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Organic matter in water is assessed through Chemical 

oxygen demand (COD). COD prediction utilizing Data 

driven technique (DDT) has shown to be promising and may 

be utilized as supplemental techniques due to the time-

consuming procedure and nonlinear correlations between the 

factors. The current study aims to determine how well three 

different DDT, namely Artificial Neural Network (ANN), 

Multi-Gene Genetic Programming (MGGP), and Model Tree 

(M5T), can estimate the concentration of COD in water 

taken from three different sections of the Mula, Mutha, and 

Mula-Mutha Rivers in Pune, India. The performance of the 

models demonstrates that both ANN and MGGP worked 

brilliantly, with a correlation coefficient (between observed 

and projected values) that was more than 0.88 and a root 

mean square value of 0.7 mg/l across all three parts. The 

input frequency distribution in MGGP and the input variable 

coefficient in M5T indicate that both techniques can identify 

the influential factors. MGGP and MT score with readily 

available equations as model. 
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1. Introduction 

River water quality is mainly assessed on the basis of organic matter content, like biochemical 

oxygen demand (BOD) and chemical oxygen demand (COD). BOD is the quantity of dissolved 

oxygen consumed by aerobic microorganisms to oxidize organic matters [1]. The COD 

measures the total amount of oxygen-consuming compounds in the full chemical breakdown of 

organic molecules in water. It is a key measure for monitoring water quality and defining the 

sort of organic load present [2]. The traditional approach for COD analysis is done by multistep 

chemical technique i.e., reflux method, which is a nearly 2-hour operation, in which sealed 

tubes filled with chemicals are heated to 150 degrees, creating tremendous pressure beneath the 

tubes, thus making the analysis risky due to the risk of explosion [3,4]. Additionally, the 

presence of various inorganic interfering matter, most of the time distorts the outcome of the 

analysis and makes this process less accurate [3]. Hence, with limited resources and time, cost-

effective model development with accurate modelling and forecasting of river water quality is 

necessary for ecologically sound water management. Traditional deterministic and probabilistic 

models need precisely established rate coefficients, many of which are temporally and 

geographically unique, for a variety of hydro-chemical, physical, and biological processes [4]. 

To circumvent these constraints, researchers have developed Data-driven techniques (DDT) to 

model water quality parameters. DDT is a computational approach that uses system state 

variables (input-output) to replace physical-behaviour-based knowledge-driven models [5]. 

DDT can be Soft computing and Hard computing. Soft computing employs partial truth, 

ambiguity, and approximation. Soft computing has grown in popularity due to its various 

features such as optimisation, intelligent control, decision-making, and nonlinear programming 

[5]. Adaptive-network-based fuzzy inference system (ANFIS), artificial neural network (ANN), 

Multi-Layer-Perceptron (MLP), genetic algorithm (GA), and Fuzzy Logic (FL) are some of the 

most often utilized DDT for water quality metrics [5–10]. Over the last decade, several articles 

have asserted that DDT based models accurately replicate dissolved oxygen (DO), BOD 

concentration, and other important water quality variables. 

Out of the various techniques mentioned above, ANNs have been utilised for many water and 

environmental research like Mehr [11] employed GP-SARIMA to improve long-term 

streamflow forecasting in a lake-river system of Oulujoki River, Finland. A model for one-step-

ahead streamflow predictions is tested. The results demonstrated that a combination of 

correlogram and average mutual information (AMI) analysis may help to pick the best lags for 

streamflow model predictors. Karami [12] employed Neural Network based method (NN) to 

model and simulate rate of evaporation for Garmsar city of Iran. Testing phase results shows 

that the NN model is able to simulate evaporation with minimum error. While Palani et al. [6] 

utilised ANN to predict and forecast temperature, salinity and DO in Singapore coastal waters. 

Singh et al. [7] utilized ANN technique to simulate the DO and BOD levels in the Gomti River 

(India). `Najah et al. [13] and Basant et al.[14] employed linear and nonlinear modelling using 

ANN’s feed-forward-back-propagation and partial least squares (PLS) regression to forecast the 

DO and BOD levels in river water at the same time. Results revealed that both models could 

predict DO and BOD levels, but the non-linear (ANN) model outperformed the linear (PLS) 
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model. The application of ANN for the prediction and modelling of COD removal from 

antibiotic aqueous system by the Fenton process was explored by Elmolla et al. [15] and found 

that the outcome was extremely close to the actual data, with high value of R
2
 (coefficient of 

determination) i.e., 0.997 and an MSE of 0.000376. Emamgholizadeh et al. [16] employed 

MLP, radial basis network (RBN) and ANFIS to model three important water quality 

parameters (DO, BOD, and COD) for highest water flow Iranian Karoon River. Results 

demonstrated that estimated values of DO, BOD, and COD by using both ANN and ANFIS 

were reflecting balanced scatter with observed values (R= 0.86, 0.94, 0.96 respectively). 

Akilandeswari and Kavitha [8] estimated COD concentration for textile effluent using the 

ANFIS and multiple linear regressions (MLR). As a consequence, the ANFIS technique 

outperformed the MLR in modelling COD concentration. Convolutional Neural Network-Long 

Short-Term Memory Network (CNN-LSTM) technology, which is based on an attention 

mechanism, was used by Xijuan et al. [17] to anticipate the water quality of the Yellow River in 

China. The results show that the hybrid model performs better than the conventional NN model 

in solving nonlinear time series prediction issues. In Kayseri, Turkey, Ozkan [18] used MLP to 

forecast BOD in a sewage water treatment facility using temperature, suspended solids (SS), 

COD, total dissolved solids (TDS), total nitrogen, and total phosphorous. The correlation value 

was 0.915, and the ANN technique for modelling DO prediction was determined to be 

satisfactory. Dogan et al. [19] used chemical oxygen demand, flow (Q), temperature, nitrites, 

total ammonia, and nitrate variables to explore the possibility of an `MLP model to increase the 

precision of BOD prediction in the Melen River (Turkey) and findings were satisfactory 

(R=0.89). Heddam & Kisi [9], explored different approach i.e., multi-variate adaptive 

regression spline (MARS), model tree (MT) in order to model DO and evaluate its correctness 

using a least-squares support vector machine (LSSVM). Compared to LSSVM, MARS fared 

the best, with a R of 0.965 and RMSE and MAE of 0.547mg/L and 0.386 mg/L, respectively. 

