
Journal of Soft Computing in Civil Engineering 2-4 (2018) 01-22 

How to cite this article: El-Ghandour HA, Elbeltagi E. Developing four metaheuristic algorithms for multiple-objective 

management of groundwater. J Soft Comput Civ Eng 2018;2(4):01–22. https://doi.org/10.22115/scce.2018.128344.1057. 

2588-2872/ © 2018 The Authors. Published by Pouyan Press. 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).  
 

 

Contents lists available at SCCE 

 

Journal of Soft Computing in Civil Engineering 

Journal homepage: www.jsoftcivil.com 

Developing Four Metaheuristic Algorithms for Multiple-Objective 

Management of Groundwater 

H.A. El-Ghandour
1
*, E. Elbeltagi

2 

1. Associate Professor, Irrigation & Hydraulics Department, Faculty of Engineering Mansoura University, Mansoura 

35516, Egypt 

2. Professor, Structural Engineering Department, Faculty of Engineering Mansoura University, Mansoura 35516, 

Egypt 

Corresponding author: hamdy_a@mans.edu.eg 

 https://doi.org/10.22115/SCCE.2018.128344.1057 

ARTICLE INFO 
 

ABSTRACT 

Article history: 

Received: 23 April 2018 

Revised: 19 June 2018 

Accepted: 20 June 2018 

 

Groundwater is one of the important sources of freshwater 

and accordingly, there is a need for optimizing its usage. In 

this paper, four multi-objective metaheuristic algorithms 

with new evolution strategy are introduced and compared for 

the optimal management of groundwater namely: Multi-

objective genetic algorithms (MOGA), multi-objective 

memetic algorithms (MOMA), multi-objective particle 

swarm optimization (MOPSO), and multi-objective shuffled 

frog leaping algorithm (MOSFLA). The suggested evolution 

process is based on determining a unique solution of the 

Pareto solutions called the Pareto-compromise (PC) solution. 

The advantages of the current development stem from: 1) 

The new multiple objectives evolution strategy is inspired 

from the single objective optimization, where fitness 

calculations depend on tracking the PC solution only through 

the search history; 2) a comparison among the performance 

of the four algorithms is introduced.  The development of 

each algorithm is briefly presented. A comparison study is 

carried out among the formulation and the results of the four 

algorithms. The developed four algorithms are tested on two 

multiple-objective optimization benchmark problems. The 

four algorithms are then used to optimize two-objective 

groundwater management problem. The results prove the 

ability of the developed algorithms to accurately find the 

Pareto-optimal solutions and thus the potential application on 

real-life groundwater management problems. 
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1. Introduction 

Groundwater is considered as one of the freshwater sources needed to serve human activities, 

such as drinking, industrial, domestic and irrigation. Due to irregular pumping of groundwater, 

serious environmental hazards have been occurred including groundwater levels decline and 

interference among wells. 

To pump the maximum amount of groundwater without aquifer depletion and achieving 

minimum operation cost, powerful simulation-optimization models have to be applied to obtain 

the best strategy. These models are adopted to deal with both the design and operation problems 

corresponding to remediation, water supply and controlling of groundwater flow [1]. 

Optimization models can be classified according to their objectives into single objective and 

multiple objectives. In single objective optimization, a unique optimal solution is produced 

related to the maximization or minimization of a single objective [1–19]. In multiple objectives 

optimization, a group of non-dominated solutions, called Pareto-front (PF), are usually produced 

[20–25]. Optimization models are classified into deterministic and metaheuristic. Deterministic 

methods include linear, non-linear and dynamic programming [6–9,26–33]. While, metaheuristic 

algorithms are stochastic optimization techniques that mimic nature perception, learning and 

reasoning such as: Genetic Algorithms (GA), Memetic Algorithms (MA), Particle Swarm (PSO) 

and Shuffled Frog Leaping (SFLA) [1–5,10–25]. 

