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Optimization techniques can be divided to two groups: Traditional 

or numerical methods and methods based on stochastic. The 

essential problem of the traditional methods, that by searching the 

ideal variables are found for the point that differential reaches zero, 

is staying in local optimum points, can not solving the non-linear 

non-convex problems with lots of constraints and variables, and 

needs other complex mathematical operations such as derivative. In 

order to satisfy the aforementioned problems, the scientists become 

interested on meta-heuristic optimization techniques, those are 

classified into two essential kinds, which are single and population-

based solutions. The method does not require unique knowledge to 

the problem. By general knowledge the optimal solution can be 

achieved. The optimization methods based on population can be 

divided into 4 classes from inspiration point of view and physical 

based optimization methods is one of them. Physical based 

optimization algorithm: that the physical rules are used for 

updating the solutions are:, Lighting Attachment Procedure 

Optimization (LAPO), Gravitational Search Algorithm (GSA) 

Water Evaporation Optimization Algorithm, Multi-Verse 

Optimizer (MVO), Galaxy-based Search Algorithm (GbSA), 

Small-World Optimization Algorithm (SWOA), Black Hole (BH) 

algorithm, Ray Optimization (RO) algorithm, Artificial Chemical 

Reaction Optimization Algorithm (ACROA), Central Force 

Optimization (CFO) and Charged System Search (CSS) are some 

of physical methods. In this paper physical and physic-chemical 

phenomena based optimization methods are discuss and compare 

with other optimization methods. Some examples of these methods 

are shown and results compared with other well known methods. 

The physical phenomena based methods are shown reasonable 

results. 
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1. Introduction 

Optimization is based on this mathematical idea that to determine the decision variables of a 

function so that the function should be in optimum value (minimum or maximum). 

There are a wide range of optimization methods in science and engineering application. Different 

researchers used different methods. This wide range covers so many technical problems such as 

cable ampacity, DG placement renewable energy and power quality [1–51]. Most of optimization 

methods are based on different mathematical ideas, physical and physic-chemical process or on 

natural behavior in nature or behavior of animals and insects [52–92]. 

Our goal in this review paper is to discuss the physical and physic-chemical based optimizations 

methods. 

Some of these methods are single-objective optimization algorithm [40] and others are multi 

objective optimization algorithm [41]. These algorithms are: 

1.1. Lightning attachment procedure optimization algorithm 

Foroughi et al [40,41] mimic lightning attachment approach including movement of downward 

leader and upward leader of lightning, unpredictable behavior (trajectory) of downward leader of 

lightning and branch fading of lightning. The optimum result is striking point of lightning. This 

procedure applied for both single objective optimization [40] and multi-objective optimization 

[41]. In these papers the authors mentioned following benefits for their method: - the method is 

not dependent on parameters tuning. - The method can solve challenging, high constraint and 

discrete optimization cases. – Can be used for both single and multi-objective problems. Main 

procedure of LAPO algorithm is shown in Fig 1. 

In [40,41], this method applied to 34 different benchmark test function and the result compared 

with 9 other optimization method. In order to compare this method with other methods, these 

method implemented on different problems including discreet, continuous, high dimension, and 

high constrains problems. The comparisons are done from different point of view as finding 

global optimum point, robustness, quality of results, and CPU time consumption. 

In [40] the result that obtained by Lightning Attachment Procedure Optimization Algorithm 

compared with 9 other optimization method including: 1- Artificial Bee Colony (ABC) [76], 2- 

Differential Evolution (DE) [87], 3- Shuffled Frog Leaping Algorithm (SFLA), 4- Imperialist 

Competitive Algorithm (ICA), 5- Particle Swarm Optimization (PSO), 6- Ant-Lion Optimizer 

(ALO), 7- Gray Wolf Optimizer (GWO), 8- Cuckoo Search Algorithm (CSA), 9- Firefly 

Optimization Method (FOM), and 10- Lightning Search Algorithm (LSA). 

Benchmark test functions that used in [40] include five groups: 1- unimodal, 2- multimodal, 3- 

fixed-dimension multimodal, and 4- composite functions, 5- classical engineering design 

problems. 
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unimodal test function has utilized to evaluate the performance of local search of optimization 

method. Unimodal test function have a simple function with convex shape. Each method that 

obtain better results in these functions, has better performance in local search. The obtained 

result in [40] shows that LAPO has Superiority and high quality performance in solving 

unimodal problems compared to other methods. 

