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Moisture penetration causes many direct and indirect 

distresses in flexible asphalt pavement. Due to damage in 

asphalt concrete and binder by moisture are the prime 

concern of failure for flexible pavement worldwide. The 

causes and prediction are investigated in this study. The 

asphalt binder was modified with carbon nanotubes (CNT) 

with very small percentages. The modified binder was 

simulated with moisture damage with AASHTO T-283 

methods. In this study, polymer and carbon nanotubes (CNT) 

have been added to liquid asphalt binder to examine whether 

the resulting modified binder has improved moisture damage 

resistance. Using laboratory tested data, an artificial 

intelligence modeling technique has been utilized to 

determine the moisture damage behavior of the modified 

binder. Multi-Layer Perceptron (MLP) provides the best 

prediction for wet and dry samples AFM readings with R
2
 

values respectively 0.6407 and 0.8371. 
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1. Introduction 

Asphalt binder has been used in roadway pavements since the early 1900’s. The USA has nearly 

3.2 million kilometers of pavement made of asphalt binder. Since the pavement is not impervious 
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hence the water from various sources enters the pavement and consequently damage it. 

Nonetheless, the moisture damage occurs globally with the presence of water. In literature, 

asphalt pavement distresses are related to the moisture intrusion in asphalt roads. Four attributes, 

namely: the adhesive bond between the binder, cohesive resistance of binder, the frictional 

resistance between the aggregate particles and the aggregate interlock are related to pavement 

strength [1]. 

Damage due to moisture in pavement causes loss of integrity of a Hot Mix Asphalt (HMA) mix 

through the weakening of the adhesion bond between the asphalt binder and aggregate via the act 

of water. This occurrence is well known as the stripping which eventually leads to the breaking 

of the aggregate-asphalt adhesion bond and finally direct towards the failure of flexible 

pavement. Moreover, asphalt binder may experience changes in strength, stiffness, and viscosity 

which refer to the cohesion in asphalt as a result of the moisture-related sensitivity of asphalt 

pavements [2]. 

Although the research scientist and practicing engineers are thriving to prolong the life of the 

nation pavement till now due to lack of proper understanding of moisture interaction with 

asphalts, pavements are prone to early failure from the infiltration of moisture. Several distresses 

may occur individually and simultaneously inside pavement due to this moisture entrance. The 

water reduces the internal bonding strength which leads to fatigue cracking/rutting in pavements 

[3]. Since damage starts from nano to micro level, current research aims to conduct binder 

testing at nano level using Atomic Force Microscopy (AFM). The AFM produced laboratory 

output data were finally modeled with three advanced artificial neural intelligence tools. 

2. Background of research 

Moisture damage in asphalt pavements is one of the main and primary distresses which is 

associated with the fracturing of the pavement surface, permanent deformation and excessive 

cracking [4]. Some literature related to pavement distresses, and ANN related works are 

investigated and described below: 

Gandhi et al. constructed ANN models to predict tensile strength ratio (TSR) and the indirect 

tensile strength (ITS) of various asphalt pavement mixtures considering 5 no. of input variables 

such as aggregate source, asphalt binder source, anti-striping agent (ASA), conditioning 

duration, and asphalt binder content [5]. It is worth mentioning here that, ANN is a widely used 

computational tool that can identify the complex unknown relationship between the inputs and 

desired output to the system. The activity of an ANN was introduced following the activities of a 

biological brain. ANN-based pavement thickness determination in order to back-calculate the 

layer moduli was accomplished by Tarefder et al. [6]. Xiao and Amirkhanian also incorporated 

ANN for prediction of the stiffness behavior of asphalt concrete in order to reuse reclaimed 

asphalt pavement materials [7]. 

Although, artificial neural network (emphasized on data science and data mining) is not new in 

civil engineering application [8]. Mohammadhassani et al. applied ANFIS, ANN model to 

concrete deep beam experiment and analysis [9]. However, for moisture damage in asphalt 
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binder and concrete in pavement construction, modeling with artificial network and data science 

is a relatively new area. Not too many attempts can be found to model and investigate artificial 

data for modeling the moisture damage and associated effect in the asphalt pavement area. 

