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The floods of 2018 and 2019 have underlined the urgent 

need for development and implementation of efficient and 

robust flood forecasting models for the major rivers in the 

State of Kerala, India. In this paper, the development and 

application of two hourly flood forecasting models are 

presented – one using Support Vector Machine (SVM) and 

the other based on hybrid wavelet-support vector machine 

(WSVM). The study was performed on the Achankovil River 

in Kerala. Wavelet technique was used to denoise the input 

signal (rainfall and water level) and the effective components 

of the input signal obtained after denoising were input to the 

SVM/ WSVM models for forecasting. These models' 

performance was assessed using standard performance rating 

criteria. Further, the performance of these models was 

compared with that of a flood forecasting model based on 

hybrid wavelet-artificial neural network (WANN) developed 

for this river in a previous study. Results of this study 

demonstrated the ability of the WSVM model to predict 

floods reasonably well. It was observed that the WSVM 

model performed better when compared to the WANN 

model. The WSVM model was able to accurately estimate 

peak discharge magnitude and time to peak, both of which 

are critical inputs in many water resource design and 

management applications. 
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1. Introduction 

The critical contribution of flood forecasting to reducing risk to life and property and minimising 

economic losses make studies for development of flood forecasting techniques/ models 

extremely important and relevant. Water-related disasters happen very frequently and are a major 

threat to human life and socio-economic development [1]. Complete control of floods is not 

possible due to several reasons such as topographical constraints, uncertainties associated with 

the timing, magnitude and place of occurrence of floods etc. So, rather than trying to completely 

control floods, appropriate measures to prevent damages caused by floods can be initiated if 

reliable and timely flood forecasts are available. Structural protection measures like dams and 

levees were traditionally employed for flood management. These structures reduce damages 

caused by floods by modifying its characteristics, say, by reducing the peak flood discharge and 

the corresponding river stage as well as the spatial extent of the area inundated. However, these 

cannot completely avoid floods. Hourly flood forecasting with adequate lead time is very 

effective and useful to minimise loss to life and property and damages caused by floods. 

Many models have been proposed and used for flood forecasting in rivers all over the world [1]. 

Physical and conceptual models are, in general, data intensive in nature, making them difficult to 

implement in developing countries [2]. Computational simulations are becoming increasingly 

complex and time expensive in a variety of engineering challenges [3]. Conventional time series 

models were used for investigating the rainfall-runoff process in the previous two decades. The 

rainfall-runoff process being highly nonlinear and non-stationary in behaviour, these models find 

it difficult to capture the transformation satisfactorily. In many rainfall-runoff modelling studies, 

soft computing models like support vector machine and artificial neural networks have been used 

due to its ability to capture the nonlinear behaviour and flexibility in data [2]. Unlike the 

artificial neural networks (ANN) which reduce only the empirical risk associated, SVM helps to 

reduce the structural risk also [4]. SVMs are called “kernel machines” because it uses a kernel 

function for mapping the nonlinear function to a linear function. In SVM, training data is used to 

directly determine the decision boundaries. SVM is based on statistical learning theory and can 

minimise classification errors of the training data and the testing data [5]. Researchers have 

shown that the SVM approach helps in faster training when compared to ANN and ANFIS 

(Adaptive Neural-Fuzzy Inference System) models [5]. Also, the results obtained from the SVM 

models are reported to be more accurate when compared to those obtained using the ANN 

models [5]. A study used five surrogate models, namely, multiple regression, random forest, 

extreme gradient boosting, SVM and k-nearest neighbours to predict seismic vulnerability and 

environmental impacts of a class of buildings. The SVM was found to be the most accurate 

among these with respect to prediction of the total annual loss [6]. 

Even though SVM exhibits high flexibility in modelling hydrologic time series such as runoff, it 

does not handle non-stationary data very well. This problem can be overcome if the data is pre-

processed [5]. Wavelet transform is a very efficient and popular technique for data pre-

processing and is capable of dealing with non-stationary signals [7]. Signal denoising can be 

effectively performed with wavelet transforms. Many researchers reported that the capability of 

simple ANN and SVM models with regard to flood prediction can be considerably improved 
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when these are combined with wavelets [5], [8], [9]. In view of the above, it was felt that a 

model combining SVM with the wavelet technique would be promising for hourly flood 

forecasting applications. 

The main objective of this study is to develop a flood forecasting model for the Achankovil river 

basin using SVM and hybrid wavelet-SVM, and to compare the performance of both these 

models as well as that of a hybrid wavelet-ANN model which had already been developed [10]. 

2. Research significance 

Conceptual models based on physical laws provide a comprehensive description of hydrological 

processes. However, these models are computationally intensive and complicated and require a 

lot of data. A single data set like that of water level at a gauge site is not sufficient for calibration 

and testing of these models. Relative ease of developing and using models based on soft 

computing techniques and their satisfactory performance has resulted in the development and 

application of such models for diverse problems. Among these models, the SVM exhibits high 

flexibility in modelling hydrologic time series and with wavelet transforms, signal denoising can 

be effectively performed. Hence, it was felt that development of a model combining SVM with 

the wavelet technique would be quite promising for flood forecasting. 

3. Theory 

3.1. Support vector regression 

Support Vector Machines (SVMs) which are used for classification as well as regression was 

introduced by Vapnik, a Russian mathematician in the early 1960s. SVMs are based on the 

Structural Risk Minimisation (SRM) principle which is an inductive principle that is commonly 

used in machine learning. As SVMs are based on SRM, it reduces the structural risk associated 

with the model and thus improves its generalization capability. SVM has been extensively used 

by researchers in various engineering fields including civil engineering, electronics and electrical 

engineering, mechanical engineering, financial, medical etc [11]. 

