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Chemical stabilization is used to enhance and increase the 

strength characteristics of soft and problematic soils. In this 

research, Gaussian Process Regression (GPR) is employed to 

estimate the unconfined compressive strength (UCS) and the 

Young’s modulus (E) of lean clay soils stabilized with iron 

ore mine tailing (IOMT) and hydrated lime (HL) percentage. 

In this regard, four inputs including the moisture content 

(MC), IMOT percentage, HL percentage, and curing time 

(CT) were used. The value of R
2
 for estimating the UCS and 

the E were 0.9825 and 0.9633 for all data, respectively. The 

RMSE for predicting the UCS and the E were 0.1875 and 

19.868 for all data, respectively. The result of the sensitivity 

analysis demonstrated that MC, CT, HL, and IOMT 

percentage have the highest contribution to the UCS of the 

stabilized lean clay, respectively. Also, MC, HL, IOMT 

percentage, and CT have the highest impact on the E of the 

stabilized lean clay, respectively. The parametric study also 

revealed that increasing the HL content and the curing time 

led to an increase in the UCS and the E of stabilized lean 

clay, while IOMT content and the moisture content has an 

inverse relationship with the UCS and the E of stabilized 

lean clay soils. 
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1. Introduction 

In recent years, the need for the construction of various transportation infrastructures, including 

roads, airports, and railways, has been increasing. A large surface of the subsoil in many 

construction projects is made of clay, which is not suitable for road construction [1]. Soil 

stabilization is an approach to improve different characteristics of soils and produce a better 

construction material [2]. Various additives including but not limited to lime and cement are 

usually used to stabilize the weak and problematic soils [3]. Mixing these additives with soil 

improves soil properties, soil strength, permeability, and soil deformation characteristics [4]. 

Many studies in the past have been conducted to use stabilizing agents in various projects around 

the world [5,6]. Stabilization of clay soils with lime includes mixing lime with clay and then 

compacting it at the optimum moisture content (OMC). The lime used to stabilize fine-grained 

soils is usually in the form of burned limestone products such as quicklime or dolomitic 

quicklime. In lime stabilization of soil, part of the pozzolanic material is provided by the soil and 

there is no need for other pozzolanic materials like cement [7]. The investigations conducted on 

clay soil stabilized with lime show the improvement of soil engineering characteristics such as 

Atterberg limits, California bearing ratio (CBR), unconfined compressive strength (UCS), and 

Young's modulus (E) of soil [8–10]. 

The expansion of mining activities continuously causes an increase in mine tailings, both the 

tailings resulting from excavation to reach the mineral materials and also the tailings resulting 

from the processing of mineral materials. The lack of proper management and the accumulation 

of these wastes around the mines, not only occupy a lot of space, but also lead to negative 

environmental effects. Reuse of these wastes in large volume is one of the most sustainable ways 

to solve this problem [11]. Stabilization by IOMT is one of the low-cost and simple solutions to 

deal with these problems. So that the reuse and recycling of IOMT for civil projects and road 

construction causes the consumption of tailings and prevents the dangers caused by the pollution 

of mineral wastes [12]. To date, few research has been done on the technical feasibility of using 

IOMT for soil improvement in civil engineering and especially road construction materials [12–

17]. The results of these studies show that the IOMT stabilized with additives such as lime can 

be used as road materials [12]. 

With increasing computing power of computers, several researchers have used soft computing 

and machine learning methods to develop predictive models for civil engineering problems [18–

27]. The feasibility of artificial neural network (ANN) and regression analysis were investigated 

by Sathyapriya et al. [28] to estimate the UCS of clay soil stabilized with industrial waste. Based 

on the analysis, both methods have the ability to approximate the UCS based on the soil 

properties with high precision, but the ANN provided a more accurate estimation. Chore et al. 

[29] presented different predictive models based on multiple linear regression and ANN to 

estimate the Brazilian tensile strength and the UCS of soil stabilized with cement, polypropylene 

fibers, and fly ash. The input parameters included cement percentage, fibers percentage, OMC, 

and dry density, while the output variables were considered as indirect tensile strength and UCS. 

The findings of the research revealed the superiority of the accuracy of the ANN for the 

assessing of compressive and tensile strength. Sihag et al. [30] investigated the application of 
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decision trees (M5P), group method of data handling (GMDH), and multivariate adaptive 

regression splines (MARS) to assess the UCS of clay stabilized with ground granulated blast 

furnace slag, fly ash, and cement. Ghanizadeh et al. [22] used GMDH to evaluate the UCS of 

clay subgrade stabilized with cement and lime. The findings revealed that the GMDH method 

can assess the UCS of stabilized clay with high accuracy. Tabarsa et al. [31] utilized ANN and 

SVM models to assess the UCS of soils stabilized with rice husk ash, cement, and lime. The 

findings demonstrated the better performance of SVM compared to ANN in assessing the 

strength of the stabilized soils. Principal component analysis (PCA) and Bayesian model 

averaging methods were utilized by Do et al. [32] to assess the flexural strength and the UCS of 

cement-stabilized sandy soils. Pham et al. [33] developed Adaboost models to classify soil type. 