The multimodal and fixed-dimension multimodal test functions are testified in [40] for 

evaluating the ability of the method in finding global optimum point. Result shows that LAPO 

method has excellence performance in finding global optimum when problems has several local 

optimum. 

The composite benchmark test functions are the fourth group of test functions that utilized in 

[40] to examine the ability of LAPO in global and local search simultaneously. From obtained 

result in [40] it can be concluded that LAPO has good quality in finding global optimum point 

and rarely get stuck on local optimum points. 

 

Fig. 1. Main Step of LAPO algorithm. 

1.2. Charged system search (CSS) optimization algorithm 

Kaveh et al [56] introduced a new algorithm for optimization based on physical and mechanical 

principles that called Charged System Search (CSS). The Coulomb law of electrostatics and 

Newton laws from mechanics. In this algorithm, each search agent known as a charge. Every 

search agent applying force to the other search agent based on their charge and the distance 

between them. And every search agent affected by this force begins to move and the new 

position of charge of each charge is determined by the speed and force applied to this search 

agent. The authors claimed their method has good performance in compare to other evolutionary 

algorithms. Main procedure of CSS algorithm is shown in Fig 2. 

In [56], CSS implemented on 17 mathematical test function and 4 engineering designing 

problem. The result that obtained by CSS compared with 4 type of modified Genetic Algorithm. 

The obtained results shows that this method not only has fast convergence but also has good 

quality. 

Step 1: Initialize Random Test Point 

Step 2: Downward Leader Movement toward Ground 

Step 3: Calculate Electric Field below the Cloud 

Step 4: Moving Test point toward maximum Electric field 

Step 5: Determine Next jump and maximum Electric Field 

Step 6: Upward leader Movement 

Step 7: Final Jump and Touching Upward Leader and Downward (Global optimal Point) 
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Fig. 2. Main Step of CSS algorithm. 

1.3. Central force optimization (CFO) algorithm 

Formato [57] introduced a new optimization algorithm which is based on the metaphor of 

gravitational kinematics. In the procedure of this algorithm, a random number is not used. in this 

method, search agents(probe) are flying around search space and under the influence of gravity 

of other objects change their position. With increasing iteration, all search agents will be 

attracted in close orbits of big masses with largest gravitational field. Main procedure of CFO 

algorithm is shown in Fig 3. 

 Author claimed his method is easily implemented in a compact computer program and showed 

very good performance. 

In [57] CFO used to obtain the optimum point of 5 test functions. Results that obtained by this 

method are not compared with other optimizations method. CFO is not a parameter free 

algorithm and needed to tune parameters. Arbitrary changing of these parameters can lead to bad 

results. 

 

Fig. 3. Main Step of CFO algorithm. 

1.4. Artificial chemical reaction optimization algorithm (ACROA) 

Chemical reaction is known as a process which leads to transfer one st of chemical substances to 

another. Author [58] used chemical reaction to introduce a new optimization algorithm. In this 

algorithm, each particle of the population is considered as the reactant and each reactant collides 

Step 1: Initialize Random Charge Position and Assign the Initial Velocities 

Step 2: Determine Charge New Positions Based on their Previous Positions and Velocities 

Step 3: Compute Fitness of each charge particle 

Step 4: Updating Velocities and Position of each charge Particle Based on their attracting 

Force 

Step 5: Determine Particle with Maximum Attracting Force 

 

 

 

 

 

Step 1: Initialize Random Probe Position and Assign the Initial Accelerations 

Step 2: Determine Probe New Positions Based on their Previous Positions and 

Accelerations 

Step 3: Compute Kinematics and Gravitational Field of each charge particle 

Step 4: Updating Acceleration and Position of each charge Particle 

Step 5: Determine Particle with Maximum Kinematics and Gravitational field 
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with other reactants and this collision causes chemical reactions. Author claimed that his 

algorithm easily can be adapted to multi-objective optimization cases. Main procedure of ACRO 

algorithm is shown in Fig 4. 

This method is free from parameter tuning and authors claimed this method has fast convergence 

and shorter computation time. ACROA implemented on 3 different test functions in [58] and 

obtained results compared with Artificial Bee Colony optimization method (ABC) and 

Biogeography optimization algorithm. Results shows ACROA has better performance than ABC. 

 

Fig. 4. Main Step of ACRO algorithm. 