The basic idea of SVM classification is to divide the data points of different groups by a clear 

gap that is as wide as possible (maximum margin) using an optimal hyperplane for linearly 

separable patterns. For patterns that are not linearly separable, kernel mapping is used to change 

the data representation in the input space to a linearly separable form in a higher-dimensional 

space (feature space) and to fix the optimal hyperplane. Support vector machines can also be 

used in regression problems. Overall, support vector regression and support vector classification 

use the same principle but in regression, a margin of tolerance (epsilon) is set for approximation. 

Figure 1 shows the flow chart for basic SVM based regression. 

The objective of SVM based regression is to estimate a functional relationship between a set of 

sampled values 𝒙 = {𝒙𝟏, 𝒙𝟐, … … . 𝒙𝒏} and desired values 𝒚 = {𝒚𝟏, 𝒚𝟐, … … . 𝒚𝒏}. The regression 

function is formulated as follows [12](Vapnik, 1995): 
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𝑓(𝒙) = (𝒘. 𝛷(𝒙)) + 𝒃 (1) 

where w and b are the weight vector and bias terms which are the coefficients in this regression 

function and 𝛷(𝒙) is a non-linear mapping function. 

SVM based regression model uses a loss function known as ε-insensitivity loss function (Lε) 

defined as: 

𝐿𝜀(𝑓(𝒙), 𝒚) = {
|𝑓(𝒙) − 𝒚| − 𝜀      for    |𝑓(𝒙) − 𝒚| ≥ 𝜀
0                                              otherwise

 (2) 

where y is the desired output and 𝜀 defines the region of insensitivity [12]. 

In SVM regression, the problem is to find f(x) that minimizes regularized risk function, 

𝑅𝑟𝑒𝑔 = 𝐶
1

𝑛
∑ 𝐿𝜀(𝑓(𝒙), 𝒚) +

1

2
‖𝒘‖2𝑛

𝑖=1  (3) 

where 
1

2
‖𝑤‖2 is the regularization term and C is the regularization constant[12]. 

The non-linear regression function is a function that minimizes the regularized risk function 

subject to the loss function as [12] 

𝑓(𝒙) = ∑ (∝𝑖−∝𝑖
∗)𝐾(𝒙, 𝒙𝒊) + 𝒃𝑛

𝑖=1  (4) 

where ∝𝑖, ∝𝑖
∗ are Lagrangian multipliers and 𝐾(𝒙, 𝒙𝒊) is the kernel function. The dimensionality 

of the input space can be changed using kernel functions to achieve a good regression model. 

Linear, polynomial, sigmoid and radial basis are some of the commonly used kernel functions 

[11]. Kernel functions act as a bridge from linearity to non-linearity for algorithms which can be 

expressed in terms of dot product. Linear kernel function is the simplest kernel function. If all the 

training data is normalized, polynomial kernel function would be suitable. Parameter σ plays a 

major role in the case of the Gaussian radial basis kernel function. The performance of this 

kernel function is greatly affected by the selection of the parameter σ. It has to be carefully 

selected depending on the problem [13]. The constant 𝐶, the radius of the insensitive tube ε, and 

the kernel parameters are those which have an impact over the effectiveness of the nonlinear 

SVR. Because these values are mutually connected, changing the value of one has an impact on 

the other associated parameters. The smoothness/flatness of the approximation function is 

determined by the parameter C. Due to underfitting of the training data, a lower value of C 

causes the learning machine to make bad approximations. A high C value overfits the training 

data and focuses on minimising solely the empirical risk, allowing for more complicated 

learning. The parameter determines the breadth of the -insensitive zone used for fitting the 

training data and is connected to smoothing the complexity of the approximation function. The 

parameter influences the number of support vectors, and hence the complexity and generalisation 

capabilities of the approximation function are both controlled by its value. It also controls the 

approximation function's precision. Smaller values of ε result in a larger number of support 

vectors, resulting in a more complicated learning machine. Larger ε values result in more flat 

regression function estimations. 
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Table 1 

Some commonly used kernel functions. 

Kernel Function Formula 

Linear 𝐾(𝒙, 𝒛) = 𝒙. 𝒛 

Polynomial 
𝐾(𝒙, 𝒛) = (1 + (𝒙. 𝒛))𝑑 

where d is degree of polynomial 

Gaussian 𝐾(𝒙, 𝒛) = exp [−
‖𝒙 − 𝒛‖2

2𝜎2 ] 

where σ is the width of kernel 

 

 
Fig. 1. Flow chart for SVM based regression. 

3.2. K Fold cross validation 

Although SVMs are good in generalization, overfitting may still occur because of data bias in 

training. K fold cross validation can be used to overcome this. In K fold cross validation, the 

original training data set will be divided into k equally sized subsets. From the k subsets, a single 

subset will be retained as a validation set, and the remaining k-1 subsets will be used as the 

training set. The cross validation process will then be repeated k times (the folds), with each of 

the k subsets. The final performance of a k fold model training will be the average of validation 

performances in k subsets. Usually the value of k is determined based on the availability of 

samples, generally from 2 to 10. The advantage of k fold cross validation is that in each round, 

the training sets and validation set are independent. 

3.3. Hybrid wavelet-SVM technique 

A wavelet is a zero-mean, quickly fading wave-like oscillation. The signal/time series is 

convolved against specific instances of a wavelet at various time scales and places in a wavelet 

transform. Hybrid wavelet-SVM approach is a combination of wavelet and support vector 

machine techniques. Due to its multi-resolution capability, wavelet analysis helps to obtain the 

time–frequency representations of the signal with different resolution[10]. The wavelet 
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transforms help to decompose the time series signal into various resolutions by controlling 

scaling and shifting [14]. Unlike other analyses, wavelet analysis has the potential to reveal 

trends, self-similarity, discontinuities in higher derivatives, breakdown points etc. [10]. Thus, the 

time-frequency localization of a signal can be efficiently achieved through wavelet transforms. 

