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The main purpose of the current study was to formulate an 

empirical expression for predicting the axial compression 

capacity and axial strain of concrete-filled plastic tubular 

specimens (CFPT) using the artificial neural network (ANN). 

A total of seventy-two experimental test data of CFPT and 

unconfined concrete were used for training, testing, and 

validating the ANN models. The ANN axial strength and 

strain predictions were compared with the experimental data 

and predictions from several existing strength models for 

fiber-reinforced polymer (FRP)-confined concrete. Five 

statistical indices were used to determine the performance of 

all models considered in the present study. The statistical 

evaluation showed that the ANN model was more effective 

and precise than the other models in predicting the 

compressive strength, with 2.8% AA error, and strain at peak 

stress, with 6.58% AA error, of concrete-filled plastic tube 

tested under axial compression load. Similar lower values 

were obtained for the NRMSE index. 
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1. Introduction 

In the present-days more and more data are becoming available in the literature for the structural 

performance of concrete-filled plastic tubes (CFPT). The potential of engineering plastics has 

been harnessed for a few applications in civil engineering including columns and piers [1,2]. 

CFPT columns are becoming an interesting option for researchers due to its many advantages. It 
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has good structural performance, such as excellent ductility, sufficient load-bearing capacity, 

large energy absorption capacity, and strong resistance to environmental influences including 

good resistance to corrosion and chemicals [3]. Generally a material with large stiffness yields a 

smaller fracturing strain (smaller ductility). The material cost is usually higher when the 

strength/stiffness of the material is higher. A CFPT element is constructed by pouring concrete 

into a hollow plastic tubular. 

One of the main advantages of CFPT elements is that they combine the material properties of the 

two components employed in the design and construction of the column. The stiffer concrete 

core delays local buckling in plastic tubular. In return the tube offers concrete the space to dilate 

and deform to avoid the usual brittle failure. The plastic tubular assist in the resisting of tensile 

forces, shear forces, bending moments and eliminates the need for formwork for concrete casting 

and thus led to a reduction in the labor and material cost and improvement in the efficiency of 

construction [2] . The use of engineering plastics has been transferred from laboratory research to 

practical applications. Based on the latest developments in PVC technology, multi-layer uPVC is 

a new plastic characterized by superior properties such as more toughness and reduced weight. 

The better function and complexity in tube design is grown out of merely small particles [4]. 

Experimental tests are time-consuming and alternative techniques have been explored by 

researchers to determine the strength, using theoretical or empirical approaches [5]. Several 

expressions have been proposed by researchers to determine the mechanical properties of 

concrete using soft computing procedures. The objective of the present study was to evaluate the 

ability of the ANN methods to predict the load-carrying capacity of CFPT relative to the 

parameters used for experimental test data. 

Several studies have reported ANN to be a feasible tool for predicting the compressive strength 

of concrete. Six input parameters were selected by Noorzaei et al. [6] to set up ANN models for 

predicting the compressive strength of concrete. A total of 639 different data sets of concrete 

were used. Two hidden layers were considered and the ANN model with 6-12-6-1 architecture 

showed the best performance. Using ANN to predict concrete strength was shown to be practical 

and beneficial. Hakim et al. [7] assembled a total of 368 different data for high-strength concrete 

(HSC) mix-designs from technical literature and used it to construct, train, and test the adopted 

ANN models. Eight input parameters were considered including cement, water, coarse aggregate, 

fine aggregate, silica fume, superplasticizer, fly ash and granulated grated blast furnace slag 

employed. 

The ANN technique was reported to follow a detailed mathematical approach within a heuristic 

scheme [5]. Raghu et al.[8] developed ANN models to predict the 28-days compressive strength 

of normal and high strength self-compacting concrete (SCC) as well as high-performance 

concrete (HPC) with high volume fly ash. In addition to the compressive strengths, the slump 

flow of SCC was also estimated by the proposed neural network, which was validated by the 

experimental results. Uysal and Tanyildizi [9] have adopted ANN modeling for predicting the 

compressive strength of SCC containing mineral additives and polypropylene (PP) fibers after 

exposure to elevated temperatures. It was found that the empirical model produced a high 

prediction capability of the loss in compressive strength of SCC. Using ANN as a non-linear 

statistical data modeling tool, a strong correlation between the micro-structural properties of 
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cement mortar, obtained from digital image analysis, and the compressive strength was reported 

[10]. The development of techniques to confine concrete has been the subject of research during 

the last four decades [11]. In a new approach, Naderpour et al. [12] employed artificial neural 

networks to predict the compressive strength of FRP confined concrete based on a large number 

of experimental data. The idealized neural network was employed to generate empirical charts 

and equations for use in design. The 8-10-6-1 architecture was the best possible architecture. The 

results illustrate that the relative percentage error (RPE) was 7.02% for the training set and 

12.64% for the testing set. uPVC has been shown to be an ample and cost-effective material for 

encasing concrete [13]. 

The reliability of axially loaded CFPT columns was assessed [14] in terms of reliability index 

and a relationship between reliability index and strength reduction factor for columns with and 

without uPVC tube was proposed. The strength reduction factor mandated by the ACI code was 

modified for CFPT specimens to account for the uncertainties associated with the design 

variables. The application of a fuzzy inference system (FIS) to predict the strength of CFPT was 

investigated [15]. Two models with three inputs, one output, and twenty linguistic rules were 

constructed. The models proved to be very effective in predicting the ultimate strength of CFPT. 