Deterministic optimization methods tend to become overly complicated and require massive 

computations when dealing with complex optimization problems with numerous constraints and 

decision variables, such as real-life water related optimization problems. While, metaheuristic 

optimization algorithms are usually used due to their direct getting solutions without the need for 

gradients and initial solutions. Simulation models are coupled with optimization techniques to 

evaluate proposed objective function(s). Simulation models apply either numerical or analytical 

approaches to simulate groundwater flow and calculate the hydraulic heads of the studied 

aquifer. Numerical approaches include finite element (FEM), finite difference and boundary 

element methods while, analytical approaches use analytical element method and Fourier series 

[16,17,19]. 

The development made in the current paper is different from previous works in many aspects. 

The use of a new evolution strategy for generating the Pareto optimal solutions in four different 

multi-objectives algorithms namely: MOGA, MOMA, MOPSO and MOSFLA. Using such 

evolution strategy resembles solving single optimization problems. Performing a comparison 

study among the four multi-objectives optimization algorithms for optimizing ground water 

management problems. While, all previous comparisons have been performed among single 

objective optimization algorithms [34,35]. 

2. New evolution strategy 

Multiple objectives optimization problems are characterized by the existence of many optimal 

solutions (non-dominated) called Pareto-Front (PF). Many different algorithms are used to solve 
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multi-objectives optimization problems. Grierson [36] proposed a methodology to determine a 

single Pareto-Compromise (PC) solution located in the PF which fairly satisfies all objectives. 

This research adopts such PC solution for the fitness calculations and then driving the evolution 

process in MOGA, MOMA, MOPSO, and MOSFLA algorithms. 

The proposed new evolutionary strategy which is based on finding the PC solution is adopted 

due to their proven effectiveness in terms of the processing time and number of Pareto solutions 

obtained in the PF, as stated by Elbeltagi et al. [37]. Also, the proposed multi-objective 

evolutionary strategy is reminiscent of single-objective optimization, where its fitness 

assignment is based on tracking a single evolving solution over the search history. In addition, 

knowing the PC solution helps decision makers to choose a single solution that uniquely 

represents a mutually agreeable trade-off between all competing objectives for the problem. 

The suggested methodology for developing each algorithm to handle multiple objective 

problems depends mainly on the principle of non-dominant solutions located in more densely 

populated regions in the objective space having lower probabilities to be selected. Consequently, 

better distributions of optimal solutions can occur in the PF. The following steps illustrate the 

suggested methodology: 

1. All solutions in an evolutionary cycle are evaluated according to the values of their 

objectives to determine a set of non-dominated solutions called PF. Each non-dominated 

solution belongs to the PF can beat all other solutions in at least one objective. 

2. For each obtained PF, the PC solution is determined mathematically as given by Grierson 

[36]. 

3. The distance ( kPCd , ) between the PC and each Pareto optimal solution (k) is calculated 

based on Eq. 1: 

 



n

i

kiPCikPC ffd
1

2

, k = 1, 2, 3……N (1) 

in which, fPCi: the objective function i value corresponding to the PC, fki: the objective function i 

value corresponding to solution (k) located in the PF, N: number of Pareto optimal solutions 

located in the PF, and n: number of objective functions. 

4. The fitness of each Pareto-optimal solution (k), Eq. 2, equals its distance ( kPCd , ) from the 

PC solution. This step ensures the disperse of the solutions along the solution space and 

prevents solutions crowdies. 

kPCk dFitness ,          k = 1, 2, 3……N (2) 

5. The relative fitness of each solution in the PF is then calculated as follows: 
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Relative Fitnessk = 




N

k

k

K

Fitness

Fitness

1

 (3) 

6. To form the next generation, solutions from the current PF are randomly selected based on 

their Relative Fitness. Accordingly, Pareto optimal solutions with larger values of 

Euclidean distance have the higher probability to be selected.  

3. Descriptions of the proposed metaheuristic algorithms 

A brief description of the MOGA, MOMA, MOPSO, MOSFLA algorithms are presented in the 

following subsections. 