The main difference between the wavelet and Fourier transforms is that the latter can deal with 

stationary data only but the former can very well deal with non-stationary data [7]. 

The signal is separated into shifted and scaled replicas of the original (mother) wavelet using 

wavelet analysis. The wavelet, which is chosen as the mother wavelet, should satisfy the 

following: (i) the mean of the function of the wavelet signal should be zero and (ii) wavelet 

signal has to be localized in both time and frequency domains. Wavelets can be classified into 

discrete and continuous types. Those which are strictly finite in the time domain are known as 

discrete wavelets, and others are called continuous wavelets. Selection of the type of wavelet 

transform (discrete or continuous), mother wavelet, and decomposition level are some of the 

important aspects to be studied before performing wavelet analysis for hydrological forecasting 

as these factors affect the results significantly. 

The use of Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) 

mainly depends on the purpose for which it is to be used. To understand non-stationary and 

complex localized variability of a time series, the CWT method can be used. For denoising and 

identification of true components, it would be better to use the DWT method [15]. Commonly 

used mother wavelets include Haar, Daubechies, Symn, Mexican Hat etc. 

4. Study area 

Kerala is located between 8.3º and 12.8º North latitudes and 74.9º and 77.9º East longitudes in 

the South Western part of peninsular India. Physiographically, the state can be divided into three 

zones, viz., highlands, midlands and the lowlands, all running almost parallel to each other along 

its length. The Western Ghats are located in the highlands which is spread over almost half the 

area of the state. It has large peaks like the Anaimudi with an elevation of 2694 m above the 

MSL [16]. The highlands are covered by forests as well as cardamom, coffee and tea plantations. 

The midlands are around 40% of the state and have an undulating topography of valleys and hills 

[16]. Most of the area under midlands are urban settlements and agricultural land. The lowlands 

comprise of the western coastal plains and houses beaches, backwaters, river deltas and lagoons. 

Kerala is bounded by the Western Ghats to its east and Arabian Sea to its west. There are 44 

rainfed rivers in the State, 41 of which flow towards the west and empty into the Arabian Sea. 

Also, the State is home to 34 lakes [16], and 61 dams [17]. The rivers are of relatively short 

length with steep bed slopes and hence the lead time available is very short. In short, Kerala is 

highly vulnerable to floods and hence there is an urgent need for developing and implementing a 

robust and efficient flood forecasting model for at least the major rivers in the State, if not for all 

the rivers. 
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Fig. 2. Study area showing the gauging sites (Source: Alexander et al., 2018 [10]). 

The river chosen for this study is the Achankovil River up to the river gauging station at Konni 

(Figure 2). Two rain gauge sites namely, Konni estate and Achankovil station, located in the 

study area are shown in Figure 2. The average rainfall in the river basin is about 2700 mm [10]. 

The river flows westwards through Pathanamthitta, Alappuzha, and Kollam, districts of Kerala 

before meeting the Arabian Sea at Thottapally. The geographical coordinates of the Achankovil 

river basin extends from 8
0
 75’ 0” to 9

0
 5’ 0” N latitudes and 76

0 
25’ 0” to 76

0 
75’ 0” E 

longitudes. The Pamba river basin is located on its northern side whereas the Pallikkal and 

Kallada river basins are located on its southern side. The Western Ghats define the basin's eastern 

border, while the Arabian Sea forms its western border. The Achankovil river basin covers a total 

area of 1484 km
2
. The length of the river is 128 km. Like all the river basins in Kerala, this river 

basin can also be divided into three physiographic zones based on elevation, namely the low 

lands, mid lands and high lands. The study area is the upstream part of the river basin and is 

mostly prone to flash floods during the monsoons. The catchment area contributing to the Konni 

River gauging station is 449.4 km
2
. 

5. Methods 

The overall methodology adopted in this study is presented in Figure 3. 
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Fig. 3. Methodology adopted in the study. 

5.1. Data collection 

This study used five-year time series data of hourly water level at the Konni gauging site and 

hourly rainfall at the Konni estate and Achankovil stations for the years 2011–2015. 

5.2. Identification of flood events 

Flood events during the period 2011-2015 were identified from the river stage data at the Konni 

river gauging station by setting a threshold value of 2m for the stage. A flood event was 

identified from the pattern of increase in water level reaching a peak followed by a decrease in 

water level. The corresponding hourly rainfall values were also identified. 

5.3. Selection of significant inputs (water level and precipitation) 

Partial autocorrelation analysis was performed for the hourly water level time series with 

confidence band of 95% for different lags (in hours) to recognize the effect of previous flow 
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values on the subsequent flow values. This is one of the best methods for identifying significant 

lags. 

Autocorrelation Function (ACF) is used to express the correlation between the observations at a 

time and the observations at previous times. Autocorrelation coefficient is a measure of the 

correlation between the observations at different times. The relationship between an observation 

in a time series and the observations at previous time steps with the relationships of intervening 

observations eliminated is known as partial autocorrelation. After removing the effect of any 

correlations attributable to terms at lower lags, the partial autocorrelation at lag k is the 

correlation that remains. 

Data driven approaches, have the ability to select the critical model inputs [18]. But in various 

flood prediction studies based on data driven methods, the lag for input precipitation was 

selected based on the time of concentration [10,19]. Alexander et al. (2018) reported that the time 

of concentration of this catchment is 4 hours. 