From the above review, there is no study on the application of ANN technique to predict 

compressive strength and strain of CFPT which is the objective of the present study. 

2. Research significance 

There is no study on the application of ANN technique to predict the compressive strength and 

strain at ultimate strength of CFPT. The present study focuses on evaluating the ability of the 

ANN methods to give predictions for load-carrying capacity of CFPT relative to the parameters 

used for experimental test data. 

3. Experimental program 

3.1. Materials 

For making concrete, 20mm maximum aggregate size river coarse aggregate was mixed with 

hydraulic cement and well-graded sand in a drum-type laboratory concrete mixer. The 

aggregate/cement ratio was altered from 3 to 8.5 in increments of 0.5 and twelve concrete 

batches were used to cast 36 CFPT specimens and their equivalent concrete specimens without 

the plastic tube. The material details of all the specimens and the fresh concrete test results were 

summarized in Table 1. 

3.2. Plastic tube 

The low stiffness plastic tube acts as formwork for fresh concrete and as an encasement for 

hardened concrete. The low-cost tube was characterized by large elongation at failure, 35%, and 

therefore it contained the fracture and excessive dilation of concrete. The geometric details of the 

plastic tube and the yield strength of coupon tested in tension (as per ASTM D638) were 

summarized in Table 1. 
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Table 1 

Mix details and properties of fresh concrete and uPVC tube. 

Specimen Mix ratio w/c ratio a/c ratio Slump(mm) tP (mm) DP (mm) fy(MPa) 

CT-A1 1:2:1 0.435 3.0 12 3.8 102 40 

CT-A2 1:2:1 0.435 3.0 12 3.8 102 40 

CT-A3 1:2:1 0.435 3.0 12 3.8 102 40 

CT-B1 1:2:1.5 0.450 3.5 10 3.8 102 40 

CT-B2 1:2:1.5 0.450 3.5 10 3.8 102 40 

CT-B3 1:2:1.5 0.450 3.5 10 3.8 102 40 

CT-C1 1:2:2 0.485 4.0 9.5 3.8 102 40 

CT-C2 1:2:2 0.485 4.0 9.5 3.8 102 40 

CT-C3 1:2:2 0.485 4.0 9.5 3.8 102 40 

CT-D1 1:2:2.5 0.505 4.5 9.5 3.8 102 40 

CT-D2 1:2:2.5 0.505 4.5 9.5 3.8 102 40 

CT-D3 1:2:2.5 0.505 4.5 9.5 3.8 102 40 

CT-E1 1:2:3 0.51 5.0 8 3.8 102 40 

CT-E2 1:2:3 0.51 5.0 8 3.8 102 40 

CT-E3 1:2:3 0.51 5.0 8 3.8 102 40 

CT-F1 1:2:3.5 0.51 5.5 7 3.8 102 40 

CT-F2 1:2:3.5 0.51 5.5 7 3.8 102 40 

CT-F3 1:2:3.5 0.51 5.5 7 3.8 102 40 

CT-G1 1:2:4 0.52 6.0 5 3.8 102 40 

CT-G2 1:2:4 0.52 6.0 5 3.8 102 40 

CT-G3 1:2:4 0.52 6.0 5 3.8 102 40 

CT-H1 1:2:4.5 0.535 6.5 5 3.8 102 40 

CT-H2 1:2:4.5 0.535 6.5 5 3.8 102 40 

CT-H3 1:2:4.5 0.535 6.5 5 3.8 102 40 

CT-I1 1:2:5 0.56 7.0 4 3.8 102 40 

CT-I2 1:2:5 0.56 7.0 4 3.8 102 40 

CT-I3 1:2:5 0.56 7.0 4 3.8 102 40 

CT-J1 1:2:5.5 0.585 7.5 2.5 3.8 102 40 

CT-J2 1:2:5.5 0.585 7.5 2.5 3.8 102 40 

CT-J3 1:2:5.5 0.585 7.5 2.5 3.8 102 40 

CT-K1 1:2:6 0.6 8.0 0.0 3.8 102 40 

CT-K2 1:2:6 0.6 8.0 0.0 3.8 102 40 

CT-K3 1:2:6 0.6 8.0 0.0 3.8 102 40 

CT-L1 1:2:6.5 0.605 8.5 0.0 3.8 102 40 

CT-L2 1:2:6.5 0.605 8.5 0.0 3.8 102 40 

CT-L3 1:2:6.5 0.605 8.5 0.0 3.8 102 40 

 

3.3. Stress-strain behavior 

After 28days curing, the specimens were tested under concentric compression load. The axial 

deformation was recorded at each load increment using two LVDT. The plastic tube maintained a 

good pre-yield stiffness and it was comparable with concrete, but the stiffness in the post-yield 

stage (secant modulus) started to drop faster with the increased concrete dilation but without 

reaching the fracturing point, Fig. 1. The maximum and minimum strain values for confined 

concrete specimens tested in this research varied from 0.005 to 0.0112, and the corresponding 

compressive strength varied from 28.98MPa to 47.31MPa, Table 2. CFPT is an element that 

meets a special combination of performance and ductility requirements that cannot be achieved 

using brittle concrete [16]. Large tangential, radial and shear stresses are reported to occur at the 

interface between aggregate and the matrix as a result of the elastic mismatch between aggregate 
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and matrix [17]. The bond cracks in concrete join with the matrix cracks resulting in material 

discontinuity due to the formation of an interconnected network of bond and matrix cracks. 

 
Fig. 1. Deformation of CFPT under load. 