Similarly, Mehr et al. [20] used a multi-step evolutionary search algorithm in which high-

performance rain-borne genes from a multigene GP solution is combined through a classic 

Genetic Programming engine for predicting 1 month ahead rainfall measurements from 

meteorology stations in Lake Urmia Basin, Iran. The model proposed outperforms the 

benchmark models: standard GP and autoregressive state-space in both the rain gauge stations. 

The results show around 24% and 60% improvement (average of two case studies) in terms of 

Root mean square error and Nash-Sutcliffe coefficient of efficiency metrics. The proposed 

model: Multiple genetic programming (MGP) eliminates genes of lower performance and only 

allows those of higher performance to contribute to the final solution is stated as the reason for 

better accuracy. 

The majority of research reveals that most of the work is focused on the prediction of DO and 

BOD for river water rather than COD and employs ANN, ANFIS, and a small number of 

studies also used LGP and SVM techniques to simulate water quality matrices. Despite the fact 

that these models do enhance accuracy to some degree, they also have certain drawbacks. For 

instance, ANN's major operational hurdle is its inability to generate the final outcome using a 

simple mathematical equation, making it less portable, whereas ANFIS was limited by its 

computing complexity. As a result, the established model for monitoring water quality has to be 
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revised in order to reduce the inaccuracies, computational complexity, and over-fitting issues 

that plagued prior approaches. In light of the above information, to the author's knowledge, no 

research has been conducted to leverage the potential of data-driven methodologies such as 

multi-gene genetic programming (MGGP) and model tree (M5T) for the prediction of water 

quality variables. Thus, current study is focused to utilize Multi gene genetic programming and 

Model tree with M5 algorithm to predict COD content for Mula-Mutha river Pune, India and 

compare the results with ANN model [8,15,18,19]. 

The water quality data for Mula, Mutha and Mula-Mutha River were employed over the last 

fifteen years (2003-2018) to attain this goal. The outcome of three developed models were 

analyzed and compared using root mean square error (RMSE), mean absolute relative error 

(MARE), and coefficient of correlation (R) statistical error measures, as well as visual 

presentation of values on graphs and scatter plots between actual recorded and model-predicted 

values. The next part will discuss the techniques employed, followed by information on the water 

quality data and study area. The results and discussions will follow next and the study will be 

concluded by conclusion. 

2. Techniques utilized 

Soft computing techniques treat human brain as their role model and mimic the ability of the 

human mind to effectively employ modes of reasoning that are approximate rather than exact. 

They do not assume any mathematical model a priori and hence are more flexible in data mining. 

The underlying idea of soft computing is to provide tractability, resilience, and a better 

connection with reality by allowing for imperfection, ambiguity, and partial truth. In the current 

study soft computing techniques like Artificial Neural Network and Genetic Programming are 

utilized along with other Model Tree with M5 technique. 

2.1. Artificial neural network 

Artificial Neural Network is a massively parallel, distributed processor with a natural tendency 

for storing experiential information to make it accessible for usage. In two aspects, it resembles 

the human brain: it utilizes information to recognize complex nonlinear behavior or patterns 

acquired by the network throughout the learning process, and it retains knowledge using synaptic 

weights, which are the strengths of interneuron connections. In general, an ANN is made up of 

three layers: an input layer, one or more hidden layer(s), and an output layer. Synaptic weights, 

biases, and transfer functions link the hidden layer to the other layers. Error functions are based 

on network output against aim. Modifying weights and biases backward using algorithms 

reduces error until the desired output accuracy is obtained. Training ANN via feed forward back 

propagation distributes error backward and processes weight and bias forward. Until output 

accuracy is achieved, the training cycle is repeated. The network's weights and biases can be 

used to validate unknown data after training. The connection between weights, input, and output 

is shown in Figure 1. Readers may refer to [5,10,21–24] for more information on how an ANN 

works in detail. 
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Fig. 1. Typical three-layer network architecture of ANN [25]. 

2.2. Model tree 

Model Tree employs a divide-and-conquer strategy to offer rules for a linear model to arrive at 

the leaf node. The linear models are then used to determine how much each parameter 

contributes to the total anticipated value. Quinlan's M5 technique is reconstructed as M5 Model 

Tree (M5T) to trigger decision/regression trees of models [26]. M5T is a decision tree that 

incorporate a traditional decision tree with the possibility to use linear regression algorithms at 

the last nodes. To begin, a tree is built using the decision tree technique, and the splitting 

approach is utilized to curtail the standard deviation (sd) in the intra-subset of the M5 Model 

tree, resulting in linear models in the leaf node [27,28]. The M5T approach utilizes the two 

important steps: the tree growth step (splitting) and the tree pruning step [29,30]. Figure 2 shows 

how the M5 method of Model tree splits the input X1 X2 input variables into multiple alternative 

linear regression functions as model namely LM1-LM6 at leaf node. The model equation is y = 

b0 + b1X1 + b2X2, where b0, b1, and b2 are linear regression constants and depicts the relationship 

between branches as a tree diagram [29,31] are references for MT readers. 