Arifuzzaman and Hassan used SVR to predict the moisture damage in asphalt binder without 

adding CNT [10]. Adham and Arifuzzaman used CNT to resist moisture damage. They did not 

accomplish modeling work with ANN [11]. Amirkhanian et al. (2011) evaluated the rheological 

and engineering properties of different asphalt binder modified with various percentages of 

carbon nanoparticles (0.2%, 0.5%, 1.0%, and 1.5% by weight of the binder). They included in 

the experimental design of their study the utilization of three binder sources containing one type 

of nanoparticle (PG 64-22) [12]. Hassan used CNT and ANN to model moisture damage without 

application of Functional AFM tips (COOH, CH3, NH3 and OH groups) which are needed to 

predict the asphalt binder adhesion and cohesion forces [13]. To the knowledge, this research is 

the first time attempt to model the moisture damage behavior with CNT modified asphalt binder 

with functionalized AFM probes. 

3. Aim of the study 

To make a good relationship for moisture damage study in carbon nanotubes (CNT) mixed 

asphalt binder, the research-oriented specific objectives are proposed as: 

1. Application of artificial neural network (i,e. SVM, ANFIS, and MLP) on CNT modified 

asphalt binder. 

2. Model the large data set from moisture damage of asphalt binder using ANN, ANFIS, and 

SVM. 

3. To compare the performance of all models and to suggest the best one. 

4.1. Test matrix 

In this experiment, very used small percentages of carbon nanotubes (CNT) were used in SB and 

SBS modified base asphalt binder. Both dry and wet samples were tested under AFM with 

functionalized tips (-CH3, NH3, -COOH, -OH and –Si3N4) to get 269 data point for force 

distance measurement. Three methods SVM, ANFIS, and ANN, were used several hundred times 

to model these 269 data points to achieve the perfect results. The description for CNT, SB and 

SBS additives are given below: 

4.2. Materials and additives 

Base Binder: The base binder was collected from an oil-asphalt refinery commercial factory. 

Then SB, SBS, and CNT were added to it according to the following discussions. 

Description of polymer: Styrene-Butadiene (SB) polymer 

This is a latex type polymer used to improve the elastic recovery as well as cohesive and 

adhesive properties of the pavement structures. In this experiment total, two percentages (4% and 

5%) by weight of SB polymer was mixed with the base binder. 

http://search.proquest.com/indexinglinkhandler/sng/au/Amirkhanian,+Armen+N/$N?accountid=27795
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Styrene-Butadiene-Styrene (SBS) polymer: Becker et al. described SBS to be the most preferable 

and used polymer to modify the base binder. In this experiment, total two percentages (4% and 

5%) by weight of SBS polymer was mixed with the base binder [14]. 

Carbon Nano Tubes (CNT): Carbon nanotubes are structural as rolled-up graphite sheets having 

one end as capped. These type of tiny tubes may have single walls or multiple walls. The single-

wall carbon nanotubes (SWNT), unlike carbon/graphite black, possess highly desirable 

mechanical, electrical and thermal properties [15,16], with many potential applications in the 

computer, electronics as well as in aerospace industries. It is reported that the addition of a very 

small amount of carbon nanotube CNT (around 1%) by weight may increase both the 

compressive and the flexural strength as well as mechanical properties of civil engineering 

materials [17]. (Mann 2006). Our research found very few attempts to use CNT with asphalt 

binder for improvement [11,18]. In this study, Single Wall (0.5%, 1.0%, and 1.5%) CNT were 

used to resist moisture damage in asphalt binder. 

4.3. Sample preparation 

The moisture damage in the field was simulated in laboratory sample of the asphalt binder 

(AASHTO T-283 method). In this method, the asphalt samples were conditioned under freezing 

and thawing environment for several days. Thus the wet samples were ready for AFM testing. 

Dry samples were usual samples without any interference of water. 

5. Modelling moisture damage data with artificial intelligence (AI) approaches 

The input values for ANN were Condition (dry and wet), percentages of SB and SBS polymer 

mixed with the base binder, percentages of CNT, AFM tips type (COOH, CH3, NH3, OH, and 

Si3N4). The output result value was AFM experimental output as adhesion/cohesion force in 

terms of nano-newton in asphalt binder. 

Statistical analysis of the data set is shown in Table 1. 

The statistical analysis of the AFM laboratory generated data is shown in Table 1. The standard 

deviation value tells the necessity of artificial intelligence modeling of the highly deviated values 

from the standard one. The Kurtosis values of the data indicate that all the AFM produced data 

are less outlier prone than that of the normal distribution of the data. 

Table 1 
The statistical analysis of data used for the study. 