4. Soft computing techniques 

4.1 Artificial neural network 

The structure of ANN models included three layers of neurons; input, hidden, and output. The 

three layers were linked through connections called weight. Two sets of weights give high 

flexibility to adapt to the data freely: the input-hidden layer weights (wj,i) and the hidden-output 

layer weights (wkj). The neurons in the input layer receive information from the outside 

environment and transmit them to the neurons of the hidden layer without performing any 

calculation. The output of typical multilayer perceptron ANN with a single layer of hidden 

neurons is expressed by: 

 
m n

^

K o kj h j,i i j k

j 1  i 1 

y f w *f w x b b
 

   
      

    
   (1) 

Where yK
^= output variable, xi=input variable, n = number of neurons in the input layer (number 

of input variables), m =number of neurons in hidden layer, wj,i=the weights of input hidden 

layer, wkj= weights hidden output layers, bj= bias of the hid-den layer, bk=bias of the output 

layer, fh= activation function of the hidden layer, fo= activation function of the output layer 

[18][18]. 

The effectiveness of an ANN model is influenced by the architecture of the ANN; the training 

algorithm and the mathematical functions. The second function is the training phase where the 

optimum value of weights determined by minimizing an error function. Hyperbolic tangent was 

the activation function between the input and hidden layers while identity was the activation 

functions between the hidden and output layers. The online type of training was selected which 

updates the synaptic weights after every single training data record, while to avoid overtraining, 

maximum training epochs computed automatically, and to specify the optimization algorithm, 

the gradient descent method was selected. When the difference between the output and target 

values, E, is larger than an acceptable value then the values of the weights and bias are readjusted 

using “gradient descent” method in which the change in weights Δwkj is expressed in the form: 
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Δw α

w


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
 (2) 

where α =learning rate. High values of α result in high changes in weights wjk during each 

iteration. This can result in the predicted value not converging to the most optimum combination 

of values. Small values of α yield small changes in weights wkj, and small values of Δwkj for 

each iteration. Although more training time is required, the iterative process results in more 

accurate ANN predictions. 

4.2. Adopted ANN models 

The developed ANN models in this study were used to predict the axial compressive strength and 

strain for CFPT specimens tested under the concentric load. Since the confined stress and strain 

of concrete have been expressed as a function of lateral confinement pressure in several existing 

stress-strain models, the latter was computed for the CFPT specimens and the values were 

summarized in Table 2. Four ANN models were developed; two models to predict the axial 

compressive strength and strain of unconfined concrete, ANN-I and ANN-II, and the remaining 

two, ANN-III and ANN-IV, for predicting the axial compressive strength and the strain of CFPT. 

For ANN-I and ANN-II models, 36 test data for unconfined concrete were used for training and 

testing. A similar number of experimental results were used for training and testing of ANN-III 

and ANN-IV models for CFPT. 

The data used in ANN models were arranged in a format of three input parameters that included 

the water-cement ratio, aggregate cement ratio, and slump in addition to the bias. Each ANN 

model has four neurons (nodes) in the input layer and one neuron in the output layer as 

demonstrated in Fig. 2 for ANN-III. One hidden layer was selected with six neurons for strain 

models, while for strength models the number was seven neurons, was determined due to its 

minimum absolute percentage error values for training and testing sets. The input-hidden layer 

weights (wj,i) and the hidden-output layer weights (wk,j) yield high flexibility to adapt to the 

data freely. The models use different parameters to evaluate their influences on the ability of the 

subject models to yield accurate predictions. When only compressive strength was considered as 

an input parameter, the ANN model was found to predict the elastic modulus of concrete well 

within the ranges of the input parameters considered [19]. 

 
Fig. 2. Architecture of ANN-IV Model, strain at peak stress. 
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Table 2 

Test results for unconfined concrete and CFPT specimens. 

Specimens 
f'co 

(MPa) 