They used laboratory data to design and validate the new models. Moreover, two models based 

on ANN and tree models were implemented for the comparison. The results revealed that the 

Adaboost models exhibited better performance. Tran [34] developed hybrid Gradient Boosting 

(GB) with different metaheuristic algorithms for predicting the UCS of stabilized soils. The 

findings indicated the better performance of the hybrid GB model. Armaghani et al. [35] used 

ANN optimized by genetic algorithm (GA) and PSO to predict soil shear strength of sandy-soil 

mixed with fibers. It was found that the GA-ANN performed better than the PSO-ANN to 

estimate soil shear strength. Ghanizadeh et al. [24] used the Evolutionary Polynomial Regression 

(EPR) method to model the Young’s modulus and the UCS of clay soil stabilized with cement 

and lime. This research showed that the EPR method has the ability to estimate the resistance 

parameters of stabilized soil. Momeni et al. [36] unitized a hybrid ANN with Gravitational 

Search Algorithm (GSA) and PSO to investigate the deformation of geogrid reinforced soil 

(GRS) retaining structures. In this regard, ABAQUS was utilized to simulate a case study for 

dataset construction. It is discovered that GSA-ANN exhibited better performance than the PSO-

ANN. Momeni et al. [37] developed a predictive model based on extreme gradient boosting and 

slap swarm algorithm to assess the performance of GRS retaining structures. The findings 

exhibited the feasibility of the hybrid model to predict the performance of GRS retaining 

structures. 

Although extensive research has been done to estimate different properties of various stabilized 

soil, no model has been presented to the best of author’s knowledge so far for estimating of the 

Young's modulus and the UCS of lean clay stabilized with IOMT and hydrated lime (HL) by 

means of computational intelligence methods. Recently, GPR method has been successfully 

applied for regression problems [21,26,38,39] because of the flexibility of their representation 

and providing uncertainty measures for the predictions [40]. The main objective of this study is 

to provide a model to assess the E and the UCS of lean clay stabilized with IOMT and HL using 

Gaussian Regression Process (GPR). In this regard, four inputs including IOMT, HL, MC, and 

CT were used, while the UCS and the E were considered as the outputs. Furthermore, the 

sensitivity analysis and parametric analysis have been used in this research to demonstrate the 

importance of each independent variables and the impact of these variables on the E and UCS of 

clay stabilized with IOMT and hydrated lime. General research methodology and modeling 

procedure have been depicted in Fig. 1. 
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Fig. 1. General research methodology and modeling procedure in this study. 

2. Dataset preparation 

2.1. Experimental study 

The soil used in this research was a lean clay soil collected from a place near city of Sirjan, Iran. 

Moreover, the IOMT of Golgohar mine in Sirjan were used to prepare the samples. The physical 
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properties and chemical compositions of lean clay and IOMT are presented in Table 1 and 2, 

respectively. Moreover, the grain size diagram of the lean clay and the IOMT are depicted in Fig. 

2. 

Table 1 
The properties of lean clay and IOMT. 

Properties Standard Clay Soil IOMT 

AASHTO Classification ASTM D3282 A-6 A-2-4 

Unified Classification ASTM D2487 CL SM 

gravity of soil (Gs) ASTM D854 2.45 2.95 

plastic limit ASTM D4318 22.24 NP 

Liquid Limit ASTM D4318 36.58 NP 

shrinkage limit ASTM D427 17.76 30.43 

plasticity index ASTM D4318 14.34 NP 

pH ASTM D4972 7.7 8.81 

 

Table 2 

The chemical compositions of lean clay and IOMT in percent. 

Composition Clay Soil IOMT 

SiO2 49.482 35.952 

Al2O3 12.377 5.907 

Fe2O3 7.592 22.174 

CaO 9.099 9.249 

Na2O 0.493 0.937 

MgO 4.558 14.158 

K2O 2.856 1.855 

TiO2 0.643 0.629 

MnO 0.098 0.077 

P2O5 0.093 0.451 

LoI 12.5 1.8 

 

 
Fig. 2. The particle size of the IOMT and the clay. 
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The lime within this research was hydrated lime (HL), which conformed to ASTM C977 

standards. The chemical compositions of HL are given in Tables 3. 

Table 3 

The chemical compositions of the hydrated lime (HL). 

Compositions % 

Ca (OH)2 90 

CaO (Free) 1.5 

MgO 1 

SiO2 0.6 

AL2O3 0.5 

Fe2O3 0.2 

SrO 1.6 

LoI 4.6 

 

In this study, different percentages of IOMT (0%, 10%, 20%, and 30%) were combined with the 

lean clay soil, and then each of the mixed soil samples were stabilized with four percentages of 

HL (0%, 2%, 4%, and 6%). The standard proctor compaction test was conducted according to 

ASTM D698 standard to determine the MDD and OMC for each combination. The compaction 

test on each mixture was done by five-point method (five different moisture percentages) and the 

MDD and OMC for each mixture were determined. In total, 24 proctor tests were performed to 

find the MDD and OMC of different mixtures. The results of the compaction test show that by 

increasing the percentage of iron ore mine tailings in different percentages of HL, the OMC 

decreases and the MDD increases. The variations of OMC for lime-stabilized samples are 

recorded from 11.88% to 20.02%, while the MDD varies from 1.72 g/cm
3
 to 1.92 g/cm

3
. 