 
Fig. 2. Diagram of model tree with LM 1-6 at the leaves. 

2.3. Genetic programming 

Genetic programming (GP) is a domain-agnostic approach for resolving problems by breeding a 

population of randomly produced computer programs genetically. It belongs to the category of 

supervised machine learning, in which the answer is found in a program space rather than a data 

space. Traditional GP solutions are expressed as tree structures and stated in a functional 

programming language. Genetic Programming (GP) is based on the survival of the fittest 
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concept, which states that the fittest will live and participate in the next generation's evolution by 

breeding. The three genetic operations for breeding are as follows: Reproduction, Mutation, and 

Crossover. 

 
Fig. 3. Example of standard genetic programming (GP) tree representation for the function. 

A few GP variants include GEP, LGP and MGGP. GEP employs defined length linear genomes, 

also known as chromosomes, to describe computer programmes in the form of expression trees. 

The chromosome is made up of a linear, symbolic string of single or multiple genes that is fixed 

in length. The ability of GEP chromosomes to code ETs of all sizes and forms will also be 

demonstrated, despite their constant length. A specific type of linear representation is used for 

computer programmes in LGP, a linear version of GP. Instead of functional genetic programmes 

that are restricted to a single linear list of nodes, the term "linear" refers to the shape of the 

(imperative) programme representation. Expressions from functional programming languages, 

such as LISP, are swapped out for imperative programming language programmes, like C or 

C++, in LGP. LGP's main characteristics are the graph-based data flow from indexed variables 

and programming in a low-level language that allows solutions to be directly changed into binary 

machine codes and run without an interpreter [32]. It is intended to build "multi-gene" 

mathematical models for specific response (output) data. In general, nonlinear input variables are 

merged into a low-order linear weighted tree (by limiting the gene or tree depth). The evaluation 

of a single tree (model) expression is used in the standard GP form. Multigene individuals in 

MGGP are made up of several genes, each of which corresponds to the "conventional" GP tree 

expression [32,33]. For MGGP model development firstly population and generation size are 

determined by the issue's complexity and the number of possible solutions. To construct models 

with the least level of uncertainty, several populations and generations are studied. Genes are 

changed by natural selection via mutations and crossings to produce offspring. The mutation 

mechanism selects branches and sub-nodes, replacing each with a random subtree. During the 

crossover procedure, random parent tree terminals or branched nodes are picked and swapped. 

This procedure is repeated until the termination requirement is reached, improving model fitness. 

Although a maximum number of genes (Gmax) of an individual and maximum depth of tree 

(Dmax), directly influence the size of the search space and the number of solutions explored 

within it. The MGGP algorithm's success frequently increases with these settings. Finally, the 

best model is chosen from the output values based on simplicity and fitness. Parameters allow 
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the user to change the model's simplicity (e.g., Gmax or Dmax). Figure 4 depicts a typical 

MGGP model built from two standard GP trees. With input variables x1, x2, and x3, this model 

predicts an output variable. Although linear in the parameters concerning the coefficients 

variables d0, d1& d2, the given model structure incorporates nonlinear components (e.g., tan, sin, 

sqrt. etc.). The fundamental arithmetic operators (/, x, +, - etc.) and Boolean logic functions are 

included in the function set (sin, cos, tanh, etc.). For details of GP, readers are referred to [33,34] 

and MGGP readers are referred to [34]. 

 
Fig. 4. Example of MGGP symbolic methods. 

3. Study area 

The current research is focused on Pune city, a developing city in Maharashtra, which is blessed 

with the rivers Mula and Mutha and are major sources of water supply. Pune is located at 18° 31' 

22.45" of North and 73° 52' 32.69" of East, near the western boundary of the Deccan Plateau. 

Pune lies on the downwind side of the Sahyadri hills and Western Ghats, 1837 feet above the sea 

level, at the conflux of the Mula and Mutha rivers, which are tributaries of the River Bhima. The 

Mula River flows roughly 64 kilometers from its source in the Pune District's hilly areas, with 40 

kilometers of it being mountainous terrain. It then approaches Pune from the north-west, passing 

through thickly populated districts before meeting the Mutha River [35]. Within the Pune 

Metropolitan Region, many small town and small & micro scale (SSI) industries like paper-pulp 

mills and sugar mills, including some agriculture runoff, are responsible for garbage generation 

in the Mula River [36]. 

The Mutha River rises from Western Ghats and flows roughly 15 kilometers eastward until 

merging into the Mula River near Pune [37]. Along the Mutha River in the Pune Metro-Politian 

Region, there are several villages and historic city areas. 

 After the confluence of the Mutha and Mula Rivers at Sangamwadi, the united Mula-Mutha 

River runs through the city of Pune (Fig. 5) and then travels downstream to merge with Bhima 

River, a significant tributary of the Krishna River going southeast. The Mula-Mutha River is the 

most contaminated since it carries trash from sewage treatment plants and common effluent 

treatment plants [38]. The data was collected from stations M1, M2 and M3 as shown in figure 5 

below. 
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Fig. 5. Detailed location map of water study area Mula-Mutha River (www.mahap.gov.in). 

4. Data set 

Monthly water quality data for the rivers: Mula, Mutha and Mula-Mutha, requisite for the present 

research was received from Hydro Nashik Maharashtra, India for the years 2003 to 2018.The 

statistical analysis of the data from the year 2003 to 2018 for the reaches of the Mula, Mutha, and 

Mula-Mutha rivers utilized in this research is provided in table 2, Statistical analysis provides 

insight into or underlying pattern of any data, according to table 2, the skewness coefficient 

(Csx) is somehow very less for the majority of data sets, which is considered desirable since a 

high value of skewness has a detrimental effect on ANN performance. Additionally, coefficients 

of variation indicated significant changes in the Mula-Mutha River as compare to Mula River 

and Mutha River, owing to the river's route through various townships and the presence of 

numerous untreated wastewaters drains and tributaries. 