f'cc 

Exp 

f'cc / f'co 

Exp 
EX 

f'cc 

ANN 
f'cc / f'co ANN 

fl/f'co 

Exp 
ℰ𝑐𝑜 

εcc 

Exp 

CT-A1 38.7 47.21 1.22 47.31 1.24 0.0714 0.00197 0.0112 

CT-A2 38.7 48.38 1.25 47.31 1.24 0.0714 0.0019 0.0113 

CT-A3 38.7 47.6 1.23 47.31 1.24 0.0714 0.00192 0.011 

CT-B1 37.2 46.13 1.24 47.08 1.26 0.0742 0.00187 0.010 

CT-B2 37.2 46.5 1.25 47.08 1.26 0.0742 0.00188 0.0125 

CT-B3 37.2 47.62 1.28 47.08 1.26 0.0742 0.0018 0.0112 

CT-C1 34.7 44.76 1.29 45.46 1.29 0.0796 0.00179 0.0096 

CT-C2 34.7 44.42 1.28 45.46 1.29 0.0796 0.00188 0.0089 

CT-C3 34.7 45.8 1.32 45.46 1.29 0.0796 0.00182 0.0099 

CT-D1 32.9 41.45 1.26 44.38 1.34 0.0840 0.00177 0.0082 

CT-D2 32.9 45.73 1.39 44.38 1.34 0.0840 0.00173 0.0083 

CT-D3 32.9 44.42 1.35 44.38 1.34 0.0840 0.00179 0.009 

CT-E1 32.2 44.11 1.37 43.59 1.38 0.0858 0.00168 0.0081 

CT-E2 32.2 45.08 1.4 43.59 1.38 0.0858 0.00176 0.0086 

CT-E3 32.2 44.76 1.39 43.59 1.38 0.0858 0.00169 0.0081 

CT-F1 31.2 42.43 1.36 43.12 1.4 0.0885 0.00172 0.0077 

CT-F2 31.2 43.99 1.41 43.12 1.4 0.0885 0.00174 0.0079 

CT-F3 31.2 44.62 1.43 43.12 1.4 0.0885 0.00171 0.008 

CT-G1 28.6 40.04 1.4 39.79 1.39 0.0966 0.00169 0.0071 

CT-G2 28.6 40.9 1.43 39.79 1.39 0.0966 0.00176 0.0078 

CT-G3 28.6 40.46 1.415 39.79 1.39 0.0966 0.00169 0.0076 

CT-H4 25.5 37.74 1.48 37.36 1.47 0.1083 0.00157 0.007 

CT-H5 25.5 38.51 1.51 37.36 1.47 0.1083 0.00172 0.0073 

CT-H6 25.5 36.98 1.45 37.36 1.47 0.1083 0.00182 0.0071 

CT-I1 20.4 31.42 1.54 33.33 1.56 0.1354 0.00164 0.0067 

CT-I2 20.4 32.44 1.59 33.33 1.56 0.1354 0.00165 0.0068 

CT-I3 20.4 32.03 1.57 33.33 1.56 0.1354 0.00165 0.007 

CT-J1 19.2 31.49 1.64 30.71 1.67 0.1439 0.00169 0.0061 

CT-J2 19.2 31.49 1.64 30.71 1.67 0.1439 0.00151 0.0064 

CT-J3 19.2 32.45 1.69 30.71 1.67 0.1439 0.00158 0.0067 

CT-K1 16.7 29.39 1.76 29.7 1.76 0.1654 0.00153 0.0055 

CT-K2 16.7 29.89 1.79 29.7 1.76 0.1654 0.00154 0.0059 

CT-K3 16.7 29.22 1.75 29.7 1.76 0.1654 0.00169 0.0052 

CT-L1 16.3 30.32 1.86 29.89 1.83 0.1695 0.00153 0.0052 

CT-L2 16.3 29.99 1.84 29.89 1.83 0.1695 0.00164 0.005 

CT-L3 16.3 29.67 1.82 29.89 1.83 0.1695 0.00167 0.0051 
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5. Statistical indexes 

In the current study five different statistical indexes were used for assessing the performance of 

the trained ANN models and the performance of several existing FRP-confined concrete strength 

and strain models. The indexes included: Average absolute relative error (AAE), Normalized 

root-mean-square error (NRMSE), Nash–Sutcliffe efficiency (E), Modified Nash–Sutcliffe 

efficiency (E1), and coefficient of correlation (R
2
), Table 3. Where the model prediction is 

expressed by (model.i), the experimental value is represented by (exp.i), and N is the total 

number of data. Lower AAE's and NRMSE indicate good model performance. While an E value 

in excess of 0.80 is considered good. The Modified Nash–Sutcliffe efficiency (E1) is based on 

absolute deviations instead of squares of the deviations. The R
2
 expresses the rate of association 

between the two variables and many outliers result in weak R
2
. Since most values of RMSE are 

smaller than those of AAE, the former is easier to use. 

Table 3 

Statistical indexes for evaluating the performances of the models. 

Statistical indexes Mathematical expression 

Average absolute 

relative error (AAE) 𝐴𝐴𝐸 =
∑ |

𝑚𝑜𝑑𝑒𝑙.𝑖−𝑒𝑥𝑝.𝑖

𝑒𝑥𝑝.𝑖
|𝑁

𝑖=1

𝑁
 

Normalized root-

mean-square error 

(NRMSE) 
𝑁𝑅𝑀𝑆𝐸 =

√
∑ (𝑒𝑥𝑝.𝑖−𝑚𝑜𝑑𝑒𝑙.𝑖)2𝑁

𝑖=1

𝑁

∑ 𝑒𝑥𝑝. 𝑖𝑁
𝑖=1

 

Nash–Sutcliffe 

efficiency (E) 
𝐸 = 1 − 

∑ (𝑒𝑥𝑝.𝑖−𝑚𝑜𝑑𝑒𝑙.𝑖)2𝑁
𝑖=1

∑ (𝑒𝑥𝑝.𝑖−𝑎𝑣𝑒𝑟.𝑒𝑥𝑝.𝑖)2𝑁
𝑖=1

 

Modified Nash–

Sutcliffe efficiency 

(E1) 
𝐸1 = 1 −  

∑|𝑒𝑥𝑝. 𝑖 − 𝑚𝑜𝑑𝑒𝑙. 𝑖|

∑|𝑒𝑥𝑝. 𝑖 − 𝑎𝑣𝑒𝑟. 𝑒𝑥𝑝. 𝑖|
 

Coefficient of 

correlation (R
2
) 𝑅2 = (

∑ (𝑒𝑥𝑝. 𝑖 − 𝑒𝑥𝑝. 𝑖 𝑎𝑣𝑒𝑟) (𝑚𝑜𝑑𝑒𝑙. 𝑖 − 𝑚𝑜𝑑𝑒𝑙. 𝑖 𝑎𝑣𝑒𝑟)𝑁
𝑖=1

∑ (𝑒𝑥𝑝. 𝑖 − 𝑒𝑥𝑝. 𝑖 𝑎𝑣𝑒𝑟)2  ∑ (𝑚𝑜𝑑𝑒𝑙. 𝑖 − 𝑚𝑜𝑑𝑒𝑙. 𝑖 𝑎𝑣𝑒𝑟)2 𝑁
𝑖=1

𝑁
𝑖=1

)