1.5. Black hole (BH) optimization algorithm 

Hatamlou [59] is used black hole phenomenon to introduce a optimization algorithm. Same as 

population based methods BH algorithm begins with an initial population of candidate solutions 

to an optimization case and an objective function which is calculated for them. In this algorithm, 

the best-obtained result at each iteration considered as a black hole and other solutions is 

considered to be stars. each star will be attracted by black hole and if the new position of the star 

is near than specific value to the black hole, it will be destroyed and new stars will be born in 

search space. The author claimed that BH algorithm outperforms other traditional heuristic 

algorithms for several benchmark datasets. Main procedure of BH algorithm is shown in Fig 5. 

BH is free from tuning any parameter and has a simple structure for implementation. BH 

implemented on 6 different test functions in [59] and achieved results compared with 

Gravitational search algorithm (GSA), Particle Swarm Optimization (PSO) and Bang-big Crunch 

algorithm. 

 

Fig. 5. Main Step of BH algorithm. 

Step 1: Initialize Parameter and reactants 

Step 2: Applying Chemical Reaction 

Step 3: Updating Reactants Positions based on type of reactions 

Step 4: Termination Criterion Check. 

 

 

 

 

 

Step 1: Initialization of Stars. 

Step 2: Evaluate Fitness of each Star. 

Step 3: Selecting star with best Fitness as Black Hole. 

Step 4: Determining position of each Star based on their interactions. 

Step 5: Determine Position of best Star as the Black Hole. 

Step 6: Stopping Criteria 
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1.6. Ray optimization (RO) algorithm 

Kaveh et al [60] used Snell’s light refraction law to introduce a new optimization algorithm and 

this law is the main tool of RO algorithm. The inspiration of this algorithm is ray refraction from 

one transparent material to the other. In this algorithm authors used Snell’s light refraction law 

for updating and determining the movement of search agents in search space. Eventually, 

refracted rays converged to a point that is known as global optimum.Authors claimed that RO 

algorithm has a good efficiency and can be utilized for structural optimization problems. Main 

procedure of RO algorithm is shown in Fig 6. 

In [60], RO implemented on 17 mathematical test function and 5 engineering problem. The result 

that obtained by RO compared with Genetic Algorithm. The obtained results shows that RO 

method outperforms GA for all the test function. 

 

Fig. 6. Main Step of RO algorithm. 

1.7. Galaxy-based search algorithm (GbSA) 

Author [62] a novel optimization method from nature is employed to explore the search space for 

optimum solution to principal components analysis problem. This algorithm is inspired from 

spiral arm of spiral galaxies. in this algorithm by using the concept of the spiral arm of spiral 

galaxies and combining this concept with chaos, the global optimum point is found. Author 

claimed that his method shows good results with respect to other methods. Main procedure of 

GbSA algorithm is shown in Fig 7. 

Fig. 7. Main Step of GbSa. 

Step 1: Initialize position of Ray particles 

Step 2: Calculate the fitness of each particle 

Step 3: Calculate the refraction factor of each particle 

Step 4: determine the movement vector and motion refinement 

Step 5: Update position of each particle 

Step 6: introduce lighter particle as the best solution 

 

 

 

 

Step 1: Creation of Universe 

Step 2: Calculation of Each Body Mass 

Step 3: Calculation of Gravitational Force 

Step 4: Decreasing of Number of Body 

Step 5: Searching for Local Improvement of each universe 

Step 6: Stopping Criteria 
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1.8. Water evaporation optimization (WEO) algorithm 

Authors [63] developed a new physical inspired non gradient algorithm to solve global 

optimization problems. WEO algorithm mimics the evaporation of a tiny layer of water on the 

solid surface with different wettability which can be studied by molecular dynamics simulations. 

In WEO each Water molecules considered as a search agent in the optimization algorithm. Solid 

surface or substrate with variable wettability is known as the search space. The surface 

wettability reducing means that water molecules gathered to several points as the water droplets. 

Decreasing the surface wettability is a good sign of approaching the target point in minimization 

problems. The evaporation flux rate of the water molecules is used as the most proper parameter 

for calculation of the position of the particles. The authors claimed their optimization algorithm 

is an effective and comparable tool. Main procedure of WEO algorithm is shown in Fig 8. 

In [63], WEO applied to 13 different benchmark test function and the result compared with Bat 

Algorithm (BA) and PSO. Benchmark test functions that used in [63] include three groups: 1- 

unimodal, 2- multimodal, 3- classical engineering design problems. The obtained results by 

WEO indicated that this method have good performance in solving optimizations problem. 