5.4. SVM model development 

The flood events identified were grouped as training and testing events. The model was 

developed using fifteen training events and four testing events. The data was arranged by 

appending flood events one after the other and was used as input for SVM training. A total of 

20608 data points were input to the model. Training and testing were performed using the 

Regression Learner App in MATLAB R2019b. Linear, quadratic, coarse Gaussian, medium 

Gaussian and fine Gaussian kernel functions were used for training. Also, 5-fold cross validation 

was utilized to reduce overfitting problems 

5.5. Selection of mother wavelet 

A suitable mother wavelet has to be used as the type of wavelet used affects the results of time 

series analysis. A large number of wavelets are used in time series analysis. The choice of a 

suitable mother wavelet for a problem is a great challenge. The choice is governed largely by the 

purpose and by the wavelet function's usual features like its number of vanishing moments and 

the region of support. The vanishing moment of a wavelet reflects its ability to ability to 

represent the polynomial behaviour of the data, while the support region indicates its capacity to 

localize [15]. 

Generally, mother wavelets are of two types, namely, orthogonal and non-orthogonal. 

Orthogonality refers to the property by which the information captured by one wavelet is 

completely independent of the information captured by another. Orthogonal wavelets are found 

to be ideal for hydrological variables because these are efficient in wavelet decomposition, 

denoising, multi resolution analyses etc [10]. Meyer, Daubechies (db), and Haar wavelets are 

some of the major orthogonal wavelets. In the case of hydrologic time series, wavelets under the 

Daubechies family yield better results [20]. These are a family of wavelets with orthogonal 

properties and are compactly supported with extreme phase. For a given support width, these 

wavelets have the maximum number of vanishing moments. A number of wavelets come under 
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the Daubechies family - designated as db1, db2 etc. The index numbers 1, 2 etc. represent the 

number of vanishing moments. 

5.6. Selection of decomposition level 

The accuracy of features identified in a time series depends on the decomposition level selected 

and hence the choice of an appropriate level of decomposition or temporal scale is very 

important. In earlier studies, trial and error procedure was used for this purpose. A formula to 

determine the minimum level of decomposition 𝐿𝑚𝑖𝑛 [21,22] is 

 𝐿𝑚𝑖𝑛 = 𝑖𝑛𝑡[𝑙𝑜𝑔𝑁] (5) 

where N is number of data points. 

The maximum level of decomposition 𝐿𝑚𝑎𝑥 for a DWT [23] is: 

𝐿𝑚𝑎𝑥 = 𝑖𝑛𝑡[𝑙𝑜𝑔2𝑁] (6) 

5.7. WSVM model development 

It is required to forecast the water level (Qt+i) at time t+i, where i is the lead time of the river 

flow time series. Values in the time series up to time t form the input to the SVM model. The 

output will be the water level at time t+i. 

Qt+i = f ( Qt, Qt−1 ……Qt−j , P(A)t , P(A)t−1,……..P(A)t−k , P(K)t ,P(K)t−1 ……P(K)t−k ) (7) 

where f is the unknown function, the value i represents hourly lead time, while the indices j & k 

denote time steps for y (water level at Konni) and
 
P(A) and P(K) are the precipitation values at 

Achankovil and Konni estate respectively. A flow chart of the hybrid wavelet SVM method 

adopted in this study is presented (Fig. 4). 

The magnitude of peak discharge and the time to peak are the two most important parameters of 

the flood hydrograph and hence these have to be predicted accurately for good flood forecasts. 

Some of the components of the input data may contain noise. Such components have to be 

identified and the signal has to be reconstructed without these components. The sharpest features 

of the original signal may be lost due to the removal of high frequency information completely 

and this would affect the peak value prediction during floods. In order to reduce such errors and 

enhance the accuracy of prediction of the peak values and for more efficient de-noising, an 

approach called thresholding can be adopted. In this approach, an optimal threshold value is 

found and the portion of the components which exceed this limit is discarded. The optimal 

threshold value has to be carefully determined as it can greatly affect denoising. A very small 

value of threshold can result in considerable amount of noise remaining in the input. A very large 

value of threshold also affects the analysis as some of the relevant features of the signal may be 

filtered out. Many methods are available for determining the optimal threshold value. Because of 

its simplicity and effectiveness, universal threshold method is the most widely used [24] and it is 

expressed as follows: 

𝜆 = 𝜎√2𝑙𝑛(𝑁)  (8) 
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where, 𝜎  is the average variance of the noise and 𝑁  is the signal length. 𝜎  is calculated using 

the median estimate method [24]. 

σ =  
𝑀𝑒𝑑𝑖𝑎𝑛(|𝑊𝑗,𝑘|) 

0.6745
 (9) 

where, 𝑊𝑗,𝑘 represent all the detail wavelet coefficients
1
. After computing the threshold, effective 

components are selected using soft thresholding function. 

 
Fig. 4. Flow chart of the hybrid wavelet SVM method. 

The soft thresholding function is defined as: 

𝑊𝑠𝑡  = {
𝑠𝑔𝑛(𝑊𝑗,𝑘)(|𝑊𝑗,𝑘| − λ);   |𝑊𝑗,𝑘| ≥ λ

0;                                         |𝑊𝑗,𝑘| ≤ λ
 (10) 

5.8. Performance evaluation 

The performance of the models can be evaluated by using a number of statistical techniques that 

can assess the predictive ability of the models. The performance measures used are the 

percentage deviation in peak stage (Dev), time difference to peak stage (Dep), Nash–Sutcliffe 

Coefficient (NSC), coefficient of determination (R
2
) and root mean square error (RMSE). These 

are defined as follows [10]: 

𝑅𝑀𝑆𝐸 = √∑ (𝑂𝑖−𝑃𝑖)2𝑁
𝑖=1

𝑁
 (11) 

                                                 
1
 In Discrete Wavelet Transform, the signal will be decomposed into high scale, low frequency coefficients called approximation and low scale, 

high frequency coefficients called detail. 
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where, N is the total number of observations, Oi is the observed value at the i
th

 time, Pi is the 

computed value at the i
th

 time. 

