝑦1
,

𝜕𝑓

𝜕𝑦2
, … ,

𝜕𝑓

𝜕𝑦𝑁𝐷
 ] (6) 

where two vectors 𝑧 with NI elements, and 𝑦 with ND elements are partitioned from the vector 

𝑤. The Jacobian matrix (𝐽) of the constraints is also partitioned in the same manner. The 

differential of the constraints and objective function can then be written as follows: 

𝑑𝑓 = ∇𝑇𝑓(𝑧)𝑑𝑧 + ∇𝑇𝑓(𝑦)𝑑𝑦 (7) 

𝑑ℎ = 𝐽𝑧𝑑𝑧 + 𝐽𝑦𝑑𝑦 = 0 (8) 

where 𝑑𝑧 and 𝑑𝑦 are vectors of differential displacements in 𝑧 and 𝑦, respectively. Solving for 

𝑑𝑦 in terms of 𝑑𝑧 gives: 

𝑑𝑦 = −𝐽𝑦
−1𝐽𝑧𝑑𝑧 (9) 

 
Fig. 1. Flowchart of the GRG algorithm. 
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Substituted 𝑑𝑦 from Eq. (9) into Eqs. (7) and (8) and rearranging the results, the reduced 

gradient ∇𝑟
𝑇𝑓 can be defined as: 

∇𝑟
𝑇𝑓(𝑧) = ∇𝑇𝑓(𝑧) − ∇𝑇𝑓(𝑦)𝐽𝑦

−1𝐽𝑧 (10) 

The potential constraint strategy can also be employed to treat all constraints in the sub-problem 

as equality constraints [71]. Accordingly, a search direction is found so that for any small 

movement, the present active constraints stay in an exactly active manner. The Newton–Raphson 

algorithm is employed to draw back into the constraint boundary if some active constraints are 

not precisely satisfied due to the nonlinearity of the constraint functions. Thusly, the GRG 

method works nearly like the gradient projection algorithm [72]. 

Fig. 1, shows the general flowchart of the GRG algorithm. More details about GRG have been 

presented in [73,74]. 

4. Proposed hybrid PSO-GRG algorithm 

In this study, the GRG algorithm is used to enhance the local search and exploitation ability of 

the PSO in some iterations of the search process. Furthermore, the PUD operator is also applied 

to increase the convergence rate and reduce the total Number of Function Evaluations (NFEs). 

Given that COPs are mostly complex and time-consuming, reducing the NFEs is an imperative 

issue. Details of the proposed PUD-based hybrid algorithm are presented in the next subsections.  

4.1. Purely uniform distributed swarm 

Although, the standard PSO starts with a group of randomly generated particles, however, the 

search space may not effectively be covered by a uniformly distributed swarm. As a result, as 

shown in Fig. 2, random generation of the swarm may lead to creating the particle density in 

some subspaces of the search spaces, so that some adjacent particles may practically exist at a 

very close distance, which will achieve relatively similar fitness during the search process. 

Furthermore, as shown in Fig. 2, some subspaces may not even cover by random generation of 

the initial swarm. Therefore, the size of the population should be greatly increased to efficiently 

cover the overall search space for high dimension and/or complex problems. The existence of 

such conditions leads to an increase in the total NFEs and, as a result, increases the computation 

time of the optimization process.  

In this study, the purely uniform distributed random particles are generated to probe the more 

efficiently the search domain. The promise of employing the PUD operator for generating the 

initial swarm is that the performance of the algorithm could be enhanced by avoiding checking 

particles with the same fitness so that no two particles are evaluated at a distance less than a 

certain radius from each other. For this purpose, the distance between the two adjacent particles 

is calculated using a k-nearest neighbors (k-NN) method that is a non-parametric algorithm for 

both classification and regression [75]. Also, the devoid subspaces of the search space should be 

covered as much as possible by particles from the initial swarm. Accordingly, after producing an 

initial swarm, all particles of the swarm are evaluated at a specified neighborhood during the first 
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stage, and then the dense particles in the neighborhood are exited from the swarm. Ultimately, 

these modifications result in the generation of an initial swarm so that the particles with the same 

fitness functions have been removed. Fig. 3(a), illustrates the PUD-based generated initial swarm 

for a two-dimensional search space. To efficiently explore the problem space as completely as 

possible in the second stage, a certain number of particles are randomly generated through the 

uniform distribution and added to the current swarm. The vicinity evaluation process is 

performed again using k-NN for all particles of the swarm. As shown in Fig. 3(b), this process 

considerably increases the probability of covering the entire search space. Figs. 4, shows the 

flowchart of the proposed k-NN-based PUD operator. 

 
Fig. 2. Initial swarm generated by randomly uniform distribution (n=100). 

  
a) b) 

Fig. 3. Purely uniform distributed initial random swarm; a) n=44, b) n=100. 
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Fig. 4. Flowchart of the proposed PUD operator. 

4.2. General steps of the hybrid PSO-GRG with PUD operator 

In the proposed hybrid PSO-GRG algorithm, the GRG algorithm is summoned by satisfying the 

conditions of convergence. For this purpose, the best solution obtained by PSO is utilized as a 

starting point for the GRG during the local search process. Using the GRG gradient-based 

algorithm will lead to locally improve the optimal position in the vicinity of the starting point, as 

described in Section 3. After converging the GRG-based local search process, the termination 

condition(s) of the algorithm is checked. If the termination criteria are not passed, the solution 

obtained by the GRG algorithm is considered as a global best position (GBP) and, consequently, 

the PSO algorithm will continue the optimization process to achieve the new best position. As 
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shown in Fig. 5, this cycle continues until satisfying all convergence conditions. Therefore, the 

quality of the optimum solution is improved in each series cycle of the algorithm by utilizing the 

GBP obtained by PSO as a starting point for the GRG algorithm. Eventually, the solution 

obtained by the GRG algorithm is presented as the final solution of the proposed hybrid PSO-

GRG. It should be mentioned that the maximum NFEs and/or the maximum number of iteration 

could be considered as the general termination condition(s) of the proposed hybrid algorithm. In 

this paper, the GRG algorithm is employed if the best solution of PSO does not improve after 

every 10 cycles. 

 
Fig. 5. The general flowchart of the proposed hybrid PGP algorithm. 
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The hybridization between PSO and GRG allows the proposed algorithm to accelerate 

throughout the early stages of the search process using the high exploration power of PSO 

whereas, in the later stages of optimization, promising solutions will possess a high probability to 

be exploited using the exploitation ability of the GRG. This prevents PSO-GRG from becoming 

trapped in local optima while maintaining a good compromise between exploration and 

exploitation. The general flowchart of the PSO-GRG with the PUD operator is depicted in Fig. 5. 

4.3. The constraint handling approach 

In this paper, a penalty-based constraint handling approach is considered to solve COPs. The 

search domain in the COPs includes feasible and infeasible spaces. For the feasible solutions, all 

the constraints are met. In contrast, in the infeasible space, at least one of the constraints is 

violated. Hence, the constraint functions can be taken into scrutiny through the penalty functions. 

This implies that constraints can be considered in the target function in one way or another. A 

penalty function can be defined as: 

𝐹(𝑥)  =  𝑓(𝑥) + ℎ(𝑘)𝐻(𝑥), 𝑥 ∈ 𝑆 ⊂ 𝑅𝑛 (11) 

where 𝑓(x) denotes the target (objective) function; ℎ(𝑘) denotes the dynamic penalty value at 

iteration 𝑘; and 𝐻(𝑥) is a penalty factor, defined as: 

𝐻(𝑥)  =  ∑ 𝜃 (𝑞𝑖(𝑥)) 𝑞𝑖(𝑥) 𝛾 (𝑞𝑖(𝑥))

𝑚

𝑖=1

  (12) 

where 𝑞𝑖(𝑥) = {0, 𝑔𝑖(𝑥)}, 𝑖 = 1, … , 𝑚. The function 𝑞𝑖(𝑥) is a relative violation function for the 

i-th constraint 𝑔𝑖(𝑥); 𝜃(𝑞𝑖(𝑥)) denotes the multi-segment assignment function; and 𝛾(𝑞𝑖(𝑥)) 

denotes the power of the penalty function. 