 

Fig. 8. Main Step of WEO algorithm. 

1.9. Multi-verse optimizer (MVO) algorithm 

Mirjalili et al [65] introduce an algorithm which is used a novel nature inspired algorithm called 

Multi-Verse Optimize. The essential of this algorithm are according to three definition in 

cosmology: White hole, Black hole and wormhole. In this algorithm, each search agent 

considered as the universe that interacts with other universes. For each universe inflation rate 

calculated and the position of them updated based on this factor. The universe that has higher 

inflation is considered to have a white hole and the universe that has lower inflation is considered 

to have a black hole. Two different universes transfer objects from the tunnel that created 

between them. In addition, each universe has wormholes that transferred objects between two 

universes without considering their inflation rate. Authors claimed that MVO algorithm showed 

its potential in solving real cases with unknown search spaces. Main procedure of MVO 

algorithm is shown in Fig 9. 

Step 1: Initialize Randomly Position of each Water Molecules. 

Step 2: Generating Water Evaporation matrix 

Step 3: Generating Random Permutation based step Size Matrix 

Step 4: Generating Evaporated Water molecules and updating the matrix of of water 

molecules. 

Step 5: Stopping Criteria 
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MVO implemented on 19 mathematical challenging test function in [65]. The results that 

obtained by MVO compared with 4 well known optimization method such as GSA, PSO, GWO 

and GA. The obtained result shows that MVO has a good performance and it can outperforms 

other heuristic algorithms. 

 

Fig. 9. Main Step of MVO algorithm. 

1.10. A gravitational search algorithm (GSA) 

Rashedi et al [66] based on the law of gravity and mass interactions introduced an new 

optimization algorithm. In this algorithm the searcher agents are a set of masses which interact 

with each other based on the Newton’s law of gravity and laws of motion. Each search agent 

applying force the other agent proportional to weight and inversely proportional to the square of 

the distance between them. In this algorithm the quality of each search agent measured by its 

mass. the heaviest search agent in the population is known as global optimum. Authors claimed 

that their method shows high performance in solving various nonlinear functions. Main 

procedure of GSA algorithm is shown in Fig 10. 

GSA applied to 23 different benchmark test function and the result compared with CFO, GA and 

PSO. Benchmark test functions that used in [63] include four groups: 1- unimodal, 2- 

multimodal, 3- composite functions 4- classical engineering design problems. The obtained 

results by GSA shown that this method have good performance in solving optimizations 

problem. 

 

Fig. 10. Main Step of GSA. 

Step 1: Initialize Randomly Universes 

Step 2: Evaluate Fitness (Inflation rate) of Each Universes and normalize it 

Step 3: Update position of each universe (white hole) based on wormhole existence 

probability (WEP) and travelling distance rate (TDR). 

Step 4: Determine Position of Black Hole as the Best Solution 

Step 5: Stopping Criteria 

Step 6: Stopping Criteria 

 

 

 

 

 

 

Step 1: Initialize Randomly Position of Each Mass 

Step 2: Evaluate Fitness of Each Mass 

Step 3: Update Best and Worst of Mass Group 

Step 4: Calculate total force of Each Mass in different Direction 

Step 5: Calculate Velocity and Acceleration of Each mass at each direction 

Step 6: Stopping Criteria 
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2. Comparative study 

In this section, the results of the each algorithm is compared from different points of views. 

Three test functions are utilized to compare the performance of each method. These test 

functions can be classified in different categories consist of 1- unimodal, 2- multimodal, 3- 

hybrid-multimodal and 4-composite functions. In the first part of comparison, 4 test functions 

which are used in [40,63,65,66] are illustrated to compare the ability of the physics based method 

compared to other methods. These benchmark functions are illustrated in tables 1 and 2, 

respectively. 

Table 1 
Benchmark functions. 

Function Dim Range fmin Type 

n-1
2 2

1 i+1 i i

i=1

F (x)= {100(x -x ) +(x -1) }  30 [-30,30] 0 Unimodal 

n
2

2 i i

i=1

F (x)= [x -10cos(2πx )+10]  30 [-500, 500] 0 Multimodal 

211

1 i i 2

3 i 2

i=1 i i 3 4

x (b +b x )
F (x)= [a - ]

b +b x +x
  4 [-5,5] 0.00030 Fixed-dimension multimodal 

 

The obtained result by a physics-based optimization algorithm shown that these methods could 

close to the optimum point. The results of the implementation of the physical algorithms on 

unimodal functions show that this algorithm performs better than other methods. As shown in 

table 2, the best-obtained result is for the physical-based optimization method. Therefore, it can 

be stated that physical-based algorithms have better performance in solving unimodal functions. 