Based on ASTM D2166, the UCS tests were performed on the several stabilized samples with 

different iron ore mine tailings contents (0%, 10%, 20%, and 30%) and HL contents (0%, 2%, 

4%, and 6%) and compaction moisture content (OMC, 10% more than OMC (wet side) and 10% 

less than OMC (dry side)) at different curing periods (7, 28, and 56 days). In total, 144 samples 

with a height of 100 mm and a diameter of 50 mm were made for the UCS test. The samples 

were placed under the unconfined compressive strength device and loaded at a speed of 1 

mm/min to determine the UCS. In addition, the Young's modulus was determined using the slope 

of the stress and strain diagram obtained from the UCS test results. The whole dataset is reported 

in the Appendix. 

2.2. Statistical description 

The dataset used in this study includes 144 samples of four inputs and two outputs. The input 

variables are IMOT percentage, HL percentage, curing time (CT), and MC, while the output 

variables are UCS and Young's modulus (E). 70% of the data (101 records) in this research were 

randomly used for training and 30% of remaining data (43 records) were used for testing. Table 4 

shows the statistical descriptions of the data, including the maximum, minimum, mean, median, 

percentiles and standard deviation (STD) of each input variable for the training set, the testing 

set, and the total data. 
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Table 4 

Descriptive Statistics of experimental dataset. 

 IOMT (%) HL (%) MC (%) CT (Days) UCS E 

Min 

0.00 

(0.00) 

[0.00] 

0.00 

(0.00) 

[0.00] 

11.88 

(11.88) 

[11.88] 

7 

(7) 

[7] 

0.59 

(0.8) 

[0.5] 

11.34 

(7.47) 

[17.19] 

25
th

 Percentiles 

0.00 

(10.00) 

[5.00] 

0.00 

(2.00) 

[1.00] 

14.12 

(14.81) 

[14.22] 

7 

(7) 

[7] 

1.34 

(1.2) 

[1.3] 

79.40 

(84.79) 

[74.14] 

Median 

20.00 

(10.00) 

[15.00] 

2.00 

(4.00) 

[3.00] 

15.48 

(15.81) 

[15.61] 

28 

(28) 

[28] 

2.03 

(2.0) 

[2.0] 

144.12 

(167.36) 

[152.37] 

Mean 

15.35 

(14.19) 

[15.00] 

2.85 

(3.35) 

[3.00] 

15.55 

(15.89) 

[15.65] 

31.33 

(28.00) 

[30.33] 

2.44 

(2.4) 

[2.4] 

165.74 

(173.62) 

[167.79] 

75
th

 Percentiles 

30.00 

(20.00) 

[25.00] 

4.00 

(6.00) 

[5.00] 

16.99 

(17.13) 

[17.06] 

56 

(56) 

[56] 

3.31 

(3.2) 

[3.1] 

238.46 

(257.75) 

[238.42] 

Max 

30.00 

(30.00) 

[30.00] 

6.00 

(6.00) 

[6.00] 

20.02 

(19.33) 

[20.02] 

56 

(56) 

[56] 

6.40 

(5.8) 

[6.5] 

418.93 

(399.39) 

[415.62] 

STD 

11.71 

(10.06) 

[11.22] 

2.27 

(2.17) 

[2.24] 

1.91 

(1.78) 

[1.87] 

20.30 

(19.80) 

[20.14] 

1.38 

(1.3) 

[1.4] 

103.49 

(101.72) 

[103.97] 

1- IOMT, HL, MC, CT, E, and UCS represent the iron ore mine tailing, hydrated lime, moisture content, 

curing time, Young's modulus, and unconfined compressive strength, respectively. 

2- The free numbers, the numbers in the parentheses and the numbers in the brackets represent the values 

corresponding to the training data, testing data and total data, respectively. 

 

The correlation coefficient between the UCS and the input variables is depicted in Fig. 3(a). As 

shown, HL and CT demonstrate relatively high correlations with the measured UCS, whereas the 

IOMT and the MC is weakly correlated with the UCS. Moreover, the correlation coefficient 

between the E and the inputs is shown in Fig. 3(b). It is observed that HL and CT show relatively 

high correlations with the measured E, whereas the IOMT and the MC are weakly correlated 

with the E. 

  
(a) (b) 

Fig. 3. Pearson correlation coefficients between variables, (a) UCS and (b) E. 
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3. Methods 

3.1. Gaussian process regression (GPR) 

GPR is considered as a non-parametric learning method for probabilistic classification and 

regression problems. GPR can find complex relationships between inputs and outputs due to the 

usage of kernel functions. GPR models have been widely used for regression and classification 

problems in various scientific and engineering problems [21,26,38,41]. 

Assume 𝑥𝑖 ∈ ℝ𝑑 is the input data and 𝑦𝑖 ∈ ℝ is the output data in the training set 𝑆 =
{(𝑥𝑖, 𝑦𝑖)|𝑖 = 1, . . . , 𝑛}. The main assumption of GPR is presented by Eq. (1): 

𝑦 = 𝑓(𝑥) +  𝜀 (1) 

Where 𝑓(. ) is an anonymous function, 𝜀~𝑁(0, 𝜎𝑛
2) represents the equal noise variance for the 

input data (𝑥𝑖), and 𝜎𝑛 denotes the standard deviation of the Gaussian noise. The symbol ~ 

denotes sampling for in statistics. 