3.1. Multiple objectives genetic algorithms 

GA simulates mechanisms of natural principle of the survival of the fittest. In GA, solutions are 

represented using chromosomes containing a group of genes, having values for the variables of 

an optimization problem. Each chromosome is, then, evaluated to determine its fitness using 

specific objective function. Then, best chromosomes are exchanging their information through 

different GA operation (i.e. selection, crossover and mutation), as follows, to produce offspring 

chromosomes: 

- Selection: Fit chromosomes are likely to be selected to pass to next generations. 

- Crossover: Parent chromones are exchanging their genetic information to produce 

offspring chromosomes. 

- Mutation: It allows for random change of genetic information of individual genes. This 

process introduces new genetic information to the current chromosomes, this may lead to 

avoid stagnation and pre-mature convergence. 

The GA operators are continued for large number of generations until an optimal or near-optimal 

solution is obtained. The parameters that affect the performance of the GA are: number of 

chromosomes, number of generations, crossover rate, mutation rate and crossover type. The 

probability of obtaining a global optimum solution is achieved by increasing the numbers of both 

population and generations but, this substantially increases processing time. 

In the proposed MOGA, for each generation, the steps from (1) to (5) mentioned in the previous 

section are carried out then, step (6) is continued to produce offspring chromosomes through 

crossover and mutation operators until a new population of chromosomes is formed. Also, a 

replacement strategy is carried out to replace the weakest chromosome in the current generation 

with a randomly selected one located in the PF of the previous generation. These processes are 

repeated for large number of evolutionary cycles until an optimum or near-optimal solution is 

reached. Figure 1 shows a flow chart of the proposed MOGA. 
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Fig. 1. Flowchart describing both the MOGA and MOMA algorithms. 
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3.2. Multiple objectives memetic algorithm 

Similar to the GA, MA chromosome’s elements are called memes, not genes. In MA, 

chromosomes are allowed to perform local search first, before being involved in the global 

evolutionary search [38]. Similar to GA, a population of chromosomes is, initially, generated 

randomly. Then, each generated solution is subjected to a local search to improve its fitness. 

Afterwards, the GA operators are applied, to produce new individuals. These new individuals are 

then performing some local search to maintain local optimality. In this paper, the local search is 

carried out through a pair-wise interchange (or in other words, swapping chromosome’s memes) 

as shown in Fig. 2, [38]. 

 
Fig. 2. Applying local search using pair-wise interchange (Elbeltagi et al. 2005). 

The maximum number of swaps is limited to 10 for each chromosome in order to maintain 

reasonable processing time. After swapping, if the chromosome’s fitness improves, the change is 

kept; otherwise, ignore the change. As previously mentioned, the MA parameters are the same as 

the parameters of the GA, in addition to the local-search mechanism. 

The proposed MOMA is the same as the MOGA in addition to the local search previously 

mentioned. After performing each swap, a chromosome before change (chbefore) is compared with 

its mate after (chafter) the swaps, as follows: 

- If the chafter dominates the chbefore, then the change is kept. 

- If the chbefore dominates the chafter, then the change is ignored and swaps are repeated for a 

specified number of times (10 times). 

- If no domination occurs, then one of the two chromosomes is randomly chosen as the new 

chromosome. 

Figure 1 shows the flow chart of the MOMA. 

3.3. Multiple objectives particle swarm 

The PSO was initially developed by Kennedy and Eberhart [39]. In single objective PSO, a set of 

random particles (solutions) is initially generated to begin the evolution process. Through such 

process, three values are monitored by each particle i: its current location [Xi(I)], the best 

position it arrived [Pi(I)], and its velocity of flying [Vi(I)] where, I is the current evolution cycle. 