Table 1 
Correlation factor of COD with various influencing parameters. 

Station Mutha Mula Mula-Mutha 

Variables COD COD COD 

BOD 0.97 0.85 0.88 

DO -0.88 -0.73 -0.46 

EC 0.77 0.7 0.005 

Hardness 0.25 0.66 0.112 

pH -0.31 -0.21 -0.579 

TS 0.73 0.69 -0.26 

TDS 0.78 0.71 -0.145 

No3-No2 0.051 0.078 -0.458 

No3-N 0.089 0.338 -0.019 
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Table 2 
Statistical analysis of entire hydro-chemical data for Mutha, Mula and Mula-Mutha station. 

Station Parameters Unit Min Max Mean Sd Csx CV% 

Mutha River 

COD mg/L 1.6 140 22.65 23.52 1.35 103.8 

DO mg/L 0.2 9.2 5.7 3.1 1.24 54.3 

BOD mg/L 0.4 38 0.8 9.5 1.54 118.75 

EC µs/cm 2 640 216 172 1.66 79.62 

TS mg/ L 50 413 176 98 0.62 55.68 

Hardness mg/ L 24 231 88.76 54.14 1.15 60.95 

TDS mg/ L 13 381 134 102 1.59 76.1 

pH Unit 6.7 8.9 7.9 0.5 0.48 6.32 

No3-N mg/ L 0.01 11.31 0.24 0.86 1.04 358 

No3-No2 mg/ L 0.01 0.35 0.26 0.45 0.07 173 

Mula River 

COD mg/L 1.6 76.8 21.19 14.6 1.39 66.6 

DO mg/ L 0.28 9 4.6 2.7 1.23 58.5 

BOD mg/ L 0.8 38 3.2 6.8 1.54 212 

EC µs/cm 62 712 304 192 1.17 9.5 

TS mg/ L 55 471 211 109 1.06 51.6 

TDS mg/ L 45 434 180 108 1.05 6 

Hardness mg/ L 24.6 284 102.3 26.5 0.53 25.9 

pH Unit 6.93 8.75 7.7 0.3 0.08 3.8 

No3-N mg/L 0.01 10.6 0.29 1.29 1.15 445 

No3-No2 mg/ L 0.02 3.88 0.27 0.53 0.96 196 

Mutha-Mula River 

COD mg/L 5.6 162 29.62 18.99 1.14 64.11 

DO mg/L 0 9.4 3.6 3 1.2 83.33 

BOD mg/ L 6 48 11.8 9.53 1.6 80.76 

EC µs/cm 84 980 436 239 1.12 54.8 

TS mg/ L 100 900 359 144 0.3 40.11 

TDS mg/ L 57 820 315 137 0.33 43.49 

Hardness mg/ L 58.8 316 142.33 36.5 0.77 25.64 

pH Unit 6.6 8.7 7.7 0.7 0.05 9.09 

No3-N mg/ L 0.01 14.02 1.9 2.26 0.71 118.7 

No3-No2 mg/l 0.03 8.07 0.89 1.64 1.32 179.7 

 

The human activities and the nonlinear and complicated biochemical processes have a significant 

impact on the quality characteristics of water. Water quality variables such as dissolved oxygen 

(DO), biochemical oxygen demand (BOD), total solids (TS), alkalinity (Alk.), pH and electrical 

conductivity (EC) etc. all have an influence on the chemical oxygen demand (COD) of a given 

sample. For model development, it is vital to understand the relationship between these 

components and COD, like pH is a critical indicator of water quality because it is regulated by a 

series of interrelated chemical process that produce or utilize H
+
 or OH

-
 ions. A low pH implies 

that organic compound is decomposing [39]. Various inorganic matter and salt ions dissolve in 

water and break-down into minute electrically charged particles called ions, hence boosting the 
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conductivity of water while lowering its solubility of oxygen. Similarly, when the salt content 

increases, the total dissolved solids in the river water stream increase, resulting in less 

atmospheric oxygen being dissolved. As noted, before, BOD and COD are indicators of the 

amount of biodegradable and non-biodegradable organic matter in a water sample that must be 

oxidized. As a consequence, total solids directly influence the COD content. Additionally, while 

nitrite is extremely toxic to aquatic life, it rapidly oxidizes to nitrate, which promotes the growth 

of water hyacinth, which covers the surface of a river, obstructing sunlight from reaching 

beneath the water's surface, reducing aeration and, as a result, increasing the demand for 

dissolved oxygen [39,40]. To select an adequate group of input variables from all possible 

variables is crucial for developing a high-quality model in any form of DDT model creation 

[4,5,11]. Numerous ways to choose input variables are explored in various studies. They are 

based on heuristics, expert knowledge, statistical analysis, or a combination of these [41–43]. 

However, there is a compelling need to do a thorough analysis of the input variable selection 

process. At the moment, there is no consensus on how this task should be carried out [44,45]. 

