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The Pavement Condition Index (PCI) is one of the most critical 

pavement performance indicators and ride quality. This study aims to 

develop PCI models based on pavement distress parameters using 

conventional technique and artificial neural network (ANN) technique 

across two climate regions in the U.S. and Canada. The long-term 

pavement performance (LTPP) database was used to obtain pavement 

distress data, including pavement age, rutting, fatigue cracking, block 

cracking, longitudinal cracking, transverse cracking, potholes, 

patching, bleeding, and ravelling, as input variables for predicting PCI. 

Forty-three flexible pavement segments were considered with 333 

observations. The type, severity, and extent of surface damage and the 

PCI were determined for each pavement segment. Two modelling 

techniques were conducted to predict the PCI, namely, multiple linear 

regression (MLR) and artificial neural network (ANN). The coefficient 

of determination (R2), Root mean squared error (RMSE), and mean 

absolute error (MAE) were used to examine the performance of the 

two techniques adopted in this study. The models' results determined 

that both ANN and MLR models could predict PCI with high 

accuracy; ANN models were more accurate and efficient. ANN 

provided the highest accuracy in predicting PCI of pavement for wet 

and wet no-freeze climate regions, with R2 values of 99.8%, 98.3 %: 

RMSE values of 0.44%, 1.413%, and MAE values of 0.44%, 1.022%, 

respectively. Whereas in the MLR method, R2 values of 86.8% and 

89.4%: RMSE values of 7.195%, 7.324%, and MAE values of 

5.616%, 5.79% for wet and wet no freeze climate regions, 

respectively. 
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1. Introduction 

The Pavement Management System (PMS) method is an efficient, effective method to ensure 

that all paved roads are maintained in satisfactory structural conditions [1,2]. Maintenance and 

rehabilitation strategies are crucial for improved ride comfort and traffic safety [3]. In addition, 

the cost of operation of vehicles, construction, and environmental impacts are reduced. Different 

indicators can be used to determine pavement quality, such as the Pavement Condition Index 

(PCI), International Roughness Index (IRI), and Present Serviceability Rating (PSR) [4,5]. A 

good PMS should have performance models, a centralized database, reports, and analysis tools 

[6]. Moreover, two other components need to be managed: a prediction tool for predicting 

pavement performance in the future and an optimization process that uses defined decisions to 

determine the most optimal conditions for pavements [7]. The distress identification manual 

developed during Long Term Pavement Performance (LTPP) serves as a reference manual for 

classifying distress [8]. The ability to predict pavement deterioration at the network level ensures 

that resources are allocated appropriately, and that plans are prioritized, while at the project level, 

a reasonable prediction enables the project managers to know what maintenance measures are 

needed ahead of time [9,10]. Most states use in the US some pavement condition assessments. 

This includes pavement condition rating (PCR), PCI, pavement quality index (PQI), condition 

score, pavement serviceability rating (PSR), surface condition index, and pavement distress 

index (PDI). However, PCI is one of the popular methods used by Arkansas, California, Hawaii, 

Idaho, Indiana, Vermont, Ohio, Lousiana, Minnesota, Texas, and Lowa. PCI helps in deciding the 

maintenance strategy at the network level [11]. 

The PCI method is commonly used to evaluate changes in road network systems and was 

developed by the U.S. Army Corps of Engineers [12,13]. As recently as a few years ago, 

transportation agencies worldwide have been using PCI data to decide on constructing, repairing, 

and maintaining airfields, roads, and parking lots. Their studies used visual survey results 

(through imagery or field inspections) to determine pavement distresses’ type, severity, and 

quantity. The PCI method effectively assesses a structure's integrity, is a reliable indicator of 

current and future performance, and does not require structural testing or skid resistance or 

roughness [12,14]. According to Shahin and Kohn [15], PCI is a pavement condition number 

rating of 0 to 100, the worst-case rating is 0, and the best-case condition is 100, as shown in 

Figure 1. The method of calculating PCI for the flexible pavement system [16,17] is to assess the 

intensity and the extent of each distress initially. This study aims to develop PCI models based on 

pavement distress parameters using conventional technique and artificial neural network (ANN) 

technique and to compare the performance of the models using various statistical measures such 

as coefficient of determination (R), root mean square error (RMSE) and mean absolute error 

(MAE). 
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Fig. 1. Rating scale used for Pavement Condition Index (PCI) Method [17]. 

2. Literature review 

Most previous PCI models are primarily based on linear or nonlinear regressions. In recent years, 

Researchers have conducted much research using fuzzy logic and artificial neural networks. 

They have proposed various forecasting methods, theories, and models considering the complex 

and numerous factors affecting pavement performance, such as traffic, environmental, and 

pavement operation parameters. 

Fathi et al. [18] predicted fatigue distress using a vehicle training technique that combined RF 

and ANN techniques. The Support Vector Machine (SVM) method was used by Fujita et al. [19] 

to investigate cracks in asphalt pavement. Karballaeezadeh et al. [20] Gaussian process 

regression (GPR), Tree and Random Forest were applied to assess the structural capabilities of 

coatings on flexible pavements. Based on response surface methodology (RSM), Ghanizadeh 

and Naseralavi developed an equation for calculating the structure number (SN )in the 1993 

AASHTO flexible pavement structural design guide [21]. 