In each evolutionary cycle, the position of best particle (Pg) is determined which is considered 

the best fitness for all particles. Consequently, the velocity of each particle is updated as given by 

Shi and Eberhart [40]: 
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             ,1 2211 IXIPrCIXIPrCIVIV igiiii    (4) 

   ,1 maxmax VIVV i 
pni ,.....,1  

Each particle position is updated as follows (Eq. 5): 

     11  IVIXIX iii  (5) 

in which, Vi(I+1): particle i velocity in iteration (I+1); Vi(I): particle i velocity in iteration (I); 

Pi(I): particle i best position in iteration (I); Pg(I): the global best particle position in iteration (I); 

Xi(I): particle i position in iteration (I); Xi(I+1): particle i position in iteration (I+1);  : constant 

called inertia weight; C1 and C2: learning factors (C1 = C2 = 2); r1 and r2: two random numbers 

(ranging  from 0 to 1); Vmax: the maximum value of velocity change. 

The main PSO parameters are: the population size; number of cycles; Vmax; C1; C2; and ω. 

In the suggested MOPSO, both Eqs. 4 and 5 are, also, adopted but, the two parameters Pi and Pg 

need to be determined repetitively during each cycle [41]. Initially, Pi represents particle i initial 

position which updated in the subsequent iterations as given by Baltar and Fontane [42] for each 

particle i: 

- If the current position Pi dominates the new position, then the new Pi is set as the current 

Pi. 

- If the current Pi is dominated by the new position, then the new position is set the new Pi. 

- If no domination occurs, then the new Pi is selected randomly from the two positions. 

In the MOPSO, there is no best particle position (Pg) for all particles, but there are several 

equally good particles positions (PF) in each evolution cycle stored in the external repository. 

For each evolution cycle, the steps from (1) to (6) mentioned in the previous section are carried 

out to select one solution from the stored ones which is considered as Pg. The flow chart of the 

MOPSO is shown in Fig. 3. 

3.4. Multiple objectives shuffled frog leaping 

SFLA combines the advantages of both MA and PSO algorithms. In the single objective SFLA, 

the evolution process is initialized with a number of memeplexes, each contains a number of 

frogs (individuals). Throughout each memeplex, two individuals (frogs) are determined based on 

their fitness: the best individual (XB) and the worst individual (XW). Also, in each cycle of 

evolution, the individual with the highest global fitness (XG) is determined. Then, the individual 

with the worst fitness is improved in each cycle (not all frogs) through a process similar to the 

PSO. Accordingly, the change in worst frog position (Di) and its new position (XWnew) are 

calculated as follows [38,43]: 

Di = C × r × (XB – XW) (6) 

XWnew= XWcurrent + Di,                Dmax ≥ Di ≥ - Dmax  (7) 
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in which, C: the search acceleration factor; r: a random number in the range [0, 1]; and Dmax: the 

maximum allowed frog’s position change. 

 
Fig. 3. Flowchart describing the MOPSO algorithm. 
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If a better individual (solution) is produced when applying Eqs. 6 and 7, the worst frog is 

replaced by the new produced one. Otherwise, Eqs. 6 and 7 is repeatedly calculated but XB is 

exchanged with the global best frog XG. If no improvement is occurred, a new frog (solution) is 

created randomly replacing the worst one. This process continues for a given number of 

iterations [38]. 

The SFLA parameters are: number of frogs; number of memeplexes; number of trials in each 

memeplex; number of iterations; Dmax; and C. 

In the proposed MOSFLA, there are several solutions for (XB) and several other solutions for 

(XW) in each memeplex. Consequently, both the (XB) and (XW) are randomly selected from the 

corresponding solutions. Also, there is no global best frog (XG) for all frogs, but there are several 

equally good frogs’ positions (PF) in each evolution cycle stored in the external repository. In 

this case, XG is determined by applying the steps from (1) to (6) mentioned in the previous 

section in each evolution cycle. Figure 4 shows the flow diagram of the MOSFLA algorithm. 