In the GPR model, the 𝑛 observation in an arbitrary 𝑦 = {𝑦1, . . . , 𝑦𝑛} is regarded as one point of 

the multivariate Gaussian distribution. The mean of this Gaussian distribution is often assumed 

to be zero. The covariance function (kernel function) 𝑘(𝑥, �́�) estimates the relationship between 

one observation to another one. The squared exponential is a popular choice to approximate 

function by the GPR model. Eq. (2) shows the calculation of the square of the exponential 

covariance function: 

𝑘(𝑥, �́�) = 𝜎𝑓
2 × 𝑒𝑥𝑝 (−

(𝑥−�́�)2

2𝑙2 ) + 𝜎𝑛
2𝛿(𝑥, �́�) (2) 

where 𝜎𝑓
2 is the maximum allowable covariance. 𝑘(𝑥, �́�) is equal to this maximum if 𝑥 ≈ �́�, 

which means 𝑓(�́�) closely correlates 𝑓(𝑥). 𝑙 is the length petameter, which defines the length of 

the kernel function. 𝛿(𝑥, �́�) is Kronecker delta function, which is defined by Eq. (3): 

𝛿𝑖𝑗 = {
1 𝑖𝑓 𝑖 = 𝑗
0 𝑖𝑓 𝑖 ≠ 𝑗

 (3) 

The ultimate objective of the learning process in the training dataset is to estimate the output 

value of 𝑦∗ for a new input data. To reach this aim, three covariance matrices have to be defined 

as follows: 

(4) 

𝐾 = [

𝑘(𝑥1, 𝑥1) 𝑘(𝑥1, 𝑥2)

𝑘(𝑥2, 𝑥1) 𝑘(𝑥2, 𝑥2)
. . . 𝑘(𝑥1, 𝑥𝑛)

. . . 𝑘(𝑥2, 𝑥𝑛)
⋮ ⋮

𝑘(𝑥𝑛, 𝑥1) 𝑘(𝑥𝑛, 𝑥2)
⋱ ⋮
. . . 𝑘(𝑥𝑛, 𝑥𝑛)

] 

𝐾∗ = [𝑘(𝑥∗, 𝑥1) 𝑘(𝑥∗, 𝑥2) … 𝑘(𝑥∗, 𝑥𝑛)] 
𝐾∗∗ = 𝑘(𝑥∗, 𝑥∗) 

Based on the main assumption, we have: 

[
𝑦
𝑦∗

] ~𝑁 (0, [
𝐾 𝐾∗

𝑇

𝐾∗ 𝐾∗∗
]) (5) 
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where 𝑇 denotes matrix transposition. 

Bayesian inference is used to determine the parameters of the GPR model, k and n, after 

estimating the hyperparameters of kernel function. The GPR model can estimate unknown data 

using the specified input data after training. 

3.2. Evaluation metrics 

In this study, the performance of the GPR model has been evaluated by various performance 

metrics such as RMSE (Root Mean Squared Error), MAD (Mean Absolute Deviation), MAE 

(Mean Absolute Error), R
2 

(coefficient of determination), MAPE (Mean Absolute Percentage 

Error), and. These evaluation metrics are calculated as follows: 

𝑅2 = [
𝑁 ∑ 𝑚𝑖𝑝𝑖−∑ 𝑚𝑖 ∑ 𝑝𝑖

𝑁
𝑖=1

𝑁
𝑖=1

𝑁
𝑖=1

√𝑁 ∑ 𝑚𝑖
2−(∑ 𝑚𝑖

𝑁
𝑖=1 )

2𝑁
𝑖=1

√𝑁 ∑ 𝑝𝑖
2−(∑ 𝑝𝑖

𝑁
𝑖=1 )

2𝑁
𝑖=1

]

2

 (6) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑚𝑖 − 𝑝𝑖)2𝑁

𝑖=1  (7) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑚𝑖 − 𝑝𝑖|

𝑁
𝑖=1  (8) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑚𝑖−𝑝𝑖

𝑚𝑖
| ∗ 100𝑁

𝑖=1  (9) 

𝑅𝑅𝑆𝐸 = √
∑ (𝑚𝑖−𝑝𝑖)2𝑁

𝑖=1

∑ (𝑚𝑖−
1

𝑁
∑ 𝑚𝑖

𝑁
𝑖=1 )

2
𝑁
𝑖=1

 (10) 

𝑅𝐴𝐸 =
∑ |𝑚𝑖−𝑝𝑖|𝑁

𝑖=1

∑ |𝑚𝑖−
1

𝑁
∑ 𝑚𝑖

𝑁
𝑖=1 |𝑁

𝑖=1

 (11) 

where N is the number of observations for the evaluation of the desired model, 𝑝𝑖 is the predicted 

value and 𝑚𝑖 is the measured value for the i
th

 data point. 

4. Modeling UCS and E using the Gaussian process regression (GPR) 

A MATLAB program was developed to train and test the GPR models. 70% and 30% of the data 

have been randomly selected for the training and the testing set, respectively, to model the UCS 

and the E of the samples. Linear basis function and squared exponential kernel function were 

chosen by trial and error to develop the final model. The input variables of the GPR model were 

IMOT percentage, HL percentage, MC, and CT, while the output variables of the GPR model 

were UCS and E. The measured and predicted values of the UCS and E are reported in the 

dataset in the Appendix. 