Second test function is multimodal test functions. As shown in Table 1, the two algorithms reach 

the exact optimal point of multimodal test functions. Type of third test function is Fixed-

dimension multimodal. This type of test functions examines the ability of optimization 

algorithms on balancing between exploration and exploitation phase. Achieved result by 

physical-based algorithms shown that physical-based optimization methods could well balance 

between exploration and exploitation. Variables obtained by each algorithm is shown in Table 

A1. 

3. Conclusion 

In this paper, physic based optimization methods reviewed. These methods are inspired from 

physical phenomena. Firstly, the physic that algorithms inspired by that was explained. then steps 

that implement in each algorithm briefly discussed. At the end of this paper, physical-based 

optimizations are applied to 3 different types of test functions and achieved results showing that 

this method have good performance in solving optimizations problem. 
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Table 2 
Results of different method for solving test functions. 

Method Function Best Average Std 

LAPO 

F1 19.5667 22.7427 0.6846 

F2 0 1.53344 3.70144 

F3 3.0749E-04 5.5811E-04 2.2495E-04 

CSS 

F1 28.6514 125.12 61.2 

F2 0.076628 0.275 0.0174 

F3 0.00421 0.0974 0.014 

CFO 

F1 28.7599 133.5 61.01 

F2 0.7351 29.36 5.89 

F3 0.154 1.262 0.315 

RO 

F1 28.8219 101.114 52.14 

F2 0.34258 2.1658 0.4569 

F3 0.00548 0.1578 0.0541 

BH 

F1 60.002 98.215 15.843 

F2 4.33E-04 3.124E-2 1.054E-2 

F3 4.15E-3 0.325 0.0945 

GbSA 

F1 69.0119 114.174 31.456 

F2 1.9854 8.145 2.1465 

F3 0.00457 1.645E-1 7.255E-3 

GSA 

F1 - 25.16 - 

F2 - 15.32 - 

F3 - 8E-03 - 

MVO 

F1 - 1272.13 1479.477 

F2 - 118.046 39.34364 

F3 - 30.00705 48.30615 

WEO 

F1 1.347 22.042 16.765 

F2 0 0.265 0.768 

F3 - - - 

PSO 

F1 160.6205 1.4821E+03 1.7592E+03 

F2 44.6941 84.6695 22.4398 

F3 3.0750E-04 0.0056 0.0084 

GWO 

F1 36.0767 37.0454 0.8404 

F2 5.6843E-05 3.1699 6.6764 

F3 3.0846E-04 0.0033 0.0069 

 

The results of application physic based optimization on benchmark test functions reveal that 

these methods have fast convergence and excellence quality in solving high dimensions and hard 

problems. In this paper ten different physic based optimizations are collected and their 

inspirations briefly explained. In addition to that, for each method, the details of the test 

functions are illustrated. At the end, some examples of these methods are shown and results 

compared with other well-known methods. Result show that these physical based methods have 

high quality in solving complicated optimization problems. 
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Appendix A 

Table A1 
Obtained variable by physical optimization algorithms. 