 
Dry Wet 

Maximum 382.51 405.01 

Minimum 41.95 106.45 

Mean 168.4945 225.7373 

St Dev 88.48392 80.15665 

Kurtosis 0.360758 -0.996740 

skewness 1.13887 0.50977 
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To model the 269-datasets from AFM run test a total of three advanced ANN was used in this 

research. The ANN modeling work was accomplished in this study be splitting data set into two 

subsets: training set (80%) and validation set (20%). In order to train the NN system for tracing 

the complex and the nonlinear relationships between output and input values the training data set 

was utilized. The stopping criterion (trials and error) helps prevent the overfitting in ANN. The 

forecasting ability of the network was tested with 20% ANN dataset. One of the key concern in 

the NN architecture selection are the hidden layers as well as the number of nodes in each one of 

them. It may depend on a complex relationship which need to be addressed further [19]. It also 

requires several trial-error as well as a good selective judgment for appropriate ANN architecture 

which is the best suited for the concerned data set. 

The brief description of the three systems are described below: 

5.1. Adaptive network fuzzy inference system (ANFIS) 

This special ANN was proposed by Jang [20]. It serves as a basic function to construct Fuzzy 

Interference System (FIS) and if-then formulated rules. More precisely, the ANFIS combines 

both neural network and fuzzy system from the best attributes and characteristics point of view. 

It can be successfully applied to many real-life problems which are complicated for modeling 

work such as highly nonlinear function, for identifying nonlinear components in control type of 

systems, foresee-disorder time series, etc. ANFIS description can be found more in details in 

[20]. 

5.2. Support vector machines (SVM) 

Cores and Vapnik [21] proposed SVM. This simulation tool is best suitable outcome based 

geometric hyper-plane function for special separating data points. In this technique, the input 

data are mapped in highly dimensional characteristics space. The main and critical shortcomings 

of SVM are the duration for runtime and accuracy issues. 

5.3. MLP based artificial neural network (ANN) 

This process can be described as the human brain performing computational programming which 

simulates the data learning and predicting tasks. One of the most popular used in this study is 

Multi-Layer Perceptron (MLP) which has vast applicability in pattern recognition and 

identification, speech recognition, control systems, petroleum engineering, etc. [22]. Hence the 

MLP based process can be used for novel and efficient system for computational efficiency. 

The overall flow diagram for the above-mentioned methods is shown in Figure 1. 
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a) ANN 

 
b) ANFIS 

 
c) SVM 

Fig. 1. a) Schematic of an ANN, b) ANFIS, c) SVM models. 

6. Analyses of experimental data 

The data Table 2 and Table 3 show the analysis summary of the dry and wet samples with the 

above three mentioned method concerning the six measured performances as: 



 Md. Arifuzzaman/ Journal of Soft Computing in Civil Engineering 1-1 (2017) 01-11 7 

Table 2 

Dry Samples Results. 

 
SVM ANFIS MLP 

  Train (80%) Test (20%) Train (80%) Test (20%) Train (80%) Test (20%) 

RMSE 16.2117 42.9149 38.4550 36.8155 29.5374 34.8987 

CC 0.9810 0.7567 0.8476 0.8161 0.9149 0.8386 

MAPE 7.2659 31.2811 18.6932 24.0868 14.9529 20.8287 

NRMSE 0.2227 0.6672 0.5282 0.5724 0.4057 0.5426 

MAPE (/100) 0.0727 0.3128 0.1869 0.2409 0.1495 0.2083 

MAE 10.3951 30.0103 26.6549 29.8941 22.5585 25.4221 

SD Error 0.2714 6.3164 1.8757 3.6325 2.9787 1.1294 

AOC 9.99340322 27.314005 25.8901 28.4880 22.1676 23.6528 

Time (Sec) 0.780005 0.0156 0.6240 0.0156 5.6472 0.0000 

MRE 7.2659 31.2811 18.6932 24.0868 14.9529 20.8287 

 

Table 3 
Wet Samples Results. 