Other researchers applied ANN and SVM methods to model acoustic longevity where maximum 

aggregate size, binder content, air void content, vehicle speed, and thickness were input variables 

[22]. Zeiada et al. [23] employed Gaussian Process Regression (GPR), Support Vector Machine 

(SVM), Ensemble, and Artificial Neural Network to model pavement performance in warm 

climates (ANN). Ali et al. [24] applied a fuzzy inference system (FIS) to predict pavement 

condition Index (PCI) based on pavement distress. 
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Meharie and Shaik used ANN, SVM, and RF techniques to compare the performance of models 

in predicting the cost of construction projects during the project's early conceptual phase [25]. 

Bhardwaj and Chaurasia used ANN, decision tree (DT), and RF models to compare the 

performance of liquefaction potential [26]. Sefene et al. [27] concluded that the RF technique 

improves the predictability of ambient temperature compared to Decision Trees (DT, and 

Gradient Boosting (GB). 

The artificial neural network (ANN) is a tool for analyzing and solving complex non-traditional 

problems using highly interconnected neurons [28]. ANNs are highly versatile and scalable tools 

that can be used to model and analyze complex statements. ANNs can be used in traditional 

methods, including finite element calculation of conventional statistical analysis [10,29]. The 

authors concluded that the ANN technique improved the predictability of dynamic modulus (E*) 

values [30]. Eidgahee et al. [31] applied the ANN, Genetic Programming (GP), and the 

Combinatorial Group Method of Data Handling (GMDH-Combi) techniques to the predictability 

of dynamic modulus of hot mix asphalt. 

 An ANN network consists of three elements as shown in Figure 2: (1) an input layer or 

processing element, (2) one or more hidden layers, and (3) an output layer of neurons. Data are 

typically received in the input layer from the outside environment, and the input layer neurons 

transmit this information to the hidden layer neurons without calculating anything. The hidden 

layer consists of one or more layers with many processing units. All neurons except those in the 

input layer compute a linear combination of the data from the previous layer and add a bias to it. 

The neural network must have a certain number of hidden neurons to be an accurate model. 

Highly nonlinear components require more neurons, whereas smoother items require fewer 

neurons [32]. Neuronal networks must have at least one hidden layer [33]. 

 
Fig. 2. The general architecture of the feedforward backpropagation ANN. 
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According to Sen and Gibbs [34], it is unclear how many hidden layers would be sufficient or 

how many nodes should be used in the hidden layers. Many interconnections between their 

neurons or processing elements give ANNs, which mimic the biological nervous system, their 

distinctive impact. They provide significant advantages by learning from examples and 

generating meaningful and cost-effective solutions for problems. Minor errors, such as a slight 

variation between the predicted and observed values, are ignored [35]. ANNs adapt to changing 

circumstances and digest information quickly [36]. ANNs can be composed of a single layer or 

many layers, depending on the complexity of the data. Multilayered neural networks have more 

than one hidden layer consisting of neurons without a direct connection to the network inputs or 

outputs. 

Alternatively, using regression analysis, Ahmed et al. [37]developed PCI models for pavement 

distress on flexible pavements. The model yielded an R2 of 78.4%, described by equation 1. 

Similarly, Shakir [38] developed a PCI model for pavement distress and traffic volume on 

flexible pavements. The model yielded an R2 of 79%, as described by equation 2. Additionally, 

Ali et al. [39] developed a PCI predictive model for St. John's roads. The model was for 19 urban 

roads and yielded a coefficient of determination of R2 of 48% as given in equation 3. 

× Slippage - 2.3254 ×Potholes - 37.2875 ×rutting (1) 

PCI = 98.861 - 0.407×Age - 0.235×Cracking area- 0.065×Longitudinal +3.404×Maintenance effect- 

0.003 ×ESAL (2) 

PCI = 47.22+0.91×Rutting +3.11×Block- 2.70×Fatigue +1.69×Longtiudinal +0.71×Transverse cracking 

-1.81×Delamination- 2.44×Potholes- 0.14 ×Patching (3) 

3. Materials and methods 

3.1. Methodology 

This paper developed multiple regression analysis and algorithm optimization for various 

prediction models. An essential aspect of this study's methodology is developing prediction 

models and establishing accurate deterioration models based on machine learning techniques, 

such as artificial neural network (ANN). The ANN technique is used to guide models to 

pavement performance that can more accurately predict pavement conditions. Figure 3 illustrates 

the overall methodology of the study. This research examined two techniques: Multiple Linear 

Regression (MLR) and Artificial Neural Networks (ANNs), and compared them to predict PCI 

values. The present study was divided into three phases as follows: 

• Development of asphalt pavement performance index (PCI) using the Multi-Linear Regression 

(MLR) technique. 

• Development of asphalt pavement performance index (PCI) using Artificial Neural Network 

(ANN) technique. 

• Compare and validation of the MLR and ANN models. 
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Multiple linear regression (MLR) 

The research was conducted in two climate regions in the U.S. and Canada to evaluate the effects 

of different pavement distresses on PCI indicator values from LTPP. MLR is typically used to 

research the relationship between independent and dependent variables. The conventional 

regression method is comprehensive and robust in evaluating relationships between independent 

and dependent parameters. Equation 4 presents basic equations of the prediction models to find 

the influence of pavement distress on PCI value. 

PCI=C + 𝑎1