𝑅2 = [
∑ (𝑂𝑖−𝑂𝑎𝑣𝑔)(𝑃𝐼−𝑃𝑎𝑣𝑔)𝑁

𝑖=1

√∑ (𝑂𝑖−𝑂𝑎𝑣𝑔)
2𝑁

𝑖=1
√∑ (𝑃𝑖−𝑃𝑎𝑣𝑔)

2𝑁
𝑖=1

]2 (12) 

where, Oavg is the mean of observed values, and Pavg is the mean of computed values. 

𝑁𝑆𝐶 = 1 −
∑ (𝑃𝑖−𝑂𝑖)2𝑁

𝑖=1

(𝑂𝑖−𝑂𝑎𝑣𝑔)
2  (13) 

𝐷𝑒𝑣 =
(𝑃𝑝−𝑂𝑝)

𝑂𝑝
× 100 (14) 

where, Op is the peak of observed values and Pp 

is the peak of computed values. 

𝐷𝑒𝑝 = (𝑇𝑃𝑝
− 𝑇𝑂𝑝

) (15) 

where, 𝑇𝑃𝑝
is the time to peak for computed values and 𝑇𝑂𝑝

is the time to peak for observed 

values. 

6. Results and discussions 

6.1. Selection of inputs 

Nineteen flood events (E1 – E19) and the corresponding hourly rainfall values during the period 

2011-2015 were identified. Details pertaining to the flood events identified are presented in Table 

2. Figures 5 and 6 show partial autocorrelation function (PACF) graphs for two events, E3 and 

E6, respectively. From the partial autocorrelation statistics of the flood events identified, 

presented in Table 3, it was observed that the 3 h antecedent water level values (the average of all 

the PACF values) were the most significant for making forecasts. Also, the time of concentration 

of this catchment reported by Alexander et al. [10] is 4 hours. Therefore, one-, two- and three-

hour antecedent water levels and one-, two-, three- and four- hour antecedent rainfall along with 

the present water level and rainfall were fixed as input to the flood forecasting model. 

6.2. SVM model development 

Three SVM models were developed to forecast the water level at one-, three-, and six-hour lead 

times. The RMSE and R-squared values during training with the SVM models are presented in 

Table 4. It can be seen that the least RMSE value was obtained for the linear SVM model 

whereas the R-squared values were the highest with this model for all the lead times. Hence this 

model was selected for prediction. 
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Table 2 

Details of flood events identified. 

Event 
Beginning End Rainfall (mm) Water level (m) 

Date Time (h) Date Time (h) Konni Achankovil Mean Max 

E1 

E2 

E3 

E4 

E5 

E6 

E7 

E8 

E9 

E10 

E11 

E12 

E13 

E14 

E15 

E16 

E17 

E18 

E19 

27/6/2015 

29/6/2015 

29/10/2015 

4/11/2015 

12/11/2015 

3/6/2011 

14/6/2011 

17/6/2011 

17/8/2012 

22/6/2013 

9/7/2013 

22/7/2013 

4/8/2013 

16/9/2013 

19/10/2013 

14/7/2014 

1/8/2014 

20/8/2014 

30/8/2014 

10 

9 

21 

8 

1 

1 

5 

12 

2 

16 

7 

15 

11 

18 

9 

19 

4 

15 

4 

28/6/2015 

30/6/2015 

4/11/2015 

11/11/2015 

17/11/2015 

7/6/2011 

15/6/2011 

18/6/2011 

18/8/2012 

27/6/2013 

12/7/2013 

27/7/2013 

7/8/2013 

22/9/2013 

21/10/2013 

17/7/2014 

8/8/2014 

25/8/2014 

6/9/2014 

23 

1 

7 

24 

15 

5 

9 

18 

11 

21 

4 

16 

18 

24 

5 

7 

7 

24 

24 

70.70 

42.00 

20.90 

120.90 

36.40 

114.10 

34.80 

21.40 

19.40 

193.30 

57.30 

115.50 

76.80 

121.70 

41.80 

37.10 

131.10 

277.00 

183.20 

45.00 

21.70 

129.90 

298.10 

75.00 

96.40 

42.20 

8.80 

39.80 

175.80 

25.80 

71.80 

49.40 

123.80 

57.80 

37.50 

93.20 

137.20 

183.40 

2.31 

2.00 

2.56 

2.64 

2.21 

2.68 

2.10 

2.22 

2.62 

2.74 

2.23 

2.42 

3.17 

2.83 

2.68 

2.40 

2.43 

3.60 

2.65 

2.71 

2.13 

4.34 

3.32 

2.75 

3.30 

2.40 

2.57 

3.40 

3.37 

2.49 

2.80 

4.36 

3.45 

3.71 

2.93 

2.87 

6.72 

3.70 

 
Fig. 5. PACF plot for E3. 

 
Fig. 6. PACF plot for E6. 
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Table 3 

Significant lags from PACF plots. 

Event Significant lag obtained 
E1 2 
E2 2 
E3 3 
E4 4 
E5 3 
E6 3 
E7 2 
E8 3 
E9 1 

E10 4 
E11 2 
E12 2 
E13 1 
E14 4 
E15 2 
E16 1 
E17 1 
E18 2 
E19 4 

 

Table 4 

Performance of various SVM models during the calibration period. 