The evaluation metrics for the GPR model are presented for the training and testing sets as well 

as the overall in Table 5. 
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Table 5 

Performance metrics for the GPR model. 

Evaluation Metrics 
Training Testing Total 

UCS 

R
2 

0.9866 0.9731 0.9825 

RMSE 0.1625 0.2359 0.1875 

RAE 0.0976 0.1484 0.1127 

RRSE 0.0135 0.0282 0.0179 

MAE 0.1116 0.1689 0.1287 

MAPE 4.8823 7.5752 5.6865 

 Young’s Modulus (E) 

R
2
 0.9788 0.9252 0.9633 

RMSE 15.408 27.605 19.868 

RAE 0.1296 0.2342 0.1600 

RRSE 0.0213 0.0779 0.0368 

MAE 11.519 20.077 14.083 

MAPE 10.091 14.060 11.280 

 

The performance of the GPR model for estimating the UCS and the E of the clay soils stabilized 

with IOMT and HL are shown in Fig. 2 and 3, respectively. As can be observed, the values of R
2
 

for estimating the UCS are 0.9866 and 0.9731 for the training set and the testing set, respectively. 

The RMSE for estimating the UCS are 0.1625 and 0.2359 for the training set and the testing set, 

respectively. Moreover, the values of the R
2
 for estimating the E are 0.9788 and 0.9252 for the 

training set and the testing set, respectively. The RMSE for estimating the E are 15.408 and 

27.605 for the training set and the testing set, respectively. 

The comparison of the measured and predicted UCS and E by the GPR model is depicted in Fig. 

4 and 5, respectively. The absolute relative error (ARE) is also depicted for each data in these 

figures. As shown in Fig. 6 and 7, only three data points have an ARE more than 20% for the 

prediction of UCS, while 25 data points have an ARE more than 20% for the prediction of E by 

the GPR model. 

  
(a) (b) 

Fig. 4. The performance of the GPR model for predicting UCS: (a) The training set, (b) The testing set. 
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(a) (b) 

Fig. 5. The performance of the GPR model for predicting E: (a) The training set, (b) The testing set. 

 

 
Fig. 6. Comparison of measured and predicted UCS using the GPR model. 
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Fig. 7. Comparison of measured and predicted the Young’s modulus using the GPR model. 

5. Performance comparison of GPR with ANN 

The performance of the GPR model to estimate the UCS and E of the stabilized clay soil was 

compared with ANN to evaluate the capabilities of the GPR method in this case. In this regard, a 

multi-layer perception (MLP) with the backpropagation algorithm was used. The optimal 

architecture of ANN was determined by trial and error. To this end, a MATLAB program was 

utilized to obtain the number of neurons in the hidden layers. The number of neurons was 

selected between 2 to 20. The transfer function of the hidden layer and output layer were selected 

as tangent sigmoid and linear, respectively. 70% of data where used as the training and validation 

(60% for training and 10% for validating), while 30% of data were used for testing. Similar to 

GPR model, four input parameters including IOMT, HL, MC, and CT were considered as input 

variables in building ANN model. According to the results, the ANN with 12 and 17 neurons in 

the hidden layer has optimal accuracy in the estimation of the UCS and the E, respectively. 

Therefore, the architecture of the ANN was selected as 4-12-1 and 4-17-1 for estimating the UCS 

and the E, respectively. Table 6 demonstrates the performance of the GPR and the ANN models 

in terms of R
2
 and RMSE. As can be seen, the values R

2 
and RMSE of the GPR model to 

estimate the UCS for training, testing, and total data are better than the ANN model. Moreover, 

the values R
2 

and RMSE of the GPR model to predict the E for the training set and the total data 

is higher than the ANN model. The ANN model only performs better to predict the E in the 

testing set. In total, it is found that the GPR model is more efficient to estimate the UCS and the 

E of the clay soil stabilized with IOMT. 
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Table 6 

The performance comparison of the GPR model with the ANN model. 

 
Training Testing Total Training Testing Total 

Model UCS (R
2
) UCS (RMSE) 

ANN 0.9726 0.9605 0.9692 0.2372 0.2665 0.2463 

GPR 0.9866 0.9731 0.9825 0.1625 0.2359 0.1875 

Model Young’s Modulus (R
2
) Young’s Modulus (RMSE) 

ANN 0.9678 0.9576 0.9624 17.823 26.201 20.6951 

GPR 0.9788 0.9252 0.9633 15.408 27.605 19.868 

 

6. Sensitivity analysis 

It is essential to carry out different analyses on the proposed model to validate and test 

robustness of the model for unknown data. Sensitivity analysis determines the effects of the input 

variables on the output of the model. The sensitivity analysis method used in this study was 

adopted from Gandomi et al. [42] and Javed et al. [43]. This sensitivity analysis method 

determines the contribution of the input variables to the predicted output. To this end, the 

sensitivity percentage (SP) of the output for any input variable is calculated by Eq. (12) and (13): 

𝐼𝑖 = 𝑓𝑚𝑎𝑥(𝑝𝑖) − 𝑓𝑚𝑖𝑛(𝑝𝑖) (12) 

𝑆𝑃𝑖 =
𝐼𝑖

∑ 𝐼𝑗
𝑛
𝑗

× 100 (13) 

where 𝑓𝑚𝑖𝑛(𝑝𝑖) and 𝑓𝑚𝑎𝑥(𝑝𝑖) are the minimum and maximum value of the outputs of the 

predictive model based on the i
th

 input variable, where the rest of input variables are equal to 

their average value. The sensitivity percentage of 100 demonstrates the highest contribution, 

while 𝑆𝑃 = 0 shows the lowest. 