4. Models implementation and verification 

To facilitate the implementation of the proposed four algorithms, each algorithm is coded by the 

authors using the FORTRAN language. Accordingly, all parameters related to each algorithm are 

studied. The most common parameters presented in the literature are studied here in the current 

development. Then, the proposed algorithms’ performance is compared using two multiple 

objectives benchmark problems (Appendix A) where the obtained PFs are compared with the 

corresponding known true PFs of the two benchmark problems. 

Selection of Parameters’ values for each algorithm is an essential part of this study. As such, a 

large number of trials are performed to obtain the most suitable parameters’ values that suit the 

two test problems and the example application (presented later). In this step, initial parameters’ 

values are set based on relevant literature. Then, parameters’ values are changed through many 

experiments while the results are monitored. The final parameters’ values adopted for each 

model are presented in Table 1. Also, different termination criteria have been experimented with 

including the solution convergence and number of evolutionary cycles. Based on many trials and 

experiments, the termination criterion has been set based on the number of evolutionary cycles 

(iteration-oriented) as presented in Table 1. 

For the purpose of comparing the proposed algorithms performance, different metrics are used, 

namely: the generational distance (Gd); the distance between the PC solution of the obtained PF 

and the true PF; the processing time; the number of Pareto-optimal solutions located on the PF 

and the mean square error between the obtained compromise solution and the nearest best 

alternative Pareto optimal solution. The values of all these metrics are calculated and presented 

in Table 2. 
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Fig. 4. Flowchart describing the MOSFLA algorithm. 
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Table 1 
Parameters’ values used in the two test problems and the example application. 

Algorithm Parameter names Test problem (1): 

Kita function 

Test problem (2): 

Kursawe function 

Example 

application 

MOGA - Number of chromosomes: 

- Number of generations: 

- Crossover ratio: 

- Mutation ratio: 

- Crossover type: 

200 

1000 

0.9 

0.2 

Uniform 

100 

500 

0.9 

0.2 

Uniform 

100 

300 

0.8 

0.05 

Uniform 

MOMA - Number of chromosomes: 

- Number of generations: 

- Crossover rate: 

- Mutation rate: 

- Crossover type: 

200 

1000 

0.9 

0.2 

Uniform 

100 

500 

0.9 

0.1 

Uniform 

100 

300 

0.8 

0.05 

Uniform 

MOPSO - Population size: 

- Number of cycles: 

- The maximum velocity 

Vmax: 

- Values of learning factors 

C1 and C2: 

- Value of inertia weight ω: 

100 

500 

0.35 

 

2 

Linear [1.4-0.9] 

100 

500 

0.6 

 

2 

Linear [1.4-0.9] 

100 

300 

5500 

 

2 

Linear [1.3-

0.9] 

MOSFLA - Number of frogs: 

- Number of memeplexes: 

- Number of trials before 

shuffling: 

- Number of iterations after 

shuffling: 

- The maximum change in 

frog position Dmax: 

- The search acceleration 

factor C: 

200 

20 

 

30 

 

100 

 

7 

2.4 

200 

20 

 

30 

 

100 

 

10 

1.7 

200 

20 

 

20 

 

300 

 

7000 

4.2 

 

The Gd metric [44] is considered to test the performance of the developed four models for coping 

with multiple objectives problems. The Gd metric is used to measure the distance between the 

obtained and the true PFs:  

N

d

G

N

i

i

d





1

2

 (8) 

in which, di: the Euclidean distance between the non-dominated solution i located in the obtained 

PF and the nearest one in the true PF and N is the number of non-dominated solutions located in 

the obtained PF. A very small value for Gd metric means that all the generated non-dominated 

solution nearly coincides with the true PF. 
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Table 2 
Comparison among algorithms’ results for the two test problems. 
Algorithm metric Test problem (1): Kita function Test problem (2): Kursawe function 

MOGA 

Gd 0.00076 0.00159 

Dist. 0.1843 0.1196 

Processing time (second) 2.917 1.451 

Compromise solution (2.79, 8.11) (-16.7, -4.72) 

Best alternative  (2.63, 8.12) (-16.69, -4.64) 