Model 
𝑅𝑀𝑆𝐸 R2 

Lead Time 1 Lead Time 2 Lead Time 3 Lead Time 1 Lead Time 2 Lead Time 3 

Linear SVM 

Quadratic SVM 

Fine Gaussian SVM 

Medium Gaussian SVM 

Coarse Gaussian SVM 

0.13 

0.19 

0.45 

0.33 

0.16 

0.24 

0.46 

0.44 

0.35 

0.25 

0.35 

0.54 

0.45 

0.39 

0.36 

0.95 

0.89 

0.43 

0.69 

0.92 

0.78 

0.37 

0.42 

0.64 

0.81 

0.63 

0.10 

0.37 

0.54 

0.63 

 

6.3. WSVM model development 

Daubechies wavelets were used as the mother wavelet in this study based on the findings of 

Maheswaran and Khosa [20]. Being orthogonal in nature, these wavelets are more suitable for 

de-noising purposes. In this study, db4 (Daubechies 4) wavelet of the Daubechies family was 

chosen as the mother wavelet, considering the differentiability of the input signals. In this study, 

wavelet analysis was performed using the Discrete Wavelet Transform (DWT). As the DWT 

method uses orthogonal wavelets, it helps to overcome the data redundancy problem in the 

Continuous Wavelet Transform (CWT) method. From equations (5) and (6), the minimum level 

of decomposition was 3 and the maximum level was 10. For all decomposition levels between 3 

and 10, the input data was decomposed into approximations and detailed components using the 

db4 mother wavelet.and the effective components were identified using the universal threshold 

method. The signal was then reconstructed back using the soft threshold method. For each 

decomposition level, the correlation of the reconstructed signal was compared with that of the 

observed water level time series. Decomposition level 5 (db4_5) yielded better correlation and 

hence this was selected for performing further analysis. 
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6.4. Performance analysis and comparison of models developed 

With the original input values, three simple SVM models with 1, 3, and 6 h lead times were built, 

and three WSVM models with 1, 3, and 6 h lead times were developed with the de-noised inputs, 

and these were tested for four unknown flood occurrences (E5, E12, E13, E15). For a lead time 

of 3 hours, Figure 7 shows a comparison of the hydrographs predicted by the SVM and WSVM 

models with the observed hydrograph. The observed stage hydrographs and the ones computed 

with the SVM and WSVM models for the testing events E5 and E12 are presented in Figures 8 

and 9 respectively. The performance measures of the SVM and WSVM models were compared 

with those for the WANN model already developed [10] for the study area (Table 5). The 

performance measures reveal that the SVM, WSVM and WANN models perform very well in 

terms of its forecasts; but the overall performance of the WSVM model is slightly better than that 

of both SVM and WANN models. From Figures 8 and 9, it can be seen that all of the models' 

predicted hydrographs follow the same pattern as the observed hydrograph. However, the 

performance of all the models declines with increase in lead time in terms of values of R
2
, 

RMSE, NSC and departure to peak. Satisfactory results are obtained up to a lead time of 3 h. But 

the prediction error increases for 6-hour lead time. This may be because the time of 

concentration of the catchment is only 4h. 

  
E5      E12 

Fig. 7. Comparison of the observed and computed stage hydrographs for 3 h lead time for the testing 

events E5 and E12. 

  
Fig. 8. Comparison of the observed and computed stage hydrographs for 1, 3 and 6 h lead times using a) 

SVM and b) WSVM models for the testing event E5. 
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Fig. 9. Comparison of the observed and computed stage hydrographs for 1, 3 and 6 h lead times using a) 

SVM and b) WSVM models for the testing event E12. 

7. Stability test 

The stability of any machine learning model has to be validated to indicate how well the model is 

able to generalize the unseen data set. The stability of the WSVM model was analysed by 

changing the training data set and testing data set [25]. Events E3, E8, E14, and E16 were 

selected as testing events and all other events as training events. WSVM model was trained and 

tested using these events. The performance measures of this modified model were analysed to 

determine how a change in the input will affect the output of the model. The observed and 

computed hydrographs for the testing events E3, E8, E14, and E16 for 1-, 3-, and 6-h lead times 

are shown in Figure 10. 

Table 5 

Performance measures of SVM, WSVM and WANN models for different lead times for four testing 

events. 

Performance 

measures 

Lead time 

1h 3h 6h 

SVM WSVM WANN SVM WSVM WANN SVM WSVM WANN 

E5 

RMSE (m) 

R2 

NSC 

Dev (%) 

Dep (h) 

0.02 

0.99 

0.99 

0.72 

1 

0.02 

0.99 

0.99 

-0.81 

1 

0.03 

0.98 

0.97 

1.82 

0 

0.05 

0.91 

0.91 

1.48 

2 

0.05 

0.92 

0.92 

1.57 

2 

0.04 

0.97 

0.96 

1.81 

0 

0.09 

0.75 

0.75 

-0.07 

5 

0.09 

0.76 

0.76 

0.6 

5 

0.12 

0.60 

0.54 

-0.38 

5 

E12 

RMSE (m) 

R2 

NSC 

Dev (%) 

Dep (h) 

0.02 

1.00 

1.00 

-0.01 

0 

0.02 

1.00 

1.00 

-0.22 

0 

0.04 

0.97 

0.97 

0 

0 

0.04 

0.98 

0.98 

-0.99 

9 

0.04 

0.98 

0.98 

-0.81 

2 

0.06 

0.96 

0.94 

0.73 

0 

0.08 

0.91 

0.91 

0.33 

9 

0.07 

0.93 

0.92 

1.55 

8 

0.09 

0.86 

0.86 

1.87 

0 

E13 

RMSE (m) 

R2 

NSC 

Dev (%) 

Dep (h) 

0.25 

0.93 

0.93 

-0.35 

0 

0.24 

0.93 

0.93 

0.17 

0 

0.12 

0.98 

0.97 

-4.05 

1 

0.45 

0.76 

0.73 

4.6 

-2 

0.45 

0.76 

0.73 

5.35 

-2 

0.18 

0.90 

0.94 

-6.97 

1 

0.59 

0.55 

0.46 

7.40 

1 

0.59 

0.55 

0.47 

8.27 

0 

0.50 

0.60 

0.46 

-13.80 

0 

E15 

RMSE (m) 

R2 

NSC 

Dev (%) 

Dep (h) 

0.08 

0.98 

0.98 

1.33 

0 

0.07 

0.99 

0.99 

0.95 

0 

0.15 

0.98 

0.97 

-1.76 

0 

0.23 

0.85 

0.85 

2.78 

1 

0.22 

0.87 

0.86 

2.69 

1 

0.15 

0.93 

0.93 

-4.85 

0 

0.37 

0.60 

0.58 

-0.04 

5 

0.38 

0.59 

0.56 

0.66 

4 

0.37 

0.59 

0.59 

6.46 

2 
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Table 6 

Performance measures of WSVM models developed for stability test. 