In this method, the initial penalty should be considered as the lowest possible value. The penalty 

value should also be increased in every iteration as the algorithm proceed [76]. Thus, the initial 

value selection and the updating strategy for the penalty coefficient are the main problems of the 

penalty function methods. If the considered penalty value is too small, the algorithm may 

generate a solution outside the feasible region. On the contrary, if the value is too large, 

approaching the boundary outside the feasible region might be arduous as well as the boundary 

might remain un-surveyed. Moreover, at least one of the constraints is usually active at the 

optimum solution. Therefore, searching the entire feasible zone, including the boundaries, is also 

momentous [77].  

In this paper, the penalty parameters are selected based on the recommendations suggested in 

[78]. If 𝑞𝑖(𝑥) < 1, then 𝛾 (𝑞𝑖(𝑥)) = 1, otherwise 𝛾 (𝑞𝑖(𝑥)) = 2. Moreover, if 𝑞𝑖(𝑥) < 0.001, 

then 𝜃 (𝑞𝑖(𝑥)) = 10, else if 0.001 < 𝑞𝑖(𝑥) < 0.1 then 𝜃 (𝑞𝑖(𝑥)) = 20, else if 𝑞𝑖(𝑥) < 1, then 

𝜃 (𝑞𝑖(𝑥)) = 100; otherwise 𝜃 (𝑞𝑖(𝑥)) = 300, and ℎ(𝑘) is set to 𝑘√𝑘 where 𝑘 is the current 

cycle number.  
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5. Results 

The efficiency and applicability of the proposed PSO-GRG and PGP (PSO-GRG with PUD 

operator) algorithms in solving mathematical and engineering design optimization benchmark 

COPs are investigated in this section. For each test problem, the results of the proposed 

algorithms including the Best, Average, Worst, Standard deviation (Std.), Median, total NFEs, 

and the average rank based on these performance indices are presented in comparison to the 

results of the PSO, FA, CA, ABC, and CBO algorithms. The parameter settings for all compared 

algorithms are set based on the recommendations of the literature (Table 1). The population size 

is set to 20 × 𝑑 for all algorithms, where 𝑑 is the dimension of each problem. The maximum 

number of iterations is set to 100 and each problem is solved 25 times using Matlab 2016a on the 

personal computer with Intel ® Core i7-7500 CPU @ 2.70 GHz. 

Table 1 

Parameter settings of all compared algorithms in solving COPs. 

Algorithm Parameter setting References 

PSO 

PSO-GRG 

PGP 

Cognitive coefficient = 2, Social coefficient = 2, Start inertia weight = 0.6, 

Final inertia weight = 0.6. 

[79] 

FA 
Gamma = 1, Beta = 2, Alpha = 0.2; Mutation coefficient damping ratio = 

0.98, m = 2. 
[80] 

CA Acceptance ratio = 0.35, alpha = 0.25, Beta = 0.5. [81] 

ABC 
Number of bee = population size, Number of food = population size / 2, 

Limit = 50. 

[82] 

CBO Coefficient of restitution = 1 − (iter/maxIt). [83] 

 

5.1. Benchmark mathematical constrained test problems 

In this section, a challenging mathematical problem with highly non-linear objective functions 

and constraints with various dimensions is assessed to demonstrate the efficacy of the proposed 

algorithm. For this purpose, Keane's bump problem that is known as a challenging multimodal 

COP with a highly bumpy surface is investigated [84,85]: 

Minimize 𝑓(𝑥) = − |{∑ 𝑐𝑜𝑠4(𝑥𝑖) − 2 ∏ 𝑐𝑜𝑠2(𝑥𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

} / (∑ 𝑖𝑥𝑖
2

𝑛

𝑖=1

)

0.5

| (13) 

Subject to: 

𝑔1(𝑥): 0.75 − ∏ 𝑥𝑖

𝑛

𝑖=1

< 0;   

𝑔2(𝑥): ∑ 𝑥𝑖

𝑚

𝑖=1

− 7.5𝑛 < 0; 

(14) 

where 0 < 𝑥𝑖 < 10 ( i =  1. 2. … . n) are the optimization variables and 𝑛 is the dimension of the 

problem. In Fig. 6, a 2-dimensional perspective view of Keane’s bumpy function is presented. 
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Fig. 6. A perspective view of Keane’s bumpy function without the constraints. 

Keane investigated this problem using a parallel GA with 12-bit binary encoding, crossover, 

inversion, mutation, niche forming, and a modified Fiacco-McCormick constraint penalty 

function [84]. For n=20, he obtained approximately the value of 0.76 after 20,000 NFEs. For 

n=50, the value close to 0.76 after 50,000 NFEs was obtained. Ghasemi et al also solved the 

problem with and without the use of rebirthing, for both n=20 and n=50 [86]. In their study, 

without the rebirthing technique, the algorithm was converged to an optimum value of 0.736 

after 15,800 NFEs. However, by applying the rebirthing technique, an optimum solution of 0.796 

was obtained with 31,800 NFEs. For the case n=50, the optimum solution obtained without 

rebirthing was 0.780 after 36,400 NFEs, while the algorithm converged to 0.820 by 41,000 NFEs 

after applying the rebirthing technique. 

The results of the PSO, FA, CA, ABC, CBO, and the proposed PSO-GRG and PGP algorithms 

for the Keane’s bumpy function in the case of 5, 10, 20-and 50-dimension are summarized in 

Tables 2-5, respectively. The presented results in Tables 2-5 conclude that the proposed PGP 

algorithm achieved significantly better values than the other compared algorithms, especially for 

the NFEs which are found out in the lowest value by the proposed algorithm. It is worth 

mentioning that, for all cases under consideration, the solutions obtained by the proposed PSO-

GRG were enhanced after applying the PUD operator. As can be seen from Tables 2-5, for all 

dimensions except for n=50, the proposed PGP algorithm with PUD operator provided better 

solutions compared to standard PSO, PSO-GRG, and other compared algorithms in terms of the 

Best and Average of the results. It is also worth mentioning that, for n=50, more accurate 

optimum solutions are provided by the proposed PSO-GRG and the PGP algorithms. According 

to Table 5, the first constraint (𝑔1) is only active at both optimum solutions provided by the 

proposed algorithms. However, PGP converged after 22000 NFEs which is much lower than that 

of PSO-GRG (56000).  
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Table 2 

Comparison results of Keane’s bumpy problem (n=5). 

  
PSO FA CA ABC CBO PSO-GRG PGP 

Best -0.634434 -0.599817 -0.634445 -0.634242 -0.634130 -0.634448 -0.634449 

Average -0.626494 -0.400488 -0.529209 -0.549381 -0.548245 -0.625281 -0.632458 

Worst -0.581363 -0.287488 -0.376375 -0.466548 -0.401325 -0.490594 -0.621936 

Std. 0.012689 0.087641 0.088487 0.047079 0.066905 0.029145 0.004184 

Median -0.634240 -0.405735 -0.555322 -0.548945 -0.556504 -0.634445 -0.634446 

Best Design 

𝑥1 3.074789 3.086110 3.076389 3.057021 3.061141 3.075973 3.075468 

𝑥2 2.994059 3.017713 2.991997 2.993556 3.008029 2.991598 2.992304 

𝑥3 1.473922 1.410819 1.475373 1.472613 1.477723 1.474809 1.475700 

𝑥4 0.235087 0.238800 0.235129 0.237445 0.233605 0.236236 0.236575 

𝑥5 0.235162 0.239277 0.234883 0.234876 0.236858 0.233935 0.233442 

Constraints 
𝑔1 -1.938E-04 -1.002E-03 -1.265E-06 -2.104E-03 -3.831E-03 -2.931E-06 -3.046E-7 

𝑔2 -0.786320 -0.786861 -0.786299 -0.786786 -0.786204 -0.786332 -0.786307 

NFE
 a
 n/ab n/ab 5,600 n/ab n/ab 5,600 5,200 

Average Rank  2.67 6.17 4.83 4.33 4.67 2.50 1.00 

Overall Rank 3 7 4 6 5 2 1 

a
 The required NFEs to find a solution with absolute error less than 10−5 

b
 The algorithm was not able to find a solution with absolute error less than 10−5 within 10,000 NFEs 

 

Table 3 

Comparison results of Keane’s bumpy problem (n=10). 