MSE 0.001733 0.000163 

No. of PF solutions 187 419 

MOMA 

Gd 0.00086 0.00051 

Dist. 0.2951 0.0150 

Processing time (second) 20.389 3.603 

Compromise solution (2.78, 8.11) (-16.71, -4.7) 

Best alternative  (3.11, 8.09) (-16.72, -4.77) 

MSE 0.007058 0.000089 

No. of PF solutions 195 547 

MOPSO 

Gd 0.00064 0.00326 

Dist. 0.061 0.0114 

Processing time (second) 1.514 0.452 

Compromise solution (2.77, 8.11) (-16.72, -4.73) 

Best alternative  (2.75, 8.11) (-16.72, -4.74) 

MSE 0.000018 0.000002 

No. of PF solutions 200 195 

MOSFLA 

Gd 0.00102 0.00290 

Dist. 0.0051 0.0301 

Processing time (second) 4.477 1.763 

Compromise solution (2.78, 8.11) (16.71, -4.79) 

Best alternative  (2.81, 8.11) (-16.71, -4.78) 

MSE 0.000061 0.000004 

No. of PF solutions 169 179 

 

The graphical comparison between the obtained PFs, associated with each proposed model, and 

the true PF is presented in Fig. 5. It can be seen that, the obtained PFs seem regular and 

distributed throughout the solution space. The Gd value is found to be 0.00076, 0.00086, 

0.00064, and 0.00102 for MOGA, MOMA, MOPSO, and MOSFLA respectively. Consequently, 

the obtained PFs are nearly similar to the true PF as per the very small values obtained of the Gd. 

Also, the minimum Gd value obtained is associated with the MOPSO algorithm. 

Figure 6, on the other hand, shows the obtained PFs for the proposed four models along with 

their corresponding true PF for the second benchmark problem. As noticed in the previous test 

problem, the obtained PFs seem distributed regularly all over the solution space. The Gd values 

are calculated as: 0.00159, 0.00051, 0.00326, and 0.00290 for MOGA, MOMA, MOPSO, and 

MOSFLA models respectively. Then, the obtained PFs are nearly similar to the true PF as per the 

very small distances of Gd metric, with the best value associated with the MOMA. 
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Fig. 5. PFs produced by the four proposed algorithms and the true PF for the Kita function. 

The distance between the compromise solution of the obtained PF and the corresponding one of 

the true PF is calculated according to Eq. 9 and listed in Table 2 for each studied algorithm. The 

minimum distance reported is for the MOPSO with the second test problem and for the 

MOSFLA with the first test problem. 

   22
. obttrueobttrue yyxxDist 

 
(9) 

in which, xtrue and ytrue: the coordinates of the compromise solution corresponding to the true PF 

and xobt and yobt: the coordinates of compromise solution corresponding to the obtained PF. 

Also, the Mean Square Error (MSE) is calculated based on the values of the criteria 
0

jf  for the 

PC solution and the values of the corresponding criteria 
*

ijf  for each of the N Pareto-optimal 

solutions (Eq. 10) [36]: 

  ),......,1(;1)1(
20* niffnMSE ii    (10) 
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      MOGA 

     True  
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where, n: number of criteria (i.e. objective functions). The solution that has the smallest MSE 

value is considered as the best alternative solution of the PC solution. 

    

     
Fig. 6. PFs produced by the four proposed algorithms and the true PF for the Kursawe function. 

All codes are running on a personal computer of Intel (R) Core (TM) I3 CPU and having 4 GB 

Ram. The least processing time reported with the MOPSO for both test problems. The MOMA 

outperforms all other algorithms for the obtained number of solutions located on the PF for the 

second test problem, while the MOPSO outperforms other algorithms for the same metric in the 

first test problem. Generally, the results show that the MOPSO outperforms other algorithms in 

most of the comparison criteria as presented in Table 2. 