The sensitivity analysis of the GPR model for the predicted outputs is shown in Fig. 8. As it can 

be seen in Fig. 8(a), the moisture content (MC), curing time (CT), hydrated lime (HL) 

percentage, and iron ore mine tailings (IOMC) percentage have the highest contribution to the 

UCS of the stabilized clay samples, respectively. Fig. 8(b) demonstrates that MC, HL, IOMT, and 

CT have the highest effect on the Young’s Modulus of the stabilized clay samples, respectively. 

7. Parametric analysis 

The parametric analysis (Fig. 9 to 14) was performed to examine the influence of an input on the 

E and the UCS of samples. To perform this analysis, the value of the desired variable was 

changed and other variables were kept constant. Constant values are shown on each Figure. 

These Figures show that the general trend of changes in UCS and E is almost the same. 
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(a) 

 
(b) 

Fig. 8. Sensitivity analysis of the GPR model for (a) UCS, (b) Young’s Modulus (E). 

Fig. 9 and 12 show that by increasing the HL content up to about 4%, the UCS and E increase, 

and by increasing the percentage of HL to more than this amount, the UCS and E decrease. Past 

researches show that the UCS of soils stabilized with HL increases as long as there is silica and 

alumina in the soil to react with HL, and after these two are exhausted, due to the lack of reaction 

between soil and HL, the UCS decreases [12,44–46]. Fig. 10 and 13 show that the UCS and the E 

decrease with increasing moisture content. In fact, like the compressive strength of concrete, 

with the increase in moisture content, the ratio of water to cement increases, which causes the 

strength of stabilized materials to decrease. Also, as expected, according to Fig. 11 and 14, the 

UCS and the E increase with increasing curing time. In addition, as shown in Fig. 9 to 14, with 

the increase in IOMT percentage, the UCS and the E decrease. The reason for this is the decrease 

in the amount of alumina and silica in the soil due to replacing of some fraction of the soil with 

IOMT. 

 
Fig. 9. Effect of HL content on the UCS based on the GPR model. 
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Fig. 10. Effect of moisture content on the UCS based on the GPR model. 

 
Fig. 11. Effect of curing time on the UCS based on the GPR model. 

 
Fig. 12. Effect of HL content on the Young’s modulus based on the GPR model. 
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Fig. 13. Effect of moisture content on the Young’s modulus based on the GPR model. 

 
Fig. 14. Effect of curing time on the Young’s modulus based on the GPR model. 

8. Conclusion 

In this study, gaussian process regression (GPR) was used to estimate the UCS and the Young’s 

modulus (E) of the clay soils stabilized with hydrated lime and IOMT. To this end, a GPR model 

was developed based on four input variables including HL percentage, IOMT percentage, MC, 

and CT. The R
2
 and RMSE values for the GPR model to estimate the UCS were 0.9866 and 

0.1625 for the training set, 0.9731 and 0.2359 for the testing set, and 0.9825 and 0.1875 for the 

overall data, respectively. In addition, the R
2
 and RMSE values of the GPR model to estimate the 

E were 0.9788 and 15.408 for the training set, 0.9252 and 27.605 for the testing set, and 0.9633 

and 19.868 for the overall data, respectively. The sensitivity analysis demonstrated that the MC, 

CT, HL, and IOMT have the highest contribution to the UCS of the stabilized lean clay, 

respectively. Also, MC, HL, IOMT percentage, and CT have the highest effect on the E of the 

stabilized lean clay, respectively. The parametric study shows that with increasing the HL content 
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up to a certain value, the strength parameters of the soil stabilized with HL and IOMT increase, 

and then the strength parameters decrease with the increase of the percentage of HL. Also, the 

strength parameters of soil stabilized with HL and IOMT increase with increasing curing time 

and decrease with increasing moisture content and IOMT percentage. 
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Appendix 

The database used in this research is given below. 

No. IOMT 

(%) 

HL 

(%) 

MC 

(%) 

CT 

(days) 

Measured UCS 

(MPa) 

Predicted UCS 

(MPa) 

Measured E 

(MPa) 

Predicted E 

(MPa) 