Performance Measures 
Lead time 

1h 3h 6h 

E3 

RMSE 

R
2 

NSC 

Dev (%) 

Dep (h) 

0.11 

0.96 

0.96 

0.77 

1 

0.25 

0.79 

0.77 

3.08 

1 

0.45 

0.36 

0.22 

4.58 

1 

E8 

RMSE 

R
2 

NSC 

Dev (%) 

Dep (h) 

0.04 

0.98 

0.98 

-0.14 

1 

0.12 

0.82 

0.79 

3.25 

1 

0.22 

0.32 

0.11 

4.64 

1 

E14 

RMSE 

R
2 

NSC 

Dev (%) 

Dep (h) 

0.02 

1.00 

1.00 

-0.37 

1 

0.06 

0.98 

0.97 

-1.01 

2 

0.16 

0.86 

0.86 

0 

-5 

E16 

RMSE 

R
2 

NSC 

Dev (%) 

Dep (h) 

0.06 

0.97 

0.97 

-0.25 

1 

0.09 

0.93 

0.92 

-0.92 

2 

0.16 

0.74 

0.70 

-3.17 

5 

 

The corresponding performance measures are presented in Table 6. The performance measures 

presented in this Table indicate that the results obtained from the WSVM model are satisfactory. 

The computed stage hydrograph follows the same trend as that of the observed stage hydrograph. 

RMSE values are in the range of 0.02 to 0.06 and R
2 

values in the range 0.96 to 1.00 for 1-h lead 

time. Peak values are also predicted satisfactorily. From this, it can be concluded that the 

performance of the proposed WSVM model continues to be good even with a different training 

sample. This is because of the solid mathematical processes in the hybrid model, viz., data pre-

processing, cross validation and SVM generalization. 
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E3      E8 

  

E14      E16 
Fig. 10. Comparison of the observed and WSVM computed stage hydrographs for the testing events E3, 

E8, E14 and E16. 

8. Conclusions 

An improved hybrid WSVM model was developed to forecast flood events in the Achankovil 

River in Kerala, India. Initially, SVM was used for modelling. The SVM model was trained 

using linear, quadratic, fine Gaussian, medium Gaussian, and coarse Gaussian kernel functions. 

Results of model calibration indicated that the linear SVM was the most efficient and so this 

model was employed in further investigations. The simple SVM model was thereafter improved 

with wavelet pre-processing using db4 wavelet with decomposition level 5. The performance of 

the models was evaluated based on performance criteria, namely the RMSE, R
2
, NSC, Dev (%) 

and Dep (h). From the studies performed, it is concluded that the performance of the SVM model 

and the hybrid wavelet-SVM model are reasonably good. The performance of the hybrid 

wavelet-SVM is slightly better when compared to that of the SVM model. The RMSE value of 

the WSVM model lies in the range 0.02 to 0.24, R
2
 and NSC in the range 0.93 to 1.00, Dev (%) 

in the range -0.81 to 0.95 and Dep (h) in the range 0 to 1 for one-hour lead time. However, as the 

lead time increased, the model performance deteriorated. The use of multi-scale time series and 

denoising of precipitation and water level data can be the reasons for the relatively better 

performance of the WSVM models. Comparison of the WSVM model to the WANN model 
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developed by Alexander et al. [10] showed that the performance of the WSVM model was better. 

This could be due to the better generalization ability of SVM when compared to ANN, thereby 

reducing over fitting problems. Stability test of the WSVM model was performed to determine 

how well the model responds to variations in the input data and satisfactory results were 

obtained. 

Acknowledgments 

Authors would like to thank all the faculty of Water Resources Department of National Institute 

of Technology for their valuable suggestions and in-depth discussions throughout and for the 

successful completion of this work. 

Funding 

This research received no external funding. 

Conflicts of interest 

The authors declare no conflict of interest. 

Authors contribution statement 

BS, NRC: Conceptualization; NRC, SGT: Data collection; NRC: Formal analysis; BS, NRC: 

Investigation; BS, NRC: Methodology; BS: Project administration; SGT: Resources; BS: 

Software; BS: Supervision; BS, NRC: Validation; BS, NRC: Visualization; BS: Roles/Writing – 

original draft; BS, NRC, SGT: Writing – review & editing. 

References 

[1] Jain SK, Mani P, Jain SK, Prakash P, Singh VP, Tullos D, et al. A Brief review of flood forecasting 
techniques and their applications. Int J River Basin Manag 2018;16:329–44. 

https://doi.org/10.1080/15715124.2017.1411920. 

[2] Adnan RM, Petroselli A, Heddam S, Santos CAG, Kisi O. Comparison of different methodologies 

for rainfall–runoff modeling: machine learning vs conceptual approach. Nat Hazards 
2021;105:2987–3011. https://doi.org/10.1007/s11069-020-04438-2. 

[3] Amini A, Abdollahi A, Hariri-Ardebili MA, Lall U. Copula-based reliability and sensitivity 

analysis of aging dams: Adaptive Kriging and polynomial chaos Kriging methods. Appl Soft 
Comput 2021;109:107524. https://doi.org/10.1016/j.asoc.2021.107524. 

[4] Behzad M, Asghari K, Eazi M, Palhang M. Generalization performance of support vector machines 
and neural networks in runoff modeling. Expert Syst Appl 2009;36:7624–9. 

https://doi.org/10.1016/j.eswa.2008.09.053. 