  
PSO FA CA ABC CBO PSO-GRG PGP 

Best -0.744044 -0.558783 -0.740216 -0.572987 -0.674613 -0.747299 -0.747305 

Average -0.717396 -0.373637 -0.633815 -0.507654 -0.606945 -0.741269 -0.741660 

Worst -0.649883 -0.262882 -0.491727 -0.466982 -0.550462 -0.693472 -0.693472 

Std. 0.024401 0.087521 0.076900 0.028318 0.036180 0.011460 0.015575 

Median -0.722268 -0.392195 -0.637958 -0.506425 -0.602725 -0.747286 -0.747287 

Best Design 

𝑥1 3.136318 9.356265 3.129749 3.330347 3.126558 3.120992 3.124911 

𝑥2 3.120114 3.109227 3.063582 3.245365 2.960576 3.069567 3.071144 

𝑥3 3.023238 3.071965 3.014805 3.129597 2.942394 3.016382 3.014750 

𝑥4 2.914836 0.281657 2.970186 3.056053 2.954436 2.956655 2.960695 

𝑥5 1.414281 0.303940 0.359903 3.069894 2.954242 1.467547 1.466807 

𝑥6 0.334365 2.990283 1.416733 0.482239 0.306420 0.367869 0.368655 

𝑥7 0.389125 0.292132 0.389952 0.529499 1.465520 0.359778 0.364679 

𝑥8 0.397362 0.281131 0.359083 1.657751 0.208071 0.358139 0.356782 

𝑥9 0.355535 0.282255 0.343383 0.561539 0.134308 0.358082 0.353976 

𝑥10 0.343091 1.416041 0.356475 0.010000 0.314868 0.352417 0.351564 

Constraints 𝑔1 -2.488E-02 -1.234E-03 -4.766E-04 -5.720E-03 -2.015E-01 -1.568E-05 -1.412E-5 

 
𝑔2 -0.794290 -0.714868 -0.794615 -0.745703 -0.768435 -0.794301 -0.794214 

NFE 
a
 n/ab n/ab n/ab n/ab n/ab 7,600 5,200 

Average Rank  3.00 6.33 4.33 5.17 4.50 1.67 1.17 

Overall Rank 3 7 4 6 5 2 1 

a 
The required NFEs to find a solution with absolute error less than 10−3 

b
 The algorithm was not able to find a solution with absolute error less than 10−3 within 20,000 NFEs 
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Table 4 

Comparison results of Keane’s bumpy problem (n=20). 

  
PSO FA CA ABC CBO PSO-GRG PGP 

Best -0.71083 -0.42773 -0.66698 -0.49294 -0.53417 -0.803530 -0.803619 

Average -0.62331 -0.31443 -0.57056 -0.44184 -0.46866 -0.792628 -0.792712 

Worst -0.52547 -0.24313 -0.44121 -0.39734 -0.43106 -0.780758 -0.758546 

Std. 0.058073 0.042407 0.055441 0.021851 0.023259 0.006264 0.012396 

Median -0.64165 -0.31714 -0.57051 -0.44491 -0.46493 -0.792547 -0.792567 

Best Design 

𝑥1 6.179856 7.895262 6.107420 9.413282 5.706031 3.161323 3.162461 

𝑥2 3.339417 3.179144 3.082757 2.960146 2.431078 3.121573 3.128331 

𝑥3 2.877750 6.229477 3.183959 3.089952 3.231847 3.100686 3.094792 

𝑥4 3.028898 6.210913 3.106224 3.139072 2.876008 3.063361 3.061451 

𝑥5 3.109965 0.130187 3.065760 3.113860 2.746013 3.024778 3.027929 

𝑥6 3.216482 6.161879 1.068054 0.151008 2.789593 2.986022 2.993826 

𝑥7 2.923089 0.116712 3.103356 3.006541 3.162986 2.975655 2.958669 

𝑥8 2.873630 0.181137 0.652909 3.055659 2.823960 2.928689 2.921842 

𝑥9 2.873586 0.221049 0.484927 3.086395 3.055117 0.492330 0.494825 

𝑥10 0.261387 0.191882 0.294239 0.010000 2.897448 0.478291 0.488357 

𝑥11 0.461674 3.009281 2.141949 0.010000 0.377123 0.473688 0.482317 

𝑥12 2.476116 0.202544 0.914048 3.003675 1.046887 0.471621 0.476645 

𝑥13 0.271598 5.997859 0.455738 3.178702 3.295561 0.469087 0.471296 

𝑥14 0.521309 0.178230 0.562195 3.228055 0.010000 0.467744 0.466231 

𝑥15 0.151406 3.001337 0.583698 3.399763 0.582466 0.460982 0.461420 

𝑥16 0.399679 0.146228 0.217040 3.175888 0.223557 0.460596 0.456837 

𝑥17 0.230483 3.128780 0.749454 0.010000 0.609969 0.451792 0.452459 

𝑥18 0.428238 3.056438 0.314096 1.504638 0.244804 0.451123 0.448267 

𝑥19 0.255280 0.132435 0.887907 0.937604 0.854372 0.451122 0.444247 

𝑥20 0.410572 3.063635 0.397180 0.551531 0.604213 0.451122 0.440382 

Constraints 
𝑔1 -0.34800 -0.03235 -0.19350 -0.19619 -0.92646 -4.288E-7 1.214E-10 

𝑔2 -0.75806 -0.65044 -0.79085 -0.66649 -0.73621 -0.800389 -0.800449 

NFE 
a
 n/ab n/ab n/ab n/ab n/ab 22,000 16,000 

Average Rank  3.67 6.00 4.17 5.00 4.50 1.67 1.33 

Overall Rank 3 7 4 6 5 2 1 
a 
The required NFEs to find the solution with absolute error less than 10−3 

b
 The algorithm was not able to find a solution with absolute error less than 10−3 within 40,000 NFEs 

 

The ANOVA and MCT results for different dimensional Keane’s bumpy function are 

summarized in Fig. 7. To illustrate the performance of the hybrid PGP over other compared 

algorithms, the convergence history of the best solution is also presented in this figure. The box-

plot diagram, in the middle column, presents a box and whisker plot for the applied algorithm. 

On the right side of Fig. 7, the results of the MCT are also provided among the different 

optimizers where the red color lines signifies the methods which are statistically differ with the 

proposed PGP algorithm. The fast convergence rate and superior performance of both the 

proposed PSO-GRG and PGP algorithms compared to other algorithms are quite obvious from 

Fig. 7. It can be seen that the results of the PSO-GRG are very close to the PGP algorithm. 

However, for all dimensions of Keane’s bumpy function, except for n=50, the PGP showed faster 

convergence speed compared to standard PSO, PSO-GRG, and other compared algorithms. 

These results verify the superior performance of both proposed algorithms compared to the 

standard PSO algorithm. 
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Fig. 7. Convergence history and box-plot for the 5-, 10-, 20- and 50-D Keane’s bumpy function. 

 

5.2 Constraint engineering problems 

In this section, six Constraint Engineering Problems (CEPs), including pressure vessel, welded 

beam, tension/compression spring, speed reducer, tabular column, and three-bar truss design 

optimization problem having various objective functions, constraints, and various design 

variables are investigated to demonstrate the performance and efficiency of the proposed 

algorithm. 
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Table 5 

Comparison results of Keane’s bumpy problem (n=50). 