1 20 0 12.33 56 1.67 1.74 105.94 115.94 

2 10 4 18.3711 56 3.53 3.70 157.84 155.07 

3 0 6 18.2 56 3.17 3.93 243.46 254.04 

4 10 2 15.7 56 3.78 3.78 227.28 240.81 

5 20 6 14.85 28 3.43 3.45 324.4 309.25 

6 30 2 14.1 7 1.45 1.56 153.41 151.86 

7 30 0 11.88 7 0.98 1.00 58.33 59.54 

8 30 0 13.2 56 1.47 1.45 73.41 83.52 

9 10 0 14.7 28 1.15 1.27 43.03 56.75 

10 20 4 17.49 28 2.3 2.25 135.53 128.48 

11 30 0 11.88 56 1.69 1.73 102.04 104.60 

12 20 4 15.9 7 1.5 1.49 151.33 148.51 

13 30 4 16.28 28 2.88 2.60 191.84 168.72 

14 10 6 15.813 28 3.46 3.56 340 322.99 

15 20 4 14.31 56 6.03 5.84 366.63 367.17 

16 10 4 15.0309 56 6.48 6.40 401.23 393.93 

17 20 4 14.31 28 4.07 3.91 371.38 356.08 

18 10 6 19.327 28 1.87 1.93 100.87 106.91 

19 30 2 15.51 56 2.39 2.43 122.98 137.47 

20 10 6 15.813 7 1.81 1.68 174.15 187.38 
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No. IOMT 

(%) 

HL 

(%) 

MC 

(%) 

CT 

(days) 

Measured UCS 

(MPa) 

Predicted UCS 

(MPa) 

Measured E 

(MPa) 

Predicted E 

(MPa) 

21 0 6 16.38 28 3.68 3.71 350 350.10 

22 30 2 14.1 56 3.12 3.21 235 223.87 

23 20 2 14.9 28 2.98 2.83 207.7 209.35 

24 10 4 18.3711 7 1.16 1.11 58.24 55.83 

25 0 2 16.2 56 3.56 3.75 277 253.78 

26 0 2 16.2 7 1.84 1.77 168.62 150.81 

27 0 2 14.58 56 4.12 4.27 326.85 331.57 

28 30 6 14.13 7 1.65 1.62 188.01 183.34 

29 30 2 12.69 7 1.87 1.81 217.54 199.81 

30 30 4 14.8 28 2.92 3.14 213.99 259.78 

31 0 0 16.9224 56 1.3 1.20 52.48 46.52 

32 30 6 14.13 56 5.11 5.06 314.55 291.80 

33 10 0 16.17 28 1.06 0.89 40.03 11.34 

34 30 2 12.69 28 3.09 2.87 287.72 267.58 

35 30 6 17.27 28 2.29 2.22 144.65 147.35 

36 0 2 16.2 28 2.75 2.89 183.4 213.51 

37 0 6 20.02 28 2.25 2.23 112.71 106.96 

38 30 6 17.27 7 1 1.14 56.79 69.44 

39 0 6 20.02 7 1.15 1.21 54.75 59.24 

40 30 4 14.8 7 1.51 1.56 185.8 175.04 

41 30 4 13.32 7 1.92 1.86 231.81 243.44 

42 0 2 14.58 28 4.01 3.58 335.51 307.24 

43 20 0 15.07 7 0.67 0.66 22.41 19.66 

44 20 2 13.41 28 2.97 3.16 275.45 289.89 

45 20 2 13.41 56 4.07 4.08 359.94 314.09 

46 20 4 17.49 56 3.32 3.26 161.39 154.30 

47 20 2 16.39 28 1.84 2.03 94.23 109.38 

48 30 2 14.1 28 2.9 2.70 200 206.96 

49 20 2 14.9 7 1.81 1.57 162.09 144.12 

50 30 6 17.27 56 2.84 2.93 170.31 172.72 

51 10 0 16.17 56 1.34 1.23 58.24 43.91 

52 0 0 13.8456 56 1.48 1.62 96.62 108.83 

53 10 4 15.0309 7 1.92 2.07 228.03 247.04 

54 10 6 17.57 28 2.41 2.56 193.21 210.31 

55 0 6 18.2 7 1.5 1.55 141.87 130.84 

56 10 2 15.7 7 1.45 1.56 122.34 139.62 

57 30 0 13.2 28 1.2 1.28 53.05 58.94 

58 0 2 17.82 28 2 2.10 84.57 95.10 

59 0 0 15.384 7 0.84 0.88 35.45 46.01 

60 10 0 13.23 56 1.82 1.75 117.39 116.74 

61 10 2 17.27 28 1.71 1.82 75.51 90.25 

62 10 0 14.7 56 1.74 1.62 99.46 95.33 
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No. IOMT 

(%) 

HL 

(%) 

MC 

(%) 

CT 

(days) 

Measured UCS 

(MPa) 

Predicted UCS 

(MPa) 

Measured E 

(MPa) 

Predicted E 

(MPa) 