F1 F2 

CSS CFO RO BH GbSA CSS CFO RO BH GbSA 

1.1E-01 5.24E-03 -2.50E-04 1.59E-01 -5.84E-02 -5.0E-04 1.4E-02 -8.1E-03 3.5E-04 -1.7E-02 

5.13E-03 7.02E-03 6.87E-03 1.92E-01 -2.17E-01 6.9E-03 -8.2E-03 6.4E-03 1.9E-04 -5.1E-03 

1.36E-03 1.12E-02 5.19E-04 -3.12E-02 6.63E-02 2.4E-03 -1.2E-02 -6.3E-03 3.1E-04 7.7E-03 

9.76E-03 6.24E-03 7.83E-03 6.66E-02 -1.74E-01 -1.1E-03 3.4E-03 -3.3E-03 -9.5E-05 -1.7E-03 

1.54E-02 7.25E-03 9.95E-04 -1.14E-01 -6.93E-03 8.7E-04 -6.5E-03 1.4E-02 6.4E-04 -5.4E-03 

-2.83E-03 4.30E-03 -6.54E-04 1.73E-01 -9.89E-02 1.8E-03 -1.4E-02 -1.5E-02 3.1E-04 -1.9E-02 

8.00E-04 1.08E-02 1.41E-03 9.25E-02 -4.56E-02 3.7E-03 1.8E-02 5.7E-03 -4.3E-04 9.2E-03 

3.73E-03 1.38E-02 -2.39E-03 1.04E-01 -6.56E-02 -2.6E-03 4.3E-03 3.0E-03 -1.8E-04 -1.2E-02 

9.34E-04 3.41E-03 2.06E-03 -8.02E-02 -1.31E-01 3.1E-04 9.9E-03 -3.5E-03 8.0E-05 -2.7E-03 

1.21E-02 1.12E-02 2.55E-03 -1.12E-01 -1.54E-02 -4.2E-03 -1.2E-02 4.5E-03 -1.1E-04 -2.1E-03 

1.31E-02 1.11E-02 2.05E-03 1.61E-01 -2.10E-01 -2.8E-03 7.9E-03 4.8E-03 -4.0E-04 -1.4E-02 

1.26E-02 5.04E-03 9.53E-03 1.29E-01 1.93E-01 4.1E-03 1.2E-02 -4.6E-03 4.1E-05 -6.1E-04 

6.93E-03 1.21E-02 4.13E-03 -6.42E-02 1.31E-01 -2.4E-03 -1.1E-02 4.8E-03 2.5E-06 1.9E-02 

1.70E-02 1.06E-02 9.18E-03 -1.67E-01 -1.40E-01 -5.5E-04 -1.6E-02 -5.6E-04 -2.2E-04 3.9E-03 

8.24E-03 9.65E-03 3.70E-03 5.32E-02 1.64E-01 5.6E-03 -4.4E-03 1.3E-02 -1.5E-04 2.2E-02 

9.58E-03 8.00E-03 2.06E-03 1.06E-01 -5.38E-02 -5.8E-03 -5.4E-03 3.5E-03 1.4E-04 1.0E-02 

8.33E-03 4.48E-03 1.17E-03 9.33E-02 9.38E-02 -2.4E-03 3.2E-03 4.4E-03 3.1E-04 -1.7E-02 

-1.04E-03 5.02E-04 -2.83E-04 7.84E-02 -2.54E-02 -8.4E-03 3.7E-03 6.2E-03 1.4E-04 3.4E-03 

7.80E-03 1.15E-02 3.61E-03 -4.58E-02 3.43E-02 6.1E-03 2.4E-03 -2.6E-04 4.7E-05 -6.0E-03 

-4.42E-04 4.60E-03 2.00E-03 -7.29E-02 3.80E-03 -3.6E-03 -1.8E-02 -4.3E-03 -3.0E-04 -9.7E-01 

1.68E-03 6.69E-03 3.91E-03 -6.07E-02 -2.63E-01 2.5E-04 7.9E-03 -1.8E-03 2.0E-04 -2.0E-02 

-1.62E-03 1.41E-02 5.86E-03 1.60E-01 6.46E-02 6.0E-04 -2.1E-02 1.4E-03 2.6E-05 -1.6E-02 

5.15E-04 6.39E-03 3.16E-03 2.99E-02 4.62E-02 7.8E-04 9.2E-03 -5.2E-03 -6.5E-04 -6.3E-03 

-2.04E-03 1.40E-03 4.77E-03 8.79E-02 7.40E-02 1.9E-03 1.4E-02 -1.3E-02 -4.3E-05 -1.8E-02 

8.90E-03 2.69E-03 4.16E-04 -1.03E-01 9.77E-02 9.3E-04 7.1E-04 1.2E-02 -4.7E-05 -1.3E-02 

8.80E-03 6.51E-03 7.21E-03 6.14E-02 3.70E-02 -3.3E-03 8.9E-03 -7.2E-03 -3.3E-04 -1.6E-02 

5.21E-03 1.15E-02 3.47E-04 1.72E-01 -1.16E-01 -1.3E-03 1.8E-02 -4.9E-03 1.4E-04 -1.9E-02 

5.33E-03 1.15E-02 -4.62E-05 5.55E-02 1.38E-01 -2.7E-03 -7.7E-03 1.5E-02 -7.2E-05 -6.8E-03 

1.31E-02 5.98E-03 1.37E-02 -1.39E-01 -6.89E-02 -5.4E-03 -7.5E-03 3.6E-03 -3.3E-04 -1.7E-03 
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