The results of the previous two test problems show that, the obtained PFs corresponding to the 

four models are very close to the true PFs. Also, both the rapid convergence and good results are 

obtained in the two cases. Accordingly, the proposed four models having the ability for dealing 

with problems of multiple-objective functions. 

5. Example application 

In this section, the four proposed models with the new evolution strategy are applied on a 

popular groundwater management problem in order to maximize the pumping rates and 
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     True  
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      MOPSO 

     True  
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minimize the operation costs [24]. Also, a comparative study among the algorithms’ results is 

carried out. Both the plan of the studied aquifer and its cross-sectional elevation along with the 

required data are shown in Fig. 7. The aquifer is formed of sand and gravel with homogeneous 

and isotropic porous medium. The hydraulic conductivity (K) equals 50 m/day and it is assumed 

that the aquifer is subjected to uniform rainfall (W) of 0.001 m/day. The objective of this problem 

is to determine the pumping rates from the pre-specified system of the ten wells, achieving 

hydraulic constraints. The mathematical formulation of the optimization problem is as follows 

[15,24]: 
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where, Qi: well i pumping rate; NW: number of wells; )(hP : head violation penalty; hi, min: 

minimum head allowable at well i (= 0); Qi min and Qi max: well i minimum and maximum 

allowable pumping rates (equals 0 and 7000 m
3
/day respectively); a1, a2, and a3: cost coefficients 

for drilling, pumping equipment and operation of well respectively (a1 = 4221 $/m, a2 = 0.12 

$/m
4
, a3 = 0.03 $/m

4
); y: the penalty term; b1, b2, and b3: constants indicating economies of scale 

(b1 = 0.299 and b2 = b3 =1); Qreq: the water demand required (= 30000 m
3
/day); di: the depth of 

well i; and )(QP : penalty term for the minimum pumping violation. 
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Fig. 7. The plan view and sectional elevation of the studied aquifer [24]. 

In this application, a simulation model, based on FEM, is linked with each proposed optimization 

algorithm to predict the hydraulic head at each well location shown in the plan, Fig. 7. FEM is 

used to discretize the studied plan to number of linear rectangular elements and the two-

dimensional flow equation, Eq. 19 is solved over each element [25]. 
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in which, K: the hydraulic conductivity of aquifer;  : the potential (= h
2
 /2); h: the hydraulic 

head; W: the uniform rainfall or uniform evaporation; Qi: the rate of injection or pumping for the 

well i; δ(z): the Dirac delta function which equals 1 if z equal zero otherwise equals zero; and 

NW: number of field wells. 

In the simulation model, Eq. 19 is written as follows: 

[𝐴] × [φ] = [𝐹] (20) 
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in which, A: the conductance/stiffness matrix, φ: the unknown vector of potentials and F: the 

load vector which contains the external source or sink of water and flux concentration. 

In order to make a comparison among the obtained PFs of the developed four models, in addition 

to the metrics described before, the Spacing (SP) metric [44] is considered, Eq. 21. The SP is used 

to measure the spread of the Pareto optimal solutions over the whole solution space. 
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iP dd
N

S
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2

1
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 (21) 

in which, di: the minimum distance between Pareto-solution i and all other solutions located in 

the PF, d : the arithmetic mean of di, and N: the number of solutions located in the PF. 

    

    
Fig. 8. PFs for the example application produced by the developed four algorithms. 

A small value of SP means that solutions located in the PF are equidistantly spaced. Figure 8 

illustrates the obtained PFs associated with each developed model. As presented in Table 3, the 

SP metric is computed for each algorithm as 231.6, 2842.6, 129.3, and 479.9 for MOGA, 

MOMA, MOPSO, and MOSFLA respectively. The SP value for MOPSO model is the minimum 

then, the performance of this model is the best compared with the other models. Accordingly, the 

obtained PF from MOPSO model is more regular and distributed throughout the solution space. 
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Also, the processing time of MOPSO model (138.97 sec) is found to be the minimum compared 

with the processing time of the other models. Also, the highest number of Pareto optimal 

solutions obtained was with the MOPSO. From the visual inspection of Fig. 8, the PFs obtained 

using MOGA and MOMA models are more uniformly distributed compared with the other two 

models. The Pareto compromise solution for each obtained PF is, also, determined as shown in 

Fig. 8. It is noticed that, the deviation among the values of compromise solutions is small. In 

general, the results showed the effectiveness of using the suggested evolution strategy in each 

model to drive the final PF for the example application. Consequently, the proposed four models 

can be used to deal with groundwater real life applications having multiple objectives. 