[5] Komasi M, Sharghi S. Hybrid wavelet-support vector machine approach for modelling rainfall-
runoff process. Water Sci Technol 2016;73:1937–53. https://doi.org/10.2166/wst.2016.048. 

[6] Zaker Esteghamati M, Flint MM. Developing data-driven surrogate models for holistic 
performance-based assessment of mid-rise RC frame buildings at early design. Eng Struct 

2021;245:112971. https://doi.org/10.1016/j.engstruct.2021.112971. 



20 B. Shada et al./ Journal of Soft Computing in Civil Engineering 6-2 (2022) 01-20 

[7] Rhif M, Abbes A Ben, Farah IR, Martínez B, Sang Y. Wavelet transform application for/in non-

stationary time-series analysis: A review. Appl Sci 2019;9:1–22. 
https://doi.org/10.3390/app9071345. 

[8] Wei CC. Wavelet support vector machines for forecasting precipitation in tropical cyclones: 

Comparisons with GSVM, regression, and MM5. Weather Forecast 2012;27:438–50. 
https://doi.org/10.1175/WAF-D-11-00004.1. 

[9] Adamowski JF. Development of a short-term river flood forecasting method for snowmelt driven 
floods based on wavelet and cross-wavelet analysis. J Hydrol 2008;353:247–66. 

https://doi.org/10.1016/j.jhydrol.2008.02.013. 

[10] Alexander AA, Thampi SG, Chithra NR. Development of hybrid wavelet-ANN model for hourly 
flood stage forecasting. ISH J Hydraul Eng 2018;24:266–74. 

https://doi.org/10.1080/09715010.2017.1422192. 

[11] Han D, Chan L, Zhu N. Flood forecasting using support vector machines. J Hydroinformatics 

2007;9:267–76. https://doi.org/10.2166/hydro.2007.027. 

[12] Vapnik VN. The nature of statistical learning theory. vol. 37. 1st ed. 1995. 

[13] Liu Z, Zuo MJ, Zhao X, Xu H. An analytical approach to fast parameter selection of gaussian RBF 
kernel for support vector machine. J Inf Sci Eng 2015;31:691–710. 

[14] Seo Y, Kim S, Singh VP. Multistep-ahead flood forecasting using wavelet and data-driven 
methods. KSCE J Civ Eng 2015;19:401–17. https://doi.org/10.1007/s12205-015-1483-9. 

[15] Sang Y-F, Singh VP, Sun F, Chen Y, Liu Y, Yang M. Wavelet-Based Hydrological Time Series 

Forecasting. J Hydrol Eng 2016;21:06016001. https://doi.org/10.1061/(asce)he.1943-
5584.0001347. 

[16] Oommen T, Coffman R, Sajinkumar KS, Vishnu CL. GEOTECHNICAL IMPACTS OF AUGUST 
2018 FLOODS OF KERALA, INDIA Event: August 2018 Geotechnical Extreme Events 

Reconnaissance Turning Disaster into Knowledge Sponsored by the National Science Foundation 
GEER Association Report NO-058 2018:10–7. https://doi.org/10.18118/G6ZH3K. 

[17] Central Water Commission Government of India 2019. National Register of Large Dams -2019 

2019:300. 

[18] Maier HR, Dandy GC. Neural networks for the prediction and forecasting of water resources 

variables: A review of modelling issues and applications. Environ Model Softw 2000;15:101–24. 
https://doi.org/10.1016/S1364-8152(99)00007-9. 

[19] Sarkar A, Kumar R. Artificial Neural Networks for Event Based Rainfall-Runoff Modeling. J 

Water Resour Prot 2012;04:891–7. https://doi.org/10.4236/jwarp.2012.410105. 

[20] Maheswaran R, Khosa R. Comparative study of different wavelets for hydrologic forecasting. 

Comput Geosci 2012;46:284–95. https://doi.org/10.1016/j.cageo.2011.12.015. 

[21] Nourani V, Komasi M, Mano A. A multivariate ANN-wavelet approach for rainfall-runoff 
modeling. Water Resour Manag 2009;23:2877–94. https://doi.org/10.1007/s11269-009-9414-5. 

[22] Wang W, Ding J. Wavelet Network Model and Its Application to the Prediction of Hydrology. Nat 
Sci 2003;1:67–71. 

[23] Lei L, Wang C, Liu X. Discrete Wavelet Transform Decomposition Level Determination 

Exploiting Sparseness Measurement. Int J Electr Comput Energ Electron Commun Eng 
2013;7:691–4. 

[24] He C, Xing J, Li J, Yang Q, Wang R. A New Wavelet Threshold Determination Method 
Considering Interscale Correlation in Signal Denoising. Math Probl Eng 2015;2015. 

https://doi.org/10.1155/2015/280251. 

[25] Zhou T, Wang F, Yang Z. Comparative analysis of ANN and SVM models combined with wavelet 
preprocess for groundwater depth prediction. Water (Switzerland) 2017;9. 

https://doi.org/10.3390/w9100781. 
 


	Hourly Flood Forecasting Using Hybrid Wavelet-SVM
	1. Introduction
	2. Research significance
	3. Theory
	3.1. Support vector regression
	3.2. K Fold cross validation
	3.3. Hybrid wavelet-SVM technique

	4. Study area
	5. Methods
	5.1. Data collection
	5.2. Identification of flood events
	5.3. Selection of significant inputs (water level and precipitation)
	5.4. SVM model development
	5.5. Selection of mother wavelet
	5.6. Selection of decomposition level
	5.7. WSVM model development
	5.8. Performance evaluation

	6. Results and discussions
	6.1. Selection of inputs
	6.2. SVM model development
	6.3. WSVM model development
	6.4. Performance analysis and comparison of models developed

	Acknowledgments
	Funding
	Conflicts of interest
	Authors contribution statement
	References