Thus, to identify input variables for the prediction of COD; expert knowledge, correlation factor 

(Table 1) and statistical analysis (Table 2) were utilized. A statistical approach has traditionally 

been used for providing a representative and reliable analysis of the water quality data. The 

statistical analysis of water quality characteristics reveals that the lowest values of all parameters 

were within the acceptable range; however, the maximum values were fairly high. In addition, 

the pattern of variation for the stretch between the Mula River and Mutha River was almost 

same, although substantial variations were detected in the Mula-Mutha River. Considering the 

above variation, correlation, and analysis, nine water quality parameters were identified for the 

prediction of COD for all three stretches. They are: BOD, DO, pH, hardness, electrical 

conductivity, total solids, total dissolved solids, nitrite, and nitrate (No3-No2/No3-N). Table 1 

depicts the relationship between input parameters and COD for all three lengths of the Mula-

Mutha River. The key contributing variables for COD in the Mutha and Mula rivers are BOD, 

DO, electrical conductivity (EC), total dissolved solids (TDS), total solids (TS), hardness 

(Hardn.) and nitrite (No3-N). However, for the Mula-Mutha River, a distinct pattern is found, 

with BOD, pH, nitrate (NO3-NO2), and DO as the key contributors following total solids, total 

dissolved solids and hardness, since nitrite quickly oxidizes to nitrate in the presence of 

dissolved oxygen, reflecting the breakdown or decomposition of organic matter (i.e., BOD). 

5. Model development 

The current study aims to explore the feasibility and effectiveness of DDT- MGGP and M5T to 

predict COD content for rivers: Mula, Mutha and Mula-Mutha. As discussed in the preceding 

section and illustrated in tables 1 and 2, all three stretches of river demonstrated distinct patterns 

of influence with respect to the input parameters because of different point and non-point sources 

of pollution and variation in the population nearby the river stretch. Hence, for Mutha river and 

Mula river commonly seven parameters were finalized out of nine i.e., BOD, DO, EC, hardness, 

TS, TDS, No3-N, while for Mula-Mutha River-BOD, DO, pH, hardness, TS, TDS, No3-No2 



120 P. Sahu et al./ Journal of Soft Computing in Civil Engineering 7-4 (2023) 110-131 

were finalized. Table 3 shows the model information for each set, including model numbers and 

input variables for each length of the Mula, Mutha, and combined Mula-Mutha River. 

To predict COD, ANN’s 3-layered FFBP model was trained to a low targeted error (mean 

squared error). ANN models were developed by utilizing the levernberg-marquardt algorithm to 

train the network using the "log-sigmoid" and "purelin" transfer functions. The data was 

standardized from 0 to 1. There are 7 neurons (or nodes) in the input layer, 1-15 neurons (or 

nodes) in the hidden layer, and 1 neuron (or node) in the output layer. The trial-and-error 

technique were utilized to determine the hidden nodes/neurons because finding a suitable number 

of nodes in the hidden layer is critical, as a greater number may result in over-fitting, meanwhile, 

a lesser number may not capture the information sufficiently [45]. All models were trained until a 

minimum-error target was reached, and their weights and biases were saved for testing on the 

remaining data sets. The ANN was trained in MATLAB 9.1 (2016) [45–47]. 

MGGP models were developed in the MATLAB 2016 with the source code of GPTIPS. The 

control parameters, such as the initial population, mutation frequency, and crossover frequency, 

were changed in every run to check the accuracy of the model. Every run was kept going until 

there was no more significant drop-in fitness, which meant generations without any more 

progress. In a single run, evolved programs are chosen for each data space at random. The 

parameters for a GP run were as follows: the population size was 500, the crossover rate was 

84% and the mutation rate was 14%, The mean squared error was selected as the fitness criteria 

[25]. The best MGGP models were chosen based on high accuracy and less complexity. Pareto 

charts are also used to judge the complexity of a model. These charts show how the model 

evolved in terms of both complexity and accuracy. The MGGP algorithm was run several times 

with different populations and generations until the best model was found. 

The M5 algorithm for MT was made with WEKA 3.9 [28]. The M5T technique employs the 

decision tree induction process to construct the tree, and the splitting function tries minimize the 

amount of intra-subset variation present on each level/branch of the tree. The tree was built using 

the standard deviation reduction factor (SDR) by decreasing intra-subspace variability and intra-

subspace variability with a divide and conquer function [48]. The data of instances was divided 

into 70% for calibration, 15% for validation and 15% for testing respectively. Actual data was 

compared to projected or modelled values during the course of this investigation. Statistical 

indicators were utilised to assess the effectiveness of the developed DDT model e.g.: Root mean 

squared error (RMSE), Mean absolute relative error (MARE), and Coefficient of correlation (R) 

with visual presentation of values on graphs and scatter plots between observed and model-

predicted values. RMSE and MARE should be as low as possible, and R ought to be close to 1, 

which is deemed to be the most accurate model [34]. For a model to be used in real life, it needs 

to be shown in a way that is easy to understand. For example, ANN shows the model as a set of 

trained weights and biases, M5T as a set of linear equations, and MGGP as a simplified equation. 

The MGGP method is known for the fact that the parameters that have little or no effect are 

removed from the final equation. In this way, these techniques can be used on-site and the 

confidence in the results can be raised. 
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Table 3 
Detailed information of the developed model. 

S. No. 
Model 

No. 
Station Input variables 

No. 

Data 

Output 

variable 

1 
ANN 1 

MGGP 1 

M5T 1 

Mutha 

(14km stretch) 
BOD, DO, EC, Hardness, TS, TDS, No-N3/ No3-N 144 COD 

2 
ANN 2 

MGGP 2 

M5T 2 

Mula 

(30 km stretch) 
BOD, DO, EC, Hardness, TS, TDS, No-N3/ No3-N 206 COD 

3 
ANN 3 

MGGP 3 

M5T 3 

Mula-Mutha 

(25 km stretch) 
BOD, DO, pH, Hardness, TS, TDS, No-N3/ No3-N 162 COD 

5. Results and discussion 

Table 4 displays the results of all three approaches (ANN, MGGP, and M5T) for predicting COD 

for the rivers Mutha, Mula, and Mula-Mutha. Individual set performances are addressed in depth 

further on. Table 5 illustrates the details of the best COD model in terms of the ANN model's 

architecture, the number of linear equations developed by M5T, and the parameters not included 

in the final developed equation by MGGP as output for the various models. 