63 0 2 17.82 7 1.34 1.27 63.36 65.40 

64 0 6 16.38 7 1.94 2.00 209.13 217.66 

65 30 0 14.52 28 1.12 1.11 42.26 26.90 

66 30 2 15.51 28 2.31 2.27 133.11 129.00 

67 20 0 13.7 28 1.18 1.28 50.96 61.53 

68 30 4 16.28 7 1.24 1.28 110.49 106.94 

69 10 0 16.17 7 0.6 0.59 19.14 14.18 

70 0 4 17.2 56 5.54 5.14 315.18 303.43 

71 30 0 13.2 7 0.76 0.78 32.7 41.69 

72 0 4 18.92 56 4.67 4.13 197.83 172.12 

73 30 0 14.52 7 0.59 0.60 17.19 23.91 

74 0 0 13.8456 28 1.3 1.42 66.25 78.24 

75 30 6 15.7 7 1.41 1.36 122.82 120.27 

76 0 6 20.02 56 3.13 3.12 126.14 137.34 

77 0 2 17.82 56 2.76 3.10 117.26 143.62 

78 0 4 18.92 28 2.8 2.76 122.83 123.16 

79 0 0 13.8456 7 0.94 1.01 51.15 57.84 

80 20 2 16.39 56 2.45 2.54 115.56 129.07 

81 20 0 12.33 28 1.42 1.38 82.07 82.14 

82 10 0 13.23 7 1.05 0.95 60.59 50.47 

83 30 4 13.32 28 3.19 3.45 337.96 341.90 

84 20 4 14.31 7 1.76 1.88 223.2 237.25 

85 20 6 14.85 56 5.65 5.73 241.62 307.01 

86 30 4 13.32 56 5.21 5.07 343.43 351.85 

87 10 2 17.27 56 2.73 2.75 116.02 126.94 

88 0 0 16.9224 7 0.68 0.64 23.06 15.96 

89 20 4 15.9 56 4.61 4.68 259.71 262.40 

90 10 4 15.0309 28 4.32 4.31 406.57 377.56 

91 30 6 15.7 56 4.02 4.02 244.79 230.75 

92 20 6 18.15 7 1.11 1.04 61.96 52.71 

93 10 6 17.57 56 4.57 4.17 246.33 237.68 

94 10 0 13.23 28 1.37 1.37 79.13 79.78 

95 0 4 15.48 56 6.54 6.33 415.62 418.93 

96 0 6 18.2 28 2.99 2.74 232.16 224.19 

97 20 6 16.5 56 4.27 4.37 248.32 233.82 

98 20 0 15.07 56 1.22 1.28 48.62 52.49 

99 0 2 14.58 7 2.2 2.22 235.08 222.38 

100 30 0 14.52 56 1.14 1.13 48.43 42.43 

101 20 0 13.7 7 0.79 0.83 33.22 37.78 

102 20 6 14.85 7 1.71 1.63 206.2 183.72 

103 30 4 14.8 56 5.11 4.36 297.61 273.00 

104 30 2 15.51 7 1.21 1.25 76.39 97.58 
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No. IOMT 

(%) 

HL 

(%) 

MC 

(%) 

CT 

(days) 

Measured UCS 

(MPa) 

Predicted UCS 

(MPa) 

Measured E 

(MPa) 

Predicted E 

(MPa) 

105 20 6 18.15 56 2.83 3.08 129.16 161.91 

106 10 4 16.701 56 5.02 5.04 258.98 277.57 

107 20 0 12.33 7 1.01 1.00 61.64 52.38 

108 10 6 19.327 7 1.16 0.99 51.18 43.93 

109 10 6 19.327 56 2.9 3.03 148.25 142.53 

110 20 2 14.9 56 3.35 3.58 235.22 233.97 

111 10 2 14.13 7 2.26 1.98 311.07 210.70 

112 10 2 15.7 28 2.92 2.80 223.79 206.38 

113 20 6 16.5 28 2.54 2.73 173.26 217.37 

114 10 4 18.3711 28 2.44 2.29 123.28 112.88 

115 0 4 15.48 28 5.18 4.59 367.62 399.39 

116 20 6 18.15 28 2.12 2.03 108.23 131.71 

117 0 4 15.48 7 2.18 2.47 222.73 271.05 

118 30 2 12.69 56 3.37 3.60 270.35 285.54 

119 20 2 16.39 7 1.23 1.12 69.92 75.75 

120 30 6 14.13 28 2.82 3.12 314.08 287.89 

121 10 2 14.13 28 3.35 3.44 318.01 301.71 

122 0 0 15.384 28 1.02 1.23 48.63 56.69 

123 30 0 11.88 28 1.31 1.45 78.57 81.54 

124 10 2 17.27 7 1.25 1.02 71.08 59.00 

125 0 6 16.38 56 6.21 5.54 344.26 361.28 

126 20 0 15.07 28 0.87 1.10 31.02 25.88 

127 10 4 16.701 28 3.19 3.24 232.16 244.28 

128 20 6 16.5 7 1.31 1.30 149.23 109.92 

129 10 4 16.701 7 1.56 1.53 157.72 145.97 

130 0 4 18.92 7 1.37 1.45 71.49 70.97 

131 30 6 15.7 28 2.7 2.71 169.57 215.39 

132 0 0 16.9224 28 0.96 0.84 43.86 7.47 

133 20 0 13.7 56 1.43 1.58 76.17 96.86 

134 30 4 16.28 56 3.32 3.22 188.25 182.39 

135 10 6 15.813 56 5.88 5.86 323.73 328.27 

136 20 4 15.9 28 2.88 3.19 184.77 242.56 

137 0 0 15.384 56 1.42 1.46 74.86 94.51 

138 20 4 17.49 7 1.13 1.08 65.79 68.30 

139 10 2 14.13 56 4.28 4.42 308.11 328.73 

140 0 4 17.2 7 1.59 1.89 167.37 167.36 

141 10 6 17.57 7 1.37 1.28 115.69 106.32 

142 0 4 17.2 28 3.48 3.53 271.59 262.24 

143 20 2 13.41 7 1.99 1.87 243.4 205.08 

144 10 0 14.7 7 0.84 0.82 36.93 37.87 
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