𝟐

 

 

6. Results and discussions 

6.1. Compressive strength 

The correlation between the experimental strength of CFPT and unconfined concrete strength 

was shown in Fig. 3, with R
2
=0.636. When the same figure was plotted using the ANN predicted 

values for CFPT only, the value of R
2
 improved slightly to 0.647, Fig. 4. When ANN-1 was used 

for modeling strength of unconfined concrete (fco) very good correlation was observed between 

the ANN predicted strength and the corresponding experimental values, Fig. 5, with the value of 

the coefficient of the determination being equal to 0.995. The strength prediction of the ANN-III 

model for CFPT specimens (fccANN) was plotted in Figs. 6 versus the experimental strength 

(fccExp) with a good correlation. As it is depicted in Figs. 7 the values for compressive strength of 

CFPT obtained from the training and testing in ANN-III model were in good agreement with 
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experimental results. An artificial neural network is a regression model having the ability to 

predict the output of the non-linear input in a precise manner [20]. The trained neural network 

was able to reproduce the experimental test results. 

 

Fig. 3. Strength of CFPT (fccExp ) versus strength of concrete (fcoExp). 

 

Fig. 4. Relationship between predicted strength of CFPT (fccANN) and concrete (fcoExp). 

 

Fig. 5. Predicted fcoANN versus experimental strength of concrete fcoExp. 
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Fig. 6. Predicted fccANN versus experimental strength fccExp of CFPT. 

 

Fig. 7. Comparison of predicted-experimental compressive strength. 

 

Fig. 8. Predicted-experimental strain of CFPT. 

fccANN=1+ 0.972fccEx 
R² = 0.977 

20

25

30

35

40

45

50

20 25 30 35 40 45

fc
c 

A
N

N
 

fcc Exp 

27

37

47

0 10 20 30 40C
o
m

p
re

ss
iv

e 
st

re
n

g
th

(M
P

a
) 

Data order 

Experiment

ANN-III

R² = 0.9422 

0.0045

0.0075

0.0105

0.005 0.007 0.009 0.011

εc
c A

N
N

 

εccExp 

strain-cc 



 N.A. Abdulla/ Journal of Soft Computing in Civil Engineering 4-2 (2020) 63-84 73 

 

Fig. 9. Comparison of predicted-experimental strain at ultimate strength of CFPT. 

6.2. Strain at ultimate strength 

The correlation between predicted strain at ultimate strength (εccANN) and its corresponding 

experimental (εccExp) values for CFPT were plotted in Fig. 8 with an R
2
 value equal to 0.942. The 

difference between the predicted and the experimental values for the strain at ultimate strength 

was depicted in Fig. 9. The adopted ANN model was capable of deriving the relationship of input 

variables and the output. 

6.3. Compressive strength-strain relationship 

A linear correlation was observed between the experimental compressive strength and the strain, 

Fig. 10 with a reasonable coefficient of correlation R
2
= 0.794. Using predictions from the two 

ANN models for CFPT, the correlation between the two parameters changed by 11% from R
2
= 

0.794 to R
2
= 0.881, Fig. 11. The experimental strength enhancement ratio (fcc/fco) versus 

confinement ratio (fl/fco) was plotted in Fig.12. The strength enhancement ratio, calculated from 

the ratio of the strength of CFPT to strength of the corresponding specimen without plastic tube, 

was increased due to the use of the plastic tube. The confinement ratio (fl/fco) was calculated 

from the following: 

[
fl 

fco
]

P
=

2tP

Di

εP EP

fco
=

2tP

Di

fy,P

fco
 (3) 

Where tP=thickness of plastic tube; εP =ultimate tensile strain;  EP= the modulus of elasticity of 

tube; fy,P =yield strength of tube; Di =internal diameter of tube; fl =lateral confinement pressure 

[2]. Based on regression analysis of experimental results, the following expression for the 

strength of CFPT was obtained: 

(
fcc

fuc
)

Exp
= 1 + 3.068 (

fl

fco
) (4) 
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Fig. 10. Relationship between compressive strength-strain of CFPT. 

 

Fig. 11. Relationship between predicted peak stress and predicted strain at peak stress of CFPT. 

 

Fig. 12. Experimental strength enhancement ratio versus confinement ratio (fl/fco). 
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The predicted fccANN/fco ratio versus (fl/fco) was depicted in Fig. 13. A second expression for the 

strength of CFPT was obtained from Fig. 13 as follows: 

(
fcc

fuc
)

ANN
= 1 + 4.39 (

fl

fco
) (5) 

The coefficient of correlation for Eq. (5), R2=0.935, was better than for Eq. (4) with R
2
=0.896, 

Fig. 12. The experimental strain ratio (εccExp/εco)-confinement ratio (fl/fco) relationship was 

presented in Fig. 14, while the predicted strain ratio (εccANN/εco)-confinement ratio (fl/fco) 

relationship was shown in Fig. 15. In both Figures the relationship was modeled by a function 

which is a nonlinear combination of the model parameters. 

 

Fig. 13. Predicted strength enhancement ratio (ANN) versus confinement ratio (fl/fco). 

 

Fig. 14. Experimental strain ratio εcc/εco versus confinement ratio (fl/fco). 
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Fig. 15. Predicted strain ratio (εcc/εco)ANN versus confinement ratio (fl/fco). 