Table 4 
RMSE, MARE & R for model developed using ANN, MGGP, and M5T for prediction of COD. 

Targeted Output Technique Model No. RMSE (mg/L) MARE (mg/L) R 

COD 

ANN 

1 (Mutha) 0.078 0.006 0.92 

2 (Mula) 0.107 0.08 0.91 

3 (Mutha-Mula) 0.015 0.003 0.90 

MGGP 

1 (Mutha) 0.68 0.009 0.91 

2 (Mula) 0.109 0.009 0.86 

3 (Mutha-Mula) 0.46 0.01 0.88 

M5T 

1 (Mutha) 1.35 0.09 0.91 

2 (Mula) 2.23 0.19 0.90 

3 (Mutha-Mula) 1.98 0.09 0.89 

 

Table 5 
Detailed information of model developed using ANN-MGGP-MT. 

Targeted 

output 
Model No. ANN-Architecture 

Number of the 

equation in M5T 

MGGP Parameters not 

considered in the equation 

COD 

1 (Mutha) 7:5:1 1 Hardness, TS, NO3-NO2 

2 (Mula) 7:8:1 3 TS, TDS, Hardness, NO3-NO2 

3 (Mutha-Mula) 7:1:1 1 TDS, Hardness, EC 

 

The effectiveness of an ANN model is contingent upon how well the developed or constructed 

model is trained, and whether the synaptic weights and biases are appropriately adjusted to 

provide desirable output. This research makes use of the root-mean-squared error, or RMSE, 

since it illustrates the dispersion of the residual error (between observed and expected values), 

also known as the standard deviation of the residuals. The ANN model-3 (Mula-Mutha) 
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exhibited reasonable performance, with an RMSE of 0.015 mg/L and an R of 0.91. Similarly, 

ANN model-1 (Mutha) resulted in good performance with a RMSE of 0.078 mg/L and an R of 

0.92. However, Model-2 (Mula) displays a high RMSE of 0.107 mg/L and R of 0.91. The higher 

RMSE is because the data are more dispersed, as seen by the larger deviation. 

The subsequent approach used is MGGP, which provide the outcome as a streamlined equation-

based model. MGGP instantly generates a mathematical-equation into a symbolic form that then 

can be analyzed to see how various parameters influence the final output and in which trend; this 

is the technique's distinctive feature (Refer equation 1). 

𝐶𝑂𝐷 = 8.72𝑡𝑎𝑛ℎ(2.38𝑁𝑂3 − 𝑁𝑂2
2𝑇𝑆2) − 13.9𝑡𝑎𝑛ℎ(𝑡𝑎𝑛ℎ(2.45𝐷𝑂𝑁𝑂3 − 𝑁𝑂2)) +

11.2𝐵𝑂𝐷1/2 + 5.81𝐷𝑂1/4 − 10.7  (1) 

In MGGP each gene or tree has a unique weighted coefficient [33]. Table 6 and figure 6 reflect 

that the statistical significance of genes 2, 4, and bias terms was greater than that of any other 

gene present. This means the input parameters included in genes 2 and 4 (DO, Nitrates, and Total 

solids) show a higher contribution or more influential toward the prediction of COD. To make 

the model simpler to use, the final outcome is presented in the form of an equation that is a linear 

sum of both the outputs and a bias value, the relative weights of which are indicated in Table 6 

and illustrated in equation-1. The weight associated with each tree is derived using the least 

squares approach by trying to reduce/minimize the goodness of fit error between the 

predicted and the observed data. It is evident from equation 1 that the coefficient of weight for 

BOD, nitrates, and total solids is greater than that of DO. This result is consistent with the basic 

understanding of water quality acquired via environmental studies [49,50]. 

Table 6 
Individual gene/tree weights (MGGP Model 3). 

Term Value 

Bias -10.7 

Gene 1 5.81 (BOD)
1/4

 

Gene 2 -13.9 Tanh(Tanh(2.45(DO×NO3-NO2))) 

Gene 3 8.72 Tanh(2.38(NO3-NO2)
2
(TS)

2
) 

Gene 4 -11.2 (BOD)
1/2

 

 
Fig. 6. Weights of the genes and bias (MGGP model 3). 
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Figure 7 and table 7 illustrates input frequency analysis, that is used to determine whether input 

variables are significant to the result for a particular model or a user-specified proportion of the 

whole population [47,51]. Three of the seven input variables in the MGGP model are significant: 

BOD, DO, and TDS, followed by hardness, TS and conductivity. MGGP is distinguished by its 

ability to reject input variables that do not significantly contribute to the final outcome. 

Table 7 
Individual Gene/Tree weights (MGGP Model 1). 

Term Value 

Bias -7.9 

Gene 1 -5.27 e
-6

 (BOD) (TDS)
2
 

Gene 2 0.0471 (BOD-DO)
2
 

Gene 3 12.3 (BOD)
0.5

 

Gene 4 0.0058 (EC)-0.0058 (Hard.-7.45) (BOD-DO) 

 
Fig. 7. Input frequency for MGGP model 1. 