  
PSO FA CA ABC CBO PSO-GRG PGP 

Best -0.471779 -0.462759 -0.477349 -0.327489 -0.379232 -0.834949 -0.835088 

Average -0.395252 -0.403853 -0.396094 -0.313893 -0.357085 -0.824259 -0.823434 

Worst -0.313352 -0.343236 -0.321390 -0.295881 -0.341882 -0.805795 -0.793268 

Std. 0.042339 0.027269 0.034852 0.008739 0.008446 0.009062 0.011403 

Median -0.399455 -0.404030 -0.397641 -0.312641 -0.357318 -0.828226 -0.828226 

Best Design 

𝑥1 9.410511 3.469326 10.000000 9.216507 10.000000 6.290523 6.285914 

𝑥2 10.000000 9.564449 6.075451 9.778087 9.644735 3.186494 3.188338 

𝑥3 2.938229 9.073511 5.390213 9.617806 3.089164 3.180744 3.138149 

𝑥4 0.167756 0.264134 10.000000 6.395946 0.010000 3.147263 3.127561 

𝑥5 6.228020 5.988497 9.977477 3.477556 3.513152 3.140566 3.117755 

𝑥6 9.998802 1.186314 9.521247 6.383476 5.982741 3.128632 3.083772 

𝑥7 9.815465 5.788175 6.404183 8.967747 3.797366 3.117164 3.081126 

𝑥8 3.209468 2.795344 3.012899 0.010000 3.553729 3.085441 3.078921 

𝑥9 2.203997 5.783436 2.556640 6.203629 3.991166 3.047790 3.070413 

𝑥10 3.369505 2.942758 0.238238 5.947903 2.764745 3.031983 3.053349 

𝑥11 2.277520 3.099589 3.136143 0.010000 0.010000 3.031983 3.053349 

𝑥12 2.823267 0.205758 2.585436 6.419981 0.191389 3.017884 3.035318 

𝑥13 0.043759 2.974324 0.264356 3.214985 4.510291 3.015682 3.019325 

𝑥14 3.139312 0.150017 0.175870 2.719449 3.333419 3.007139 3.001415 

𝑥15 0.409005 0.010000 5.756149 6.070885 1.863309 2.990378 3.001415 

𝑥16 3.038962 2.310010 3.101174 6.177382 2.159808 2.965040 2.981005 

𝑥17 3.078435 2.168791 3.518537 6.367681 3.292086 2.965040 2.968878 

𝑥18 0.546931 3.521509 2.989660 3.927616 1.852892 2.963173 2.948394 

𝑥19 3.055806 2.913267 2.964523 1.400079 3.311899 2.941978 2.925414 

𝑥20 3.363717 0.478454 3.060151 3.120178 2.680189 2.904756 2.925316 

𝑥21 0.598522 2.140694 0.575208 3.030786 3.045862 0.523359 0.481948 

𝑥22 3.006172 2.081622 0.119909 3.071928 3.331903 0.482412 0.478570 

𝑥23 0.476249 2.963819 0.075651 0.010000 0.297334 0.477589 0.477181 

𝑥24 0.520696 2.597928 3.378232 5.997941 3.018086 0.473354 0.475846 

𝑥25 3.043674 2.962616 0.340267 6.169653 0.332645 0.473354 0.475648 

𝑥26 3.262273 0.581859 3.214185 3.038837 3.577580 0.463703 0.475648 

𝑥27 0.506012 2.146101 0.120155 0.010000 2.289353 0.463703 0.473181 

𝑥28 0.316194 3.030326 0.310632 3.491023 1.326892 0.462681 0.473181 

𝑥29 0.015446 0.543079 3.227684 0.010000 2.478583 0.461987 0.469121 

𝑥30 0.397311 0.076902 1.198997 0.010000 2.696746 0.461987 0.468282 

𝑥31 3.016391 3.116546 0.153911 3.073662 0.129538 0.461813 0.468282 

𝑥32 2.905716 3.172568 0.129747 6.355025 3.369792 0.461813 0.468282 

𝑥33 3.063392 0.010000 3.428635 0.010000 0.010000 0.459576 0.467112 

𝑥34 0.397887 0.667877 3.182303 2.884593 1.860637 0.458884 0.466180 

𝑥35 2.333931 2.797400 0.487039 0.010000 2.477807 0.457712 0.461353 

𝑥36 0.088133 2.814992 1.957402 0.010000 3.226924 0.457712 0.458760 

𝑥37 0.149987 0.353585 0.200659 3.412273 0.687868 0.457507 0.458596 

𝑥38 0.030620 2.688724 0.387373 5.867905 3.089519 0.454784 0.449368 

𝑥39 2.746330 0.116995 0.303985 5.947218 3.038505 0.452126 0.448437 

𝑥40 3.370927 3.123347 0.880716 6.136220 0.117234 0.450870 0.448437 

𝑥41 0.682072 1.972640 0.439939 2.944232 2.053382 0.450784 0.448433 

𝑥42 2.948914 0.570532 3.268731 0.010000 1.007302 0.450784 0.448433 

𝑥43 2.924522 0.746806 0.055606 0.010000 0.517989 0.449387 0.448416 

𝑥44 0.372355 0.636965 1.326077 2.996635 3.307481 0.449387 0.448416 

𝑥45 2.865578 0.120737 0.131260 3.146681 1.111492 0.449387 0.448408 

𝑥46 2.210320 2.656277 0.216518 3.052102 2.196973 0.449387 0.448408 

𝑥47 0.426598 0.131851 0.104023 6.418209 0.875964 0.449387 0.447125 

𝑥48 0.010000 0.246309 3.227407 2.938445 0.369650 0.449387 0.447125 

𝑥49 0.166768 0.227149 0.110096 0.010000 0.306980 0.449387 0.447125 

𝑥50 0.019552 0.356385 0.301644 0.419811 0.386300 0.449387 0.446836 

Constraints 
𝑔1 -0.255234 -0.947413 -0.210178 -0.206746 -0.999996 -1.552E-04 -6.725E-04 

𝑔2 -0.674691 -0.705759 -0.670447 -0.504213 -0.674431 -0.792071 -0.792247 

NFE a n/ab n/ab n/ab n/ab n/ab 56,000 22,000 

Average Rank 4.83 3.67 4.33 5.50 4.33 1.67 1.83 

Overall Rank 5 3 4 6 4 1 2 
a 
The required NFEs to find a solution with absolute error less than 10−3 

b
 The algorithm was not able to find a solution with absolute error less than 10−3 within 100,000 NFEs 
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5.2.1. Optimal design of the pressure vessel 

This example was frequently applied to evaluate the performance of various optimization 

algorithms such as MFO [87], multiverse optimization [88], crow search algorithm (CSA) [89], 

thermal exchange optimization (TEO) [90], NM-PSO [91], DELC [92], Co-evolutionary DE 

(CDE) [93], and MDDE [94]. This problem includes two discrete and two continuous design 

variables, four unequal constraints, and aims to minimize the total cost of producing a cylindrical 

pressure vessel shown in Fig. 8. The optimization formulation for this problem is as follows [2]: 

Minimize: 𝑓(𝑇𝑠. 𝑇ℎ. 𝑅. 𝐿) = 0.6224𝑇𝑠𝑅𝐿 + 1.7781𝑇ℎ𝑅2 + 3.1661𝑇𝑠
2𝐿 + 19.84𝑇𝑠

2𝑅 (15) 

Subjected to: 

𝑔1 = −𝑇𝑠 + 0.0193𝑅 ≤ 0;    𝑔2 = −𝑇ℎ + 0.0095𝑅 ≤ 0; 

𝑔3 = −𝜋𝑅2𝐿 −
4

3
𝜋𝑅3 + 1.296.000 ≤ 0;   𝑔4 = 𝐿 − 240 ≤ 0 

(16) 

As illustrated in Fig. 8, the design variables include the thickness of the shell (𝑇𝑠), the cylinder 

cap thickness (Tℎ), the radius of the cylinder (𝑅), and the length of the shell (𝐿). The thickness of 

the shell and warhead must be multiples of 0.026 in, and between the range of 1× 0.0625 to 99× 

0.0625 in. The radius and length of the shell are also limited between 10 and 200 in.  