Table 3 

Comparison among algorithms results for the example application. 
metric 

Algorithm 

Sp Processing 

time (second) 

Compromise 

solution 

Best 

alternative 

MSE No. of PF 

solutions 

MOGA 
231.6 174.408 (45094.6, 

186891,0) 

(45077.5, 

186944.6) 

0.000000114 1221 

MOMA 
2842.6 745.166 (45792.4, 

189431.5) 

(45868.7, 

189665.6) 

0.00000215 1551 

MOPSO 
129.3 138.965 (45582.2, 

189013.0) 

(45625.6, 

189477.3) 

0.00000347 3968 

MOSFLA 
479.9 593.794 (44672.6, 

184592.2) 

(44655.1, 

184663.4) 

0.000000151 186 

 

In general, the MOPSO outperforms all other algorithms in most of the comparison criteria, 

which confirm with some previous studies. Also, identifying a unique PC solution helps the 

decision makers to determine a unique solution that satisfies all objectives fairly. 

6. Limitations and suggested improvements 

The four developed metaheuristic models have been applied on a ground water example 

application and worked effectively. Also, the models were experimented with two bench mark 

problems with different shapes of PFs and performed well. The developed models used a unique 

solution that satisfies fairly all competing criteria of the problem "PC solution" to drive the 

fitness. As such, tracking a single point resembles optimizing a single-objective. Also, it helps 

the decision maker by presenting a unique PC solution especially in complex objective spaces.  

Despite their perceived benefits, the developed model still has some limitations with a number of 

possible improvements, including: 

- For the groundwater management problem, considering other objectives in addition to the 

total pumping and total cost;  

- studying different aquifers shapes other than rectangular or near rectangular shapes.; and 

- Compare the performance of the proposed multi-objective optimization strategy with other 

strategies used in the literature 
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7. Conclusions 

This research applied new evolution strategy of tracking a single compromise solution to modify 

the GA, MA, PSO, and SFLA algorithms to tackle multiple objectives problems. Two multiple 

objectives standard test problems with known PFs are used to check the ability of the proposed 

models with the proposed evolution strategy to arrive at the correct PFs. The proposed four 

algorithms are then applied on a popular groundwater management example for maximizing 

pumping rates and minimizing operation costs. 

The suggested four models proved their ability to obtain the close true PFs for the two 

benchmark problems in addition to the groundwater application. Accordingly, they can 

effectively be used to deal with real-life groundwater management application. The performance 

of the different multi-objective algorithms is studied and compared. The MOPSO outperformed 

all other algorithms based on the used performance metrics in terms of regularity and distribution 

of PF throughout the solution space and smallest processing time when compared with other 

multi-objective optimization algorithms. In this application, a finite element-based simulation 

model, with a new idea to reduce the run time, is linked with each proposed model for evaluating 

the potential solution. 

Appendix A 

A.1. Benchmark problem (1) 

The first benchmark problem is called the “Kita” problem with two objectives (Eq. A.1), two 

unknowns, and three constraints (Eq. 9) [44]: 
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where, P is the penalty term for constraints violations. In this study, different penalty functions 

are experimented with (linear, exponential, etc.) and the best results were associated with the 

proposed linear penalty function (Eq. A.3).  

A.2. Benchmark problem (2) 

The second benchmark problem is called the “Kursawe” problem with two objectives and three 

unknowns [44]. 
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where, the three unknowns are in the range [-5, 5]. 
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