Table 1 also supports this statement as BOD, DO and TDS displayed the highest influence 

towards COD as compare to other input variables. This finding is compatible with recognized 

water quality concepts in environmental research [50]. Thus, one may conclude that MGGP's 

data-driven method has a decent grasp of the underlying COD phenomena and the correlation 

between the input and output parameters. In contrast to other methods, MGGP does not require a 

transfer function in order to develop successive generations of "offspring" according to the 

"specific fitness criteria" and genetic operations, allowing it to better detect and explore 

underlying patterns [5]. Additionally, the MGGP approach gives the developer a range of model 

possibilities. With the use of a Pareto chart, the best single model may be picked depending on 

the application requirements. The Pareto chart (Fig. 8) plots expressional complexity versus 

goodness of fit (R
2
) or accuracy for models that are not dominated in terms of both complexity 

and performance by other solutions. A tree's complexity may be quantified by the number of 

nodes it contains, or by its expressive complexity [26,33]. Using a Pareto curve, a user may see 

the performance of solutions and pick a solution that maintains a balance between complexity 

and accuracy and its mathematical expression were presented in simplified equation [52]. The 

optimal model (high accuracy and simplicity) is denoted by a red dot/circle. Pareto (Green dots) 

models are those that are not substantially dominated by other models in terms of survival 

or fitness and complexity, while Non-Pareto (Blue dots) models are those that are strongly 

dominated. 
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Fig. 8. Pareto front model report for MGGP model 1. 

Model Tree is the third strategy used to estimate COD, and it is based on the divide and conquers 

principle. This technique measures the forecast value and sieves it on the routine route, 

smoothing it at each node in accordance with the linear node value anticipated for that node 

using the Linear Model. Figure 9 illustrates an example Model Tree generated using the M5 

algorithm for M5T Model 2, along with developed linear regression equations. The below tree in 

figure 9 illustrates linear models (LM1-3) at various leaf nodes. The very first number inside the 

bracket indicates the number of related samples in the sorted subset of node, while the second 

number indicates the root mean square error (RMSE) of the associated linear model divided by 

the standard deviation of the sample's subset given in percentage [26]. Similarly, the number of 

equations derived for different models is shown in Table 5. Linear equations developed for M5T 

Model 2 using the M5 algorithm depict a negative coefficient for DO and a positive coefficient 

for all other parameters, particularly BOD and hardness, indicating that increasing the 

concentration of any of these impurities in a river increases the COD content, which is consistent 

with the theoretical understanding of their influence on COD [49]. Thus, it can be observed that 

M5T acquires a reasonable amount of knowledge about the underlying phenomena. 

 
Fig. 9. Classifier tree for M5T model 2. 

Linear equation developed for M5T Model 2 is as follows: 

𝐶𝑂𝐷 =  0.69𝐵𝑂𝐷 − 0.0765𝑇𝐷𝑆 + 0.0475𝐸𝐶 +  0.0865 𝐻𝑎𝑟𝑑𝑛. +13.865  (2) 
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𝐶𝑂𝐷 = 1.40𝐵𝑂𝐷 − 5.755𝐷𝑂 − 0.983𝑇𝐷𝑆 + 0.0596𝐸𝐶 + 0.0565𝐻𝑎𝑟𝑑𝑛. +9.7162  (3) 

𝐶𝐶𝑂𝐷 =  1.99𝐵𝑂𝐷 − 1.033𝐷𝑂 − 0.013𝑇𝐷𝑆 + 0.0067𝐸𝐶 + 0.215𝐻𝑎𝑟𝑑𝑛. +0.8904 (4) 

It is clearly visible from the scatter plot (fig.10) that the predicted COD values for model 1 was 

consistent with the actual values for all three developed models. All three data-driven strategies 

seem to have caught the fundamental phenomena. In scatter plot, the regression line supported by 

high value of correlation coefficient R (0.92, 0.91 and 0.91) respectively for ANN, MGGP and 

M5T. Further comparison between data-driven strategies using RMSE reflects that ANN have 

improved the performance of the proposed model as it has lower value of RMSE (0.078). The 

RMSE is a statistic that measures the average difference between the model's predicted values 

and the data set's actual values. The amount to which RMSE surpasses is a measure of the 

presence of outliers in the data. The ANN algorithm creates an approximation function that 

matches chosen input parameters to the intended outputs, which is then evaluated. As part of the 

process, it makes adjustments to weights and biases to achieve the expected goal, which results 

in a more flexible approach. While considering Eq. 5 for M5T model 1, showing direct 

contribution of only three main input parameters i.e., BOD, TDS, and TS with COD, which is 

also supported by fundamentals of water quality as COD, reflects the total organic matter in 

water that is contributed by biodegradable matter as well as total solids too [49]. Hence M5T 

Model 1 shows good performance as compare to M5T Model 2 &3 in terms of RMSE. 

 
Fig. 10. COD model-1 by ANN-MGGP-M5T. 

𝐶𝑂𝐷 =  2.234𝐵𝑂𝐷 + 0.0432𝑇𝑆 + 0.0726𝑇𝐷𝑆 + 7.7016 (5) 

The scatter plot (figure 11) shows that ANN, MGGP, and M5T for model 2, all had a balanced 

dispersion, except for a few high COD values recorded by the MGGP model with the lowest R = 

0.86. In addition, the RMSE value for ANN (0.107) is the lowest, followed by MGGP (0.109) 

and M5T (2.23). Eq. 6 generated by MGGP for model 2, emphasizes that it has considered only 

three parameters (out of seven), namely BOD, DO, and EC, while rejecting all other parameters; 

this may be the explanation for the model's poor performance, since TDS, TS, and hardness 

contribute to an increase in organic matter (non-biodegradable) in water and also show a good 

correlation with COD. Similarly, model trees don't employ all of the parameters included as input 

variables to create linear models (LM) at each leaf node. Only those parameters that meet the 

constraints of particular criteria (standard deviation reduction) fall under one sub-tree, which 
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ends in a leaf node, which is also reflected in eq. 2-4. Thus, this quality of M5T makes the model 

outperform in terms of R (0.90). 