 
Fig. 8. The pressure vessel optimization problem and corresponding design variables. 

A summary of the optimization results of the proposed PSO-GRG and the PGP algorithms for 

this problem is presented in Table 6. For comparison analysis results of the standard PSO, FA, 

CA, ABC, and CBO algorithms are also presented. The results presented in Table 6 demonstrate 

the superiority of the proposed PGP algorithm in the Best, Average, standard deviation, Worst, 

and NFE value over the other optimization algorithms. Remarkably, the PSO-GRG algorithm 

possesses the best performance in the Median value, followed by PGP, PSO, and ABC. It is 

worth mentioning that the PSO, FA, CA, ABC, and CBO algorithms were not able to find the 

solution with an absolute error of less than 10−1 within 8000 NFEs, while the proposed PSO-

GRG and PGP achieved the optimum solution with the 6240 and 4240 NFEs, respectively. 
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Table 6 

Statistical and comparison results of the pressure vessel problem. 

  
PSO FA CA ABC CBO PSO-GRG PGP 

Best 6059.8265 6,060.2731 6,090.5273 6,083.9245 6,403.85485 6,059.71444 6,059.71434 

Average 6417.1191 6,481.5781 6,390.3885 6299.0163 6,974.03672 6,369.47673 6,157.81921 

Worst 7544.4925 7,333.4231 6,820.4169 6549.9455 7,544.49252 7,544.49252 6,371.59763 

Std. 463.28956 440.76311 254.91880 133.73136 408.266446 454.834390 115.695200 

Median 6235.2429 6,371.2812 6410.0885 6,302.6835 7,047.34813 6,090.526838 6,110.086867 

Best 

Design 

𝑥1 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125 

𝑥2 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375 

𝑥3 42.098005 42.097427 45.336787 41.955367 48.504412 42.098445 42.098446 

𝑥4 176.644556 176.667808 140.253890 178.705513 111.513835 176.636605 176.636597 

Constraints 

𝑔1 -0.00002 -1.37E-06 -1.37E-06 -0.00425 -0.03425 -8.80E-07 -3.1764E-10 

𝑔2 -0.03589 -3.59E-04 -3.59E-04 -0.03412 -0.05442 -0.0359 -0.03756 

𝑔3 -27.8861 -118.7687 -118.762 -127.654 -205.6 -0.05442 -0.00012 

𝑔4 -63.3459 -63.2535 -63.2527 -63.3212 -40 -63.3634 -63.3634 

NFE a n/a b n/a b n/a b n/a b n/a b 6,240 4,240 

Average Rank 5.00 4.57 4.00 2.86 5.43 3.57 1.14 

Overall Rank 6 5 3 2 7 3 1 
a 
The required NFEs to find a solution with absolute error less than 10−1 

b
 The algorithm was not able to find a solution with absolute error less than 10−1 within 8000 NFEs 

5.2.2. Welded beam design problem 

The optimal design of the welded beam, introduced by Rao [95], is investigated as another 

benchmark CEP to investigate the capability of different algorithms [75–79]. The design 

variables include the weld thickness (ℎ), the weld length (𝑙), the beam width (𝑏), and the beam 

thickness (𝑡) as to be visible in Fig. 9. The constraints for this problem consist of shear stress (𝜏), 

bending stress (𝜎), buckling pressure (𝑃), and maximum end deflection (𝛿). Achieving a set of 

product variables to optimize the construction costs of the welded beam is the main objective of 

this example. The mathematical formula of the problem is given as: 

 

Fig. 9. Welded beam design problem and corresponding design variables 

Minimize: 𝑓(ℎ. 𝐿. 𝑏. 𝑡) = 1.1047ℎ2𝑙 + 0.04811𝑏𝑡(14.0 + 𝑙) (17) 

Subject to: 

𝑔1 = 𝜏 − 13600 ≤ 0; 𝑔2 = 𝜎 − 30000 ≤ 0; 𝑔3 = 𝑤 − ℎ ≤ 0; 

𝑔4 = 0.1047ℎ2 + 0.04811𝑡𝑏(14 + 𝑙) − 0.5 ≤ 0; 𝑔5 = 0.125 − ℎ ≤ 0; 

𝑔6 = 𝛿 − 0.25 ≤ 0; 𝑔7 = 6000 − 𝑃 ≤ 0;  

(18) 
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where: 

𝜎 =
504000

𝑏𝑡2
;  𝑄 = 6000 (14 +

𝑙

2
) ;  𝐷 =

1

2
√(𝑙2 + (ℎ + 𝑡)2;  𝛿 =

65856

30000𝑏𝑡3
  

𝐽 = √2ℎ𝑙 [
𝑙2

6
+

(ℎ + 𝑡)2

2
] ; 𝛼 =

6000

√2ℎ𝑙
;  𝛽 =

𝑄𝐷

𝐽
;  𝜏 = √𝛼2 +

𝛼𝛽𝑙

𝐷
+ 𝛽2 

𝑃 = 0.61423 × 106
𝑡𝑏3

6
(1 −

𝑡√30 48⁄

28
) 

(19) 

 

The upper and lower bound of design variables are: 

0.1 ≤ [𝑙. 𝑏] ≤ 10.0, 𝑎𝑛𝑑 0.1 ≤ [ℎ. 𝑡] ≤ 2.0 (20) 

The comparison results of the PGP algorithm and other algorithms are presented in Table 7. As 

can be seen, the proposed PGP algorithm provided superior results in terms of the Best and 

Median of the optimum solution by performing 6800 NFEs. For this problem, the FA algorithm 

achieved the lowest value in Average, Worst, and standard deviation of the best solution. The 

second minimum value in the Worst and Average is obtained by PGP. Also, the PSO and PGP 

algorithms found the best value in standard deviation after the FA. Again, none of the other 

algorithms can provide a solution with an absolute error less than 10−5, even after 8000 NFEs. 

Table 7 

Statistical and comparison results of the welded beam problem. 

  PSO FA CA ABC CBO PSO-GRG PGP 

Best 1.696147 1.696056 1.695351 1.790788 1.697897 1.695265 1.695260 

Average 1.705324 1.697902 1.864491 2.080159 1.784404 1.715602 1.702906 

Worst 1.794779 1.700015 2.508534 2.416066 2.102385 1.828331 1.793794 

Std. 0.020529 0.000866 0.206230 0.155202 0.122863 0.041257 0.020762 

Median 1.698942 1.697962 1.769431 2.051234 1.711707 1.696341 1.695596 

Best Design 

x1 0.205588 0.205825 0.205758 0.224663 0.205042 0.205730 0.205712 

x2 3.254807 3.253392 3.252786 3.116304 3.266899 3.253132 3.253447 

x3 9.042406 9.036001 9.036002 8.566833 9.042781 9.036566 9.036629 

x4 0.205715 0.205828 0.205758 0.229220 0.205828 0.205732 0.205731 

Constraint 

𝑔1 -2.786410 -6.803175 -0.010849 -190.329092 -11.888931 -0.009043 -0.056304 

𝑔2 -0.054237 -0.054067 -0.054000 -0.054263 -0.054361 -0.054000 -0.054001 

𝑔3 -36.249462 -10.180023 -0.013431 -40.235039 -55.193204 -0.007961 -0.166476 

𝑔4 -1.269E-04 -2.562E-06 -2.713E-8 -4.556E-03 -7.864E-04 -2.355E-06 -1.851E-5 

𝑔5 -1.212396 -8.279332 -2.169778 -2,007.408480 -11.278900 -0.163051 -0.035736 

𝑔6 -0.080588 -0.080825 -0.080758 -0.099663 -0.080042 -0.080730 -0.080712 

𝑔7 -3.409135 -3.409403 -3.410011 -3.327215 -3.407387 -3.410089 -3.410072 

NFE
 a
 n/a b n/a b n/a b n/a b n/a b n/a b 6,800 

Average Rank 3.17 2.00 5.17 5.83 4.67 3.00 1.67 

Overall Rank 4 2 6 7 5 3 1 
a 
The required NFEs to find a solution with absolute error less than 10−5 

b
 The algorithm was not able to find a solution with absolute error less than 10−5 within 8000 NFEs 

 

5.2.3. Optimal design of the tension/compression spring 

Design optimization of the tension/compression spring shown in Fig. 10 is considered as another 

CEPs [96]. This is an optimization problem with the original purpose to minimize the weight of 
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compression/tension spring exposed to surge frequency, shear stress, and minimum deformation. 