The following two equations were obtained for determining strain of CFPT based on regression 

analysis of experimental and ANN predicted values, respectively: 

(
εcu

εco
)

Exp
= 1.277 (

fl

fco
)

−0.57

 (6) 

(
εcu

εco
)

ANN
= 1.29 (

fl

fco
)

−0.54

 (7) 

The negative sign indicated the decrease in strain with increase in confinement ratio. The 

experimental results for strain at ultimate strength were more sporadic than the corresponding 

values for compressive strength. Another two equations for determining (εcc/εco) ratio were 

obtained using the strength enhancement ratio as the variable parameter: 

(
εcu

εco
)

Exp
= 8.097 (

fcc

fco
)

−02.87

 (8) 

(
εcu

εco
)

ANN
= 7.298 (

fcc

fco
)

−1.3

 (9) 

 

Fig. 16. Experimental strain ratio (εcc/εco)Exp versus strength ratio (fcc/fco). 
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Fig. 17. Predicted strain ratio (εcc/εco)Exp versus strength ratio (fcc/fco). 

Using ANN modeling predictions result in an improved correlation where value of R
2
 increased 

from 0.816 to 0.909, as is shown in Figs. 16 and 17 for experimental and predicted values of 

(fcc/fco), respectively. 

6.4. FRP-confined concrete models 

Based on the experimental results, the ANN predictions were compared with predictions from 

existing six FRP-confined concrete strength equations [21–26], Table 4. All the ratios of 

predicted strength (fcc/fco)Pre to the experimental strength (fcc/fco)Exp were computed in Table 5. 

Five statistical indexes and several other statistical measures such as standard deviations and 

coefficient of variance, Table 5, were used to compare the performance of the strength models. 

The strength model which was considered to yield the best predictions was that displaying the 

lowest values of AAE and RSME and the highest value of R
2
. The mean error for the FRP 

models in predicting the experimental results were 50.5%, 7.406%, 34.4%, 17.6%, 12.91%, and 

7.45%, while for Eqs. (4) and (5) were 8.84% and 2.80%, respectively. 

Table 4 

Strength models for FRP-confined concrete. 

Source Model 

Mirmiran [21] 
𝑓𝑐𝑐

𝑓𝑐𝑜

= 1 + 4.269 (
𝑓𝑙𝑢

𝑓𝑐𝑜

)
0.587

 

Guralnick and Gunawan [22]  
𝑓𝑐𝑐

𝑓𝑢𝑐

= 1 + 2.2 (
𝑓𝑙𝑢

𝑓𝑐𝑜

)
0.828

 

Yan and Pantelides [23] 
𝑓𝑐𝑐

𝑓𝑐𝑜

= 0.0768 ln (
𝑓𝑙𝑢

𝑓𝑐𝑜

) + 1.122 

Binici [24] 
𝑓𝑐𝑐

𝑓𝑐𝑜
= 1.8 (

𝑓𝑙𝑢

𝑓𝑐𝑜
)

0.3

 If (
𝑓𝑙𝑢

𝑓𝑐𝑜
) < 0.14 

Wu and Wang [25] 
𝑓𝑐𝑐

𝑓𝑐𝑜

= 1 + 2.23 (
𝑓𝑙𝑢

𝑓𝑐𝑜

)
0.96

 

Wu et al. [26] 
𝑓𝑐𝑐

𝑓𝑢𝑐

= 0.75 + 2.5 (
𝑓𝑙𝑢

𝑓𝑐𝑜

) 
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Table 5 

Predicted/ experimental ratios of (fcc/fco) using FRP and proposed ANN models. 

Specimen 
fcc/fco 

Exp 

 (fcc/fco)Pre/ (fcc/fco)Exp 

[21] [22] [23] [24] [25] [26] Eq.(4) 
Eq.(5) 