 
Fig. 11. COD model-2 by ANN-MGGP-M5T. 

1.26𝑒−4 (𝐸𝐶)2 𝑡𝑎𝑛ℎ (𝐷𝑂) + 3.9 (𝐵𝑂𝐷)3/4 𝑡𝑎𝑛ℎ(𝐵𝑂𝐷) − 3.13𝑒−5 (𝐷𝑂) (𝐸𝐶)2 +

8.29𝑒−4 (𝐷𝑂)2 (𝐸𝐶) + 1.39 (6) 

ANN, MGGP, and M5T all showed good performance in terms of R as shown in the scatter plot 

(figure 12) for model 3 (0.90-0.89). In terms of RMSE, however, the ANN and the MGGP model 

came out on top (0.015 - 0.46). Table 2 demonstrate that the standard deviation of Mula and 

Mutha data is lower than that of the combined Mula-Mutha dataset (model 3). Thus overall ANN 

technique displays similar values as observed values which can be seen through lower RMSE 

(0.078 with ANN, 0.680 with MGGP and 1.35 with MT) with Mutha river and other rivers as 

well (refer table 4). All these models with ANN, MGGP and MT also support their performance 

with lower MARE values (0.006 with ANN, 0.009 and 0.09 with MT) and higher r value (0.92 

with ANN, 0.91 by MGGP and 0.91 with M5T). The similar trend is seen in models developed 

for Mula and Mula-Mutha river. Lower RMSE shows weighted measure of the error in which the 

standard deviation contributes the most between observed and modelled values. RMSE is 

sensitive towards higher values, MARE shows its inclination towards lower predicted values and 

r value towards the higher values. The higher value observed for Mula river is 56 and predicted 

by ANN is 56.433, 64.545 by MGGP and 65.832 by MT. This trend is also seen in other 

developed models as well. Thus, ANN predicts the values closer to observed values followed by 

model developed using MGGP and then by M5T. P value analysis is another statical method used 

to accept or reject the null hypothesis which states that there is no anomaly between the observed 

value and predicted value of ANN, MGGP and M5T respectively. The p value for Mula river is 

calculated as 0.551 with ANN, 0.981 with MGGP and 0.342 with M5T. P values for Mutha river 

with ANN:0.763, MGGP:0.997 and M5T:0.870 along with p values for Mula-Mutha river (0.810 

with ANN, 0.960 with MGGP and 0.741 with M5T). These p values for Mula, Mutha and Mula-

Mutha river are greater than 0.05 thus indicating the failure to reject the null hypothesis. 

It is also dicussed in above section and reflected in table 1, that major contributing parameters 

for Mula river and Mutha river where DO, BOD, EC, TS and TDS while for Mula-Mutha 

Stretch, BOD, pH, nitrate (NO3-NO2), and DO were found to be major contributing parameters. 

These discrepancies in data with its variation might be explained by variations in regional 
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climate and pollution patterns. The Divide and conquer approach used by M5T assist the leaf 

node to determine splitting criteria by minimising the standard deviation. As already discussed in 

the preceding section, the standard deviation of the 3rd stretch, i.e., Mula-Mutha, is on the higher 

side, which indicates more spread of values and contributes to the larger margin error. Therefore, 

M5T displays RMSE as 1.98, which is on the higher side than expected. Overall, ANN and 

MGGP performed better than M5T for the majority of segments. When the current study's results 

are compared to previous findings, it is noticed that Murat [53] utilized ANFIS to forecast COD 

for a waste water treatment plant and obtained a minimum RMSE of 54.9 mg/L, which is rather 

high when compared to current results; in contrast, Olyaie et al. [40] and Heddam [9] used ANN, 

LSVM, and LGP to predict the water quality parameter DO and obtained RMSEs of 0.592 mg/L, 

0.645 mg/L, and 0.374 mg/L, respectively, exhibiting a similar pattern as shown here. 

 
Fig. 12. COD model-3 by ANN-MGGP-M5T. 

7. Conclusion 

In recent years, it has been shown that data-driven strategies perform best in complex, non-linear, 

and unexpected environments. Analyzing environmental data using data-driven approaches like 

ANN, MGGP, and M5T is the focus of this research. Using DDT in environmental research has 

progressed over the last two decades, but the results also reveal areas that need more 

investigation to improve water quality management. The present study highlighted the potential 

of DDT in predicting water quality measures that are difficult to measure in the field. It's 

reasonable to say that all of the models for the prediction of important water quality parameter 

COD for all the three stretches of the river Mula-Mutha did well enough. ANN-developed 

models outperformed MGGP and M5T with higher R and lower RMSE values. In terms of 

accuracy, resilience, and fault tolerance, ANN excels all other analytical approaches because of 

its model-free structure and capacity to map nonlinear input-output relationships. The MGGP 

models 2 and 3 display better performance by providing RMSE values of less than 0.5 mg/L 

(0.109, 0.46), and R values of more than 0.85 (0.86, 0.88). When compared to the M5T models, 

the MGGP models exhibited a considerable reduction in their RMSE values, which is an 

indication of significant progress. It would seem that the outcomes of all three models are 

impacted by the data's inherent variability. Findings from this research also show that these three 

models can learn from examples and display input parameters that are in sync with the 

environmental studies domain knowledge that they were designed to learn from. It is also 
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suggested that the models be developed by combining data from all three stretches into a single 

dataset, since this would give more data to train and perhaps increase accuracy. 
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