This problem possesses three design variables including the wire diameter (𝑑), mean coil 

diameter (𝑤), and the number of active coils (𝑁). The problem is expressed as follows: 

 
Fig. 10. Schematic view of the spring design problem and corresponding design variables. 

(21) Minimize: 𝑓(𝑤, 𝑑, 𝑁) = (𝑁 + 2)𝑤2𝑑 

Subject to: 

(22) 

𝑔1 = 1 −
𝑑3𝑁

71785𝑤4
≤ 0;   𝑔2 =

𝑑(4𝑑 − 𝑤)

12566𝑤3(𝑑 − 𝑤)
+

1

5108𝑤2
− 1 ≤ 0; 

𝑔3 = 1 −
140.45𝑤

𝑑2𝑁
≤ 0;    𝑔4 =

2(𝑤 + 𝑑)

3
− 1 ≤ 0 

where 

(23) 0.05 ≤ w ≤ 2.0 0.025 ≤ 𝑑 ≤ 1.3;  2.0 ≤ 𝑁 ≤ 15.0;  

 

Belegundu [96] used eight different mathematical optimization methods to solve this problem. 

This example was investigated by Arora [97] employing a numerical optimization approach, 

Coello et al. [98] using a GA-based method, and also Wang [99] utilizing a Co-evolutionary PSO 

(CPSO). According to recent studies, researchers found the optimum results using Water Cycle 

Algorithm (WCA) [100], and the Charged System Search (CSS) [101].  

The best results acquired by the PGP algorithm and those reported by other researchers have 

been compared in Table 8. Investigating the Best, Average, Worst, Median, standard deviation 

and NFE demonstrate that the PGP algorithm performance is more consistent than the other 

compared algorithms. Remarkably, the PGP and CA algorithm converged the same value for the 

best solution. Overall, the FA algorithm has possessed the best performance after the PGP 

algorithm. Moreover, both the proposed PSO-GRG and the PGP algorithms significantly 

enhanced the performance of the standard PSO, specifically in terms of the lower NFEs. 
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Table 8 
Statistical and comparison results of the tension/compression spring problem. 

  PSO FA CA ABC CBO PSO-GRG PGP 

Best 0.012670 0.012669 0.012665 0.012699 0.012897 0.012666 0.012665 

Average 0.013419 0.012957 0.013681 0.013204 0.013744 0.013659 0.012832 

Worst 0.017783 0.013727 0.017752 0.014220 0.014832 0.017773 0.013349 

Std. 0.001397 0.000337 0.001363 0.000394 0.000604 0.001518 0.000167 

Median 0.012874 0.012811 0.013185 0.013099 0.013816 0.013002 0.012720 

Best Design 

x1 0.051216 0.051674 0.051603 0.052449 0.055333 0.051919 0.051659 

x2 0.345454 0.356324 0.354660 0.374894 0.450875 0.362271 0.355982 

x3 11.981789 11.315872 11.410636 10.313233 7.342640 10.970663 11.332314 

Constraint 

𝑔1 -0.000845 -2.45E-03 -1.65E-13 -0.000013 -0.051396 -5.39E-07 -7.89E-08 

𝑔2 -1.26E-05 -3.16E-03 -7.90E-14 -0.000021 -0.00134 -2.56E-08 -3.77E-08 

𝑔3 -4.051300 -4.055676 -4.053345 -1.061328 -4.145832 -4.05879 -4.05519 

𝑔4 -0.727090 -1.563377 -0.727864 -0.7222698 -0.698289 -1.126787 -1.09087 

NFE
 a
 4,320 4,080 3,360 n/a b n/a b 2,640 2,400 

Average Rank 5.00 2.67 4.33 4.33 5.83 4.50 1 

Overall Rank 5 2 3 3 6 4 1 
a 
The required NFEs to find a solution with absolute error less than 10−5 

b
 The algorithm was not able to find a solution with absolute error less than 10−5 within 6000 NFEs 

5.2.4. speed reducer 

The weight minimization of the speed reducer, shown in Fig. 11, subject to constraints on 

bending stress of the gear teeth, surfaces stress, transverse deflections of the shafts, and stresses 

in the shafts is the purpose of this example [102]. The design variables are the face width (b), the 

module of teeth (m), number of teeth in the pinion (z), length of the first shaft between bearings 

(𝑙1), length of the second shaft between bearings (𝑙2), diameter of the first shaft (𝑑1), and 

diameter of the second shaft (𝑑2), respectively. All variables are continuous except the third one 

that is a discrete variable [103].  

 
Fig. 11. The speed reducer design problem. 

Minimize:  

𝑓(𝑏, 𝑚, 𝑧, 𝑙1, 𝑙2, 𝑑1, 𝑑2)

= 0.785𝑏𝑚 
2(3.3333𝑧 

2 + 14.9334𝑧 − 43.0934) − 1.508𝑦1(𝑑1
2 + 𝑑2

2)

+ 7.477(𝑑1
3 + 𝑑2

3) + 0.7854(𝑙1𝑑1
2 + 𝑙2𝑑2

2)  

(24) 
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Subject to: 

𝑔1 =
27

𝑏𝑚 
2𝑧

− 1 ≤ 0;  𝑔2 =
397.5

𝑏𝑚 
2𝑧 

2
− 1 ≤ 0; 𝑔3 =

1.93𝑙1
3

𝑚𝑧𝑑1
4 − 1 ≤ 0;  

(25) 

 𝑔4 =
1.93𝑙2

3

𝑚𝑧𝑑2
4 − 1 ≤ 0;  𝑔5 =

√(
745𝑙1

𝑚𝑧⁄ )2 + 1.69 × 106

110𝑑1
3 − 1 ≤ 0;  

𝑔6 =

√(
745𝑙2

𝑚𝑧⁄ )2 + 157.5 × 106

8𝑑2
3 − 1 ≤ 0; 𝑔7 =

𝑚𝑧

40
− 1 ≤ 0; 𝑔8 =

5𝑚

𝑏
− 1 ≤ 0;  

𝑔9 =
𝑏

12𝑚
− 1 ≤ 0; 𝑔10 =

1.5𝑑1 + 1.9

𝑑1
− 1 ≤ 0; 𝑔11 =

1.1𝑑2 + 1.9

𝑙2
− 1 ≤ 0  

where 2.6 ≤ 𝑏 ≤ 3.6, 0.7 ≤ 𝑚 ≤ 0.8, 17 ≤ 𝑧 ≤ 28, 7.3 ≤ 𝑙1 ≤ 8.3, 7.8 ≤ 𝑙2 ≤ 8.3, 2.9 ≤ 𝑑1 ≤
3.9, 5.0 ≤ 𝑑2 ≤ 5.5  

Table 9 
Statistical and comparison results of the speed reducer problem. 