ANN 

CT-A1 1.22 1.59 1.01 0.74364 0.913 0.95 0.99 1.214 1.08 

CT-A2 1.25 1.55 1.01 0.74364 0.913 0.92 0.99 1.214 1.05 

CT-A3 1.23 1.58 1.01 0.74364 0.913 0.94 0.99 1.214 1.07 

CT-B1 1.24 1.59 1 0.73368 0.902 0.94 0.98 1.223 1.07 

CT-B2 1.25 1.58 1 0.73368 0.902 0.93 0.98 1.223 1.06 

CT-B3 1.28 1.54 1 0.73368 0.902 0.91 0.98 1.223 1.04 

CT-C1 1.29 1.56 0.99 0.72117 0.889 0.91 0.98 1.239 1.05 

CT-C2 1.28 1.57 0.99 0.72117 0.889 0.92 0.98 1.239 1.05 

CT-C3 1.32 1.52 0.99 0.72117 0.889 0.89 0.98 1.239 1.02 

CT-D1 1.26 1.62 0.96 0.69432 0.858 0.94 0.95 1.252 1.09 

CT-D2 1.39 1.47 0.96 0.69432 0.858 0.85 0.95 1.252 0.98 

CT-D3 1.35 1.51 0.96 0.69432 0.858 0.87 0.95 1.252 1.01 

CT-E1 1.37 1.5 0.94 0.67881 0.84 0.86 0.93 1.257 1 

CT-E2 1.4 1.47 0.94 0.67881 0.84 0.84 0.93 1.257 0.98 

CT-E3 1.39 1.48 0.94 0.67881 0.84 0.85 0.93 1.257 0.99 

CT-F1 1.36 1.52 0.93 0.66911 0.829 0.88 0.92 1.266 1.02 

CT-F2 1.41 1.47 0.93 0.66911 0.829 0.84 0.92 1.266 0.99 

CT-F3 1.43 1.45 0.93 0.66911 0.829 0.83 0.92 1.266 0.97 

CT-G1 1.4 1.52 0.94 0.67581 0.842 0.86 0.94 1.29 1.02 

CT-G2 1.43 1.49 0.94 0.67581 0.842 0.84 0.94 1.29 1 

CT-G3 1.4 1.51 0.94 0.67581 0.842 0.85 0.94 1.29 1.02 

CT-H1 1.48 1.49 0.92 0.64883 0.815 0.83 0.92 1.325 1 

CT-H2 1.51 1.46 0.92 0.64883 0.815 0.82 0.92 1.325 0.98 

CT-H3 1.45 1.52 0.92 0.64883 0.815 0.85 0.92 1.325 1.02 

CT-I1 1.54 1.55 0.91 0.62212 0.799 0.84 0.92 1.406 1.04 

CT-I2 1.59 1.5 0.91 0.62212 0.799 0.81 0.92 1.406 1 

CT-I3 1.57 1.52 0.91 0.62212 0.799 0.82 0.92 1.406 1.02 

CT-J1 1.64 1.48 0.87 0.58401 0.756 0.8 0.88 1.432 1 

CT-J2 1.64 1.48 0.87 0.58401 0.756 0.8 0.88 1.432 1 

CT-J3 1.69 1.44 0.87 0.58401 0.756 0.78 0.88 1.432 0.97 

CT-K1 1.76 1.45 0.85 0.55818 0.736 0.77 0.87 1.496 0.98 

CT-K2 1.79 1.42 0.85 0.55818 0.736 0.76 0.87 1.496 0.96 

CT-K3 1.75 1.46 0.85 0.55818 0.736 0.77 0.87 1.496 0.99 

CT-L1 1.86 1.38 0.82 0.53853 0.713 0.73 0.84 1.509 0.94 

CT-L2 1.84 1.4 0.82 0.53853 0.713 0.74 0.84 1.509 0.95 

CT-L3 1.82 1.41 0.82 0.53853 0.713 0.75 0.84 1.509 0.96 

    

Minimum 1.382 0.823 0.539 0.71307 0.733 0.843 0.824 0.938 

Maximum 1.618 1.009 0.744 0.9129 0.946 0.994 0.982 1.086 

Average 1.501 0.927 0.656 0.82423 0.847 0.926 0.911 1.009 

COV 0.003 0.003 0.004 0.00377 0.004 0.002 0.002 0.001 

STD 0.057 0.057 0.065 0.06184 0.06 0.045 0.047 0.037 

AAE% 50.5 7.406 34.4 17.6 12.91 7.45 8.8 2.80 

NRMSE 0.014 0.003 0.01 0.005 0.004 0.003 0.003 9E-04 

E 0.726 0.989 0.869 0.962 0.978 0.991 0.988 0.997 

E1 0.491 0.917 0.64 0.813 0.86 0.919 0.9035 0.972 

R
2
 0.976 0.978 0.97 0.979 0.979 0.979 0.979 0.979 
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The corresponding values of NRMSE were 0.014, 0.003, 0.01, 0.005, 0.004, 0.003 for FRP 

models and 0.003, and 9E-04 for the Eqs. (4) and (5), respectively. The E and E1 values for the 

FRP models in predicting the experimental results were 0.726, 0.898, 0.869, 0.962, 0.991 and 

0.491, 0.917, 0.64, 0.813, 0.86, 0.919, respectively, while for Eqs. (4) and (5) were 0.988, 0.997, 

and 0.903, 0.972, respectively. The results for the minimum, maximum, average, STD and COV 

values were also given in Table 5. The FRP models obtained by linear and non-linear regression 

analysis were not able to predict the strength of CFPT with high accuracy. The observed 

divergence between the predictions and the experimental test values was highest for the strength 

model given in [21]. The statistical analysis indicated the inability of the strength model 

expressed by Eq. (4) to yield a close fit to the test data similar to that of the ANN technique. The 

statistical values in Table 5 showed that the proposed ANN model expressed by Eq. (5) was more 

suitable and can better predict the strength of CFPT. 

 

Fig. 18. Predicted versus experimental strength enhancement ratio (fcc/fco) using data from [27]. 
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 Guralnick and Gunawan[22] 
 NRMSE=0.11 
 AAE=0.33 
 E=0.87 
 E1=0.5 
 STD=0.057 

 COV=.003 

 Proposed Eq.(5) 
NRMSE=0.14 
 AAE=0.42 
 E=0.78 
 E1=0.37  
 STD=0.057 
 COV=0.003 

  

 Wu et al. [26] 

 NRMSE=0.11 
 AAE=0.32 
 E=0.88 
 E1=0.52  
 STD=0.056 
 COV=0.003 
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6.5. Performance of strength models 

In order to indicate the accuracy of the ANN strength model predictions, the CFPT experimental 

strength results for the fc/fco ratio reported by Fakharifar and Chen [27] were selected; 1.011, 

0.952, and 0.919 with fco= 49.5MPa. The experimental results were compared to the strength 

predictions from ANN and two best performing FRP models, Table 5. As is illustrated in Fig. 18, 

the ANN prediction yielded acceptable values. Although the mean error value 42% for the ANN 

model predictions was slightly higher than for the other two models, 33 and 32%. The main 

cause of such error was the lack of enough data in the present study for the training of the ANN 

model for higher strengths. 