 
SVM ANFIS MLP 

  Train (80%) Test (20%) Train (80%) Test (20%) Train (80%) Test (20%) 

RMSE 36.6028 48.7577 30.5458 54.7252 31.0656 46.2332 

CC 0.9078 0.7723 0.9368 0.7563 0.9373 0.8004 

MAPE 11.1859 17.4761 12.8757 18.7533 12.5359 19.0857 

NRMSE 0.4175 0.6254 0.3484 0.7019 0.3543 0.5930 

MAPE (/100) 0.1119 0.1748 0.1288 0.1875 0.1254 0.1909 

MAE 22.7841 37.5612 24.0691 39.9564 24.0460 37.6852 

SD Error 0.8901 2.2477 0.7049 1.2707 0.2676 2.0414 

AOC 22.1674 35.4661 23.5699 37.5300 23.5184 35.7585 

Time (Sec) 0.8736056 0.0000 0.6240 0.0156 2.8704 0.0000 

MRE 11.1859 17.4761 12.8757 18.7533 12.5359 19.0857 

 

The Correlation Coefficient (CC), Root Mean Square Error (RMSE), Mean Absolute Error 

(MAE), Mean Absolute Percentage Error (MAPE), Mean Relative Error (MRE) and Standard 

Deviation (SD) were calculated to investigate the accuracy of our utilized models. To find how 

much strong co-relation exists between the trend and the observed data, CC value is used. The 

value of CC “1” represents very much ideal co-relation exists while “0” means no co-relation can 

be predicted for the tested results. MAE is the measurement of the size of error while RMSE 
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utilizes squaring mechanism to enlarge bigger error as well as suppressing smaller error. MAPE 

co-relates the magnitude of error to the magnitude of the observed real data. 

For all cases, the performance of models was better for training datasets (80% samples) as 

compared to test datasets (20%) which are understandable. However, the variation between 

model performance for train and test datasets is more in case of dry samples as compared to wet 

samples. This could be because dry samples’ data contains more variations/noise. Moreover, the 

performance measures of all models for error terms (RMSE, MAE, etc.) were higher for wet 

samples’ test dataset while the relative error terms (MAPE) were lower for them. This could be 

because the magnitude of the dependent variable for wet samples was higher, so the error term 

magnitude was higher corresponding to that. However, the performance of wet samples’ models 

was better, which resulted in better relative error terms. 

 
Fig. 2. MLP result on Predicted vs. Measured Data (Wet Samples). 

 

 
Fig. 3. MLP result on Predicted vs. Measured Data (Dry Samples). 
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This experimental test analysis run is made with different values of dry and wet samples with 

SVM, MLP, and ANFIS-FCM method. For dry samples, the plot of predicted versus measured is 

developed in these three methods. Generated R
2
 values and equations are shown through linear 

trend line in the corresponding graph plots for each method in Figures 2 and 3. 

The best two selected graphs out of sixteen are shown below based on the R
2
 values. Plotting of 

wet material analysis through SVM, MLP & ANFIS has been created. For wet materials, 

generated R
2
 values and equations are also shown through linear trend line in Figure 2 and 3. 

The training and prediction time was calculated in terms of seconds in this study. The prediction 

time was very low for all the models because it has a comparatively small dataset and does not 

include any optimization algorithm as the model is already developed. Among the three methods 

for overall computation, MLP took the highest amount of time for training of both the dry and 

wet samples which was done for 80% of the total dataset. Hence, use of MLP on a large dataset 

cannot be recommended based upon these observations. 

7. Discussion and conclusion 

The investigations provide a detail description of the test methods taking place for dry and wet 

samples. The measurement techniques & procedures are developed by a generation of linear 

trend line through the plotted points and comparing the R
2
 value to find the efficient technique or 

procedures for the test of dry and wet samples. 

Artificial neural network and related modeling (ANFIS, MLP, and SVM) tools are used for the 

first time on AFM produced moisture damage data of CNT modified asphalt binder. 

The conclusions drawn from the experimental and modeling work are listed below: 

1. The neural network can address the complex relationship between adhesion and test 

variables incorporated in AFM testing. The developed NN model shows good prediction 

ability. 

2. All models employed in this study gave CC value of more than 70% for all cases which is 

evident of their applicability for the prediction problem of this study. Moreover, the standard 

deviation of error was also relatively small for all models for training as well as prediction 

datasets which shows the robustness of these models. 

3. The study shows that MLP test for dry and wet sample produces convincing error terms 

with the RMSE improvement of 2–8 units (approximately 3 – 5%) over SVM and ANFIS 

method. 

4. So, it can be concluded with the promising fact that MLP procedure for dry (R
2 

= 0.8371) 

and wet (R
2 

= 0.6407) sample is more effective to predict real-life moisture damage data. 

5. Despite the above reasoning, it was also observed that MLP took longer training time than 

SVM and ANFIS. This could be due to optimization algorithm of MLP models; hence their 

applicability for large datasets should be further investigated. 
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8. Recommendation 

The economic aspect, health consequences, and availability of CNT utilization in road and 

highways are recommended for further investigation. 
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