  
PSO FA CA ABC CBO PSO-GRG PGP 

Best 2,895.33335 2,895.33899 2,895.333352 2,895.340173 2,895.355131 2,895.333350 2,895.333350 

Average 2,895.347031 2,895.362097 2,895.425885 2,895.394523 2,895.394514 2,895.335864 2,895.334607 

Worst 2,895.446645 2,895.431787 2,897.645068 2,895.483608 2,895.430139 2,895.349061 2,895.349061 

Std. 0.037544 0.020329 0.462330 0.045243 0.020053 0.005879 0.004350 

Median 2,895.333431 2,895.356897 2,895.333389 2,895.392151 2,895.395483 2,895.333350 2,895.333350 

Best 

Design 

𝑥1 3.500000 3.500013 3.500000 3.500012 3.500009 3.500000 3.500000 

𝑥2 0.700000 0.700000 0.700000 0.700000 0.700001 0.700000 0.700000 

𝑥3 17.000000 17.000000 17.000000 17.000000 17.000020 17.000000 17.000000 

𝑥4 7.300000 7.300000 7.300000 7.300000 7.300000 7.300000 7.300000 

𝑥5 7.800000 7.800000 7.800000 7.800000 7.800212 7.800000 7.800000 

𝑥6 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 2.900000 

𝑥7 5.286683 5.286684 5.286683 5.286686 5.286695 5.286683 5.286683 

Constraint 

𝑔1 -0.073915 -0.073919 -0.073915 -0.073919 -0.073920 -0.073915 -0.073915 

𝑔2 -0.197999 -0.198001 -0.197999 -0.198001 -0.198004 -0.197999 -0.197999 

𝑔3 -0.107955 -0.107955 -0.107955 -0.107955 -0.107956 -0.107955 -0.107955 

𝑔4 -0.901472 -0.901472 -0.901472 -0.901472 -0.901465 -0.901472 -0.901472 

𝑔5 -0.486358 -0.486358 -0.486358 -0.486358 -0.486358 -0.486358 -0.486358 

𝑔6 -9.738E-10 -4.450E-07 -9.255E-10 -1.664E-06 -6.595E-06 -1.878E-13 -7.605E-14 

𝑔7 -0.702500 -0.702500 -0.702500 -0.702500 -0.702499 -0.702500 -0.702500 

𝑔8 -1.025E-09 -3.704E-06 -1.023E-10 -3.570E-06 -1.622E-06 -3.201E-13 -1.044E-14 

𝑔9 -0.583333 -0.583332 -0.583333 -0.583332 -0.583333 -0.583333 -0.583333 

𝑔10 -0.143836 -0.143836 -0.143836 -0.143836 -0.143836 -0.143836 -0.143836 

𝑔11 -0.010852 -0.010852 -0.010852 -0.010852 -0.010878 -0.010852 -0.010852 

NFE a n/a b n/a b 12,880 n/a b n/a b 10,640 9,660 

Average Rank 4.14 4.33 5.00 5.67 4.83 1.50 1 

Overall Rank 3 4 6 7 5 2 1 

a 
The required NFEs to find a solution with absolute error less than 10−5 

b
 The algorithm was not able to find a solution with absolute error less than 10−5 within 14000 NFEs 
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The solutions obtained by the prosed PSO-GRG and PGP and other algorithms are presented in 

Table 9. For this problem, both the prosed PSO-GRG and PGP algorithms provided better results 

in terms of the best, worst, and median of the optimum solution. These results are obtained by 

10,640 and 9,660 NFEs for the PSO-GRG and PGP algorithms, respectively. However, the 

reported values for the average, Std. and NFE indicate that the PGP algorithm is superior to all 

other algorithms. The PSO-GRG algorithm achieved the second rank for this problem. It should 

also be mentioned that, among other compared algorithms, only the CA (with 12,880 NFEs) was 

able to provide a solution with absolute error less than 10−5. 

5.2.5. Tabular column design 

The minimization of the construction cost and materials in designing a uniform tabular section 

column shown in Fig. 12 with a length (𝐿) of 250 cm to carry a compressive load of 𝑃 =

2500 kgf is the objective of this CEP. The average diameter (𝑑) of the column is limited between 

2 and 14 cm, and thickness (𝑡) of the tabular section lies in the range 0.2-0.8 cm. The material 

with yield stress (𝜎𝑦=500 kgf/cm2), a modulus of elasticity (E=0.85×106 kgf/cm2), and a 

density=0.0025 kgf/cm2 is considered to make the desired column [104]. The optimization 

model for this example is formulated as follows: 

 

Fig. 12. Tabular column design problem. 

Minimize:   𝑓(𝑌) = 9.82 𝑑𝑡 + 2𝑑 (26) 

Subject to: 

𝑔2(𝑌) =
𝑃

𝜋𝑑𝑡𝜎𝑦
− 1 ≤ 0; 𝑔2(𝑌) =

8𝑃

𝜋3𝐸𝑑𝑡(𝑑2 + 𝑡2)
− 1 ≤ 0; 𝑔3(𝑌) =

2.0

𝑑
− 1 ≤ 0;     

𝑔4(𝑌) =
𝑑

14
− 1 ≤ 0;  𝑔5(𝑌) =

0.2

𝑡
− 1 ≤ 0;  𝑔6(𝑌) =

𝑡

0.8
− 1 ≤ 0 

(27) 
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It should be mentioned that some of the previous studies by Hsu and Liu [105], and Rao [95] 

converged to infeasible solutions and unable to provide an accurate solution for this problem. 

The comparison analysis results between the proposed PSO-based hybrid algorithms and the 

other compared algorithms together with the statistical data are given in Table 10. These data 

indicated that the PGP algorithm has achieved the same values in best and median like the PSO-

GRG and CBO algorithms, as well as the same value in average such as PSO-GRG. However, 

the minimum NFEs belong to the proposed PGP algorithm. Moreover, the PGP algorithm 

obtained a lower value in worst, Std., and NFE compared with the other algorithms. Generally, 

the PSO-GRG and the CBO achieved the second and third ranks with the 2840 and 2920 NFEs, 

respectively. 

Table 10 

Statistical and comparison results of the tabular column problem. 

  
PSO FA CA ABC CBO PSO-GRG PGP 

Best 26.531337 26.531501 26.531330 26.541629 26.531328 26.531328 26.531328 

Average 26.531440 26.532294 26.531542 26.633089 26.531384 26.531328 26.531328 

Worst 26.532150 26.533504 26.532935 26.837602 26.532481 26.531332 26.531329 

Std. 1.837E-04 5.087E-04 3.604E-04 7.738E-02 2.292E-04 9.524E-07 2.304E-07 

Median 26.531375 26.532343 26.531417 26.618614 26.531328 26.531328 26.531328 

Best 

Design 

𝑥1 5.451161 5.451149 5.451157 5.451276 5.451156 5.451156 5.451156 

𝑥2 0.291965 0.291969 0.291965 0.292147 0.291965 0.291965 0.291965 

Constraint 
𝑔1 -1.467E-10 -1.203E-05 -1.229E-07 -6.433E-04 -4.895E-12 -1.077E-10 -8.017E-12 

𝑔2 -1.577E-06 -9.470E-06 -2.505E-07 -6.908E-04 -7.803E-10 -1.545E-11 -2.715E-10 

NFE
 a
 3,560 n/a b 3,520 n/a b 2,920 2,840 2,680 

Average Rank 5.00 6.00 4.67 6.83 2.67 1.50 1 

Overall Rank 5 6 4 7 3 2 1 
a 
The required NFEs to find a solution with absolute error less than 10−5 

b
 The algorithm was not able to find a solution with absolute error less than 10−5 within 4000 NFEs 

 

5.2.6. Three-bar truss design problem 

The volume minimization of the benchmark three-bar structure (Fig. 13) subjected to the stress 

constraints on the truss members is investigated as the final example to exhibit the applicability 

and efficiency of the proposed algorithm. This problem was formerly solved by some researchers 

using evolutionary computational technique [106], convexification strategies [107], dynamic 

stochastic selection differential evolution [108], and cuckoo search [109]. The mathematical 

formula for design optimization of the benchmark three-bar truss is defined as [104]: 

Minimize:   𝑓(𝐴1, 𝐴2) = (2√2𝐴1 + 𝐴2) × 𝑙 (28) 

Subject to: 

𝑔1 =  
√2𝐴1 + 𝐴2 

√2 𝐴1
2 + 2𝐴1𝐴2

𝑃 − 𝜎 ≤ 0; 𝑔2 =
𝐴2

√2 𝐴1
2 + 2𝐴1𝐴2

𝑃 − 𝜎 ≤ 0; 

𝑔3 =
1

𝐴1 + √2𝐴2

 𝑃 − 𝜎 ≤ 0; 

(29) 
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where 𝑙 = 100 cm, 𝑃 = 2
KN

cm2
, 𝜎 = 2 KN/cm2, and 0 ≤  𝐴1, 𝐴2 ≤ 1. 