6.6. Predicted/Experimental strain ratios 

The predicted values of strain ratio (εcc/εco)Pre using the six FRP-confined concrete strain models 

[26,28–32] and the developed Eq. (7), Table 6, were plotted versus experimental (εcc/εco)Exp 

values in Fig. 19. The developed model yielded a better agreement between the predicted and 

experimental results, where most of the data points lie in the ratio range of 4 to 6 in Fig. 19. 

Predictions by models in [30] and [32] lie in the same range ratio, too. However, the statistical 

indexes for the latter two models are much higher. The accuracy of the proposed model was 

checked and the AAE values were 52.5, 75.05, 23.9, 35.9, 77.23, and 29.8 for FRP models 

[26,28–32] respectively, while it was 6.58 for Eq. (7). Other statistical measures that show the 

trends of model performance were presented in Table 7. Based on the Eq. (7), the soft computing 

method yielded the predictions with the best correlation with the test data. This performance 

indicates that the ANN models were capable of generalizing between input and output 

parameters with sufficiently closed data. 

 

Fig. 19. Predicted versus experimental strain ratio (fcc/fco) using FRP-confined concrete and proposed 

strain models. 
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Table 6 

Strain models for FRP-confined concrete. 

Source Model 

Wu et al. [26]  
𝜀𝑐𝑢

𝜀𝑐𝑜
= 1.3 + 6.3 (

𝑓𝑙𝑢

𝑓𝑐𝑜
) 

Karbhari and Gao [28] 
𝜀𝑐𝑢

𝜀𝑐𝑜
= 1 + 0.01 (

𝑓𝑙𝑢

𝑓𝑐𝑜
) 

Ilki et al [29] 
𝜀𝑐𝑢

𝜀𝑐𝑜
= 1 + 20 (

𝑓𝑙𝑢

𝑓𝑐𝑜
)

0.5

 

Al-Tersawy et al. [30] 
𝜀𝑐𝑢

𝜀𝑢𝑐
= 1 + 8.16 (

𝑓𝑙𝑢

𝑓𝑢𝑐
)

0.34

 

Mohamed H, Masmoudi [31]  
𝜀𝑐𝑢

𝜀𝑐𝑜
= 2 + 7.6 (

𝑓𝑙𝑢

𝑓𝑐𝑜
) 

Sadeghian and Fam [32] 
𝜀𝑐𝑢

𝜀𝑐𝑜
= 1 + 15.93 (

𝑓𝑙𝑢

𝑓𝑐𝑜
)

0.69

 

 

Table 7 

Statistics of predicted/experimental ratios of (εcc/εco)Pre/(εcc/εco)Exp using FRP and proposed ANN models. 

Model 
(εcc/εco)Pre/(εcc/εco)Exp 

[26] [28] [29] [30] [31] [32] Eq.(7) ANN 

Minimum 0.256546981 0.386 0.1505 0.97 0.657 0.5366 0.79 

Maximum 0.856311568 1.079 0.3286 3.029 1.792 1.8219 1.107 

Average 0.474933956 0.653 0.2277 1.749 1.106 1.0875 0.983 

COV 0.028356502 0.035 0.0019 0.326 0.092 0.122 0.006 

STD 0.169575614 0.188 0.0444 0.575 0.306 0.3517 0.08 

AAE% 52.5 77.23 75.05 23.9 35.9 29.8 6.58 

NRMSE 0.0169 0.01245 0.02229 0.02109 0.00853 0.00937 0.00248 

E 0.6489 0.8064 0.3856 0.4328 0.9212 0.889 0.9666 

E1 0.43 0.601 0.1974 0.33 0.776 0.7079 0.931 

R
2
 0.741 0.741 0.741 0.761 0.767 0.753 0.797 

 

7. Conclusions 

The application of artificial neural networks to predict the strength of CFPT was examined in this 

study using 72 test data. The input variables of the study included outer diameter, water/cement 

ratio, slump, aggregate/cement ratio, and compressive strength of unconfined concrete. The 

following conclusions can be drawn: 

1. The tests carried out in this study illustrate the feasibility of using ANN to predict the 

compressive strength and strain at ultimate strength of CFPT stub columns. The ANN model, 

which was built, trained, and tested using the experimental test results, yielded predictions close 
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to the experimental results. With proper training, ANN can give an alternative procedure for 

predicting the strength of CFPT. 

2. Based on Artificial Neural Networks, a new model was proposed for predicting the 

compressive strength of uPVC-confined concrete stub columns tested under axial compression 

loading. 

3. The performance of the proposed ANN model was assessed by comparing the strength 

predictions with predictions from several existing FRP strength models. Comparison of NRMSE 

values using the FRP and the proposed models showed the lowest NRMSE value was for the 

ANN model predictions. Additionally, the ANN model predictions had the highest correlation 

coefficient (R
2
), and the lowest AAE value. The ANN procedure displays strong potential as a 

viable technique for predicting the strength of CFPT within the range of input parameters 

considered. 

4. It was observed that the values of strain at ultimate strength based on the ANN model 

predictions were more precise than those computed from several empirical equations on the basis 

of the test results. 

The ANN model seems promising for evaluating the compressive strength and strain at ultimate 

strength of CFPT specimens. With its generalization capability it can be applied to other studies 

to predict the strength of stub CFPT columns. 
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