 
Fig. 13. The three-bar truss design problem. 

A summary of the optimization results for this example is presented in Table 11. As can be seen, 

the PGP algorithm achieved a superior result in terms of the best value same as the CA 

algorithm. Besides, the minimum values in average, worst, Std., and Median of the optimum 

solution are obtained by the FA algorithm, followed by the PGP and PSO-GRG algorithms, 

respectively. Remarkably, the PGP algorithm obtained the best solution (with 1320 NFEs) and 

with much lower NFEs than those of PSO-GRG (3800), FA (4000), and other compared 

algorithms. Again, the statistical data provided in Table 11 and a comparison of the NFEs verify 

that both the proposed algorithms improved the accuracy and efficiency of the standard PSO 

algorithm. 

Table 11 

Statistical and comparison results for the benchmark three bar truss structure. 

  
PSO FA CA ABC CBO PSO-GRG PGP 

Best 263.895897 263.895860 263.895844 263.906859 263.895925 263.895851 263.895844 

Average 263.909291 263.896017 264.187533 264.065740 263.939009 263.902666 263.900698 

Worst 263.975412 263.896291 267.339494 264.663483 264.445407 263.933167 263.921411 

Std. 2.153E-02 1.183E-04 7.217E-01 1.622E-01 1.097E-01 9.381E-03 6.038E-03 

Median 263.900801 263.896018 263.944274 264.058901 263.909091 263.899149 263.898151 

Best 

Design 

𝑥1 0.788828 0.788629 0.788704 0.790610 0.788343 0.788749 0.788657 

𝑥2 0.407817 0.408380 0.408167 0.402886 0.409189 0.408038 0.408299 

Constraint 

𝑔1 -2.786E-07 -1.125E-07 -2.414E-12 -6.330E-05 -2.752E-09 -2.470E-08 -1.312E-09 

𝑔2 -1.464592 -1.463952 -1.464194 -1.470245 -1.463033 -1.464341 -1.464043 

𝑔3 -0.753477 -0.754196 -0.753924 -0.747166 -0.755228 -0.753759 -0.754093 

NFE
 a
 n/a b n/a b 2,920 n/a b n/a b 3,800 1,320 

Average Rank 
c
 4.00 1.83 5.00 5.83 4.83 3 1.67 

Overall Rank 4 2 6 7 5 3 1 



 H. Varaee
 
et al./ Journal of Soft Computing in Civil Engineering 5-2 (2021) 86-119 111 

a 
The required NFEs to find a solution with absolute error less than 10−5 

b
 The algorithm was not able to find a solution with absolute error less than 10−5 within 4000 NFEs 
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Fig. 14. Convergence history, ANOVA test, and MCT result for different CEPs. 

The comparison of the convergence curves for the best solutions, box-plot, and the MCT analysis 

for all investigated CEPs are presented in Fig.14. The provided MCT results denote the methods 

which are statistically differ than the presented PGP algorithm. Results of Fig.14 imply that the 

PGP algorithm is superior to the other compared algorithms in a majority of CEPs and show 

comparable or significantly better performance against other mentioned algorithms. 

5.3. Statistical test results 

Two non-parametric statistical tests (NPST) were used for meticulous performance comparison 

of the proposed PGP, PSO-GRG, and other five optimization algorithms. The consistency and 

overall proficiency of the developed PGP algorithm are investigated using the best values 

obtained from 25 runs, ANOVA test, and rank function. The boxes from Figs. 7 and 14 have 

three lines to show the 1st, 2nd, and 3rd quartiles. The whiskers have lines extending vertically 

from boxes to demonstrate the grade of the rest of the information. Figs. 7 and 14, also show the 

MCT results for all employed algorithms. In these figures, the red color lines denote the methods 

that are statistically differ than the PGP algorithm. Furthermore, all mentioned algorithms were 

ranked based on the best, average, worst, standard deviation, median, and NFE values for each 

problem. Finally, the average and overall ranks were presented in Tables 2-11.  

Table 12 

Comparison of algorithms and Final ranking. 

Problem PSO FA CA ABC CBO PSO-GRG PGP 

Keane’s bumpy problem (n=5) 3 7 4 6 5 2 1 

Keane’s bumpy problem (n=10) 3 7 4 6 5 2 1 

Keane’s bumpy problem (n=20) 3 7 4 6 5 2 1 

Keane’s bumpy problem (n=50) 5 3 4 6 4 1 2 

Pressure vessel problem 6 5 4 2 7 3 1 

Welded beam problem 4 2 6 7 5 3 1 

Tension/Compression spring problem 5 2 3 3 6 4 1 

Speed reducer problem 3 4 6 7 5 2 1 

Tabular column problem 5 6 4 7 3 2 1 

Three bar truss problem 4 2 6 7 5 3 1 

Total 41 45 45 57 50 24 11 

Average rank 4.1 4.5 4.5 5.7 5.0 2.4 1.1 

Overall rank 3 4 4 6 5 2 1 
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To decide on one of the utilized algorithms as the best optimizer, the ranking of each algorithm is 

calculated from Tables 2-11, and a summary of the ranking results for all mathematical and CEPs 

are listed in Table 12. Results of Table 12 show that the PGP algorithm has better overall 

performance compared to standard PSO and other compared algorithms. As can be seen, the 

hybrid PSO-GRG and the standard PSO algorithm rated second and third, respectively. FA and 

CA jointly in 4
th

 and CBO and ABC stand the 5
th

 and 6
th

 rank, respectively.  

6. Conclusions 

In this study, a hybrid PSO-GRG algorithm with a purely uniform distributed initial swarm is 

proposed to enhance the convergence speed and robustness of the standard PSO. In the proposed 

hybrid PSO-GRG, a fast approximation of the optimal solution is first provided by probing the 

entire search space during some selective cycles using PSO as a global search engine. Then, the 

accuracy and quality of the optimum solution are further enhanced by local search around the 

current best solution using the GRG algorithm as a secondary local search engine of the 

optimizer, keeping a good compromise between accuracy and efficiency. The k-NN-based PUD 

operator was also applied for generating the initial swarm to cover the entire search space more 

effectively. The advantage of employing the PUD operator in the proposed hybridized PSO 

algorithm is that the particles located in dense subspaces are removed from the initial swarm and 

replaced with new particles having a larger distance than a certain radius from each other. 

Therefore, the search agents are scattered within the entire search space with equal density and 

thus enhance the exploration power of the optimizer. Hybridizing PUD-based PSO with the GRG 

algorithm provides the opportunity to keep a balance between the exploration and exploitation 

ability of the optimizer. The performance of the presented algorithms with and without PUD 

operator, namely the PSO-GRG and the PGP algorithms, were compared with five other well-

known optimizers on solving some mathematical and engineering COPs that comprise highly 

nonlinear, non-convex, and non-differentiable functions having discrete and continuous 

variables. Results demonstrated that the developed PGP optimizer with the PUD operator 

remarkably improved the accuracy, efficiency, and convergence speed of the standard PSO. 

ANOVA test, MCT, and the ranking results reveal that the developed algorithm has robust and 

accurate performance and is efficient in terms of NFEs and computational cost. In future works, 

the proposed PGP algorithm may be used for solving large-scale real-world optimization 

problems which require significant computational efforts efficiently with an acceptable degree of 

accuracy for the solutions. In this regard, applying the PGP algorithm to solve more practical and 

complex CEPs comprising truss design, frame design, damage detection, and performance-based 

design optimization is the main scope for future researches. The capability of the proposed 

algorithm can also be enhanced for solving binary and multi-objective optimization problems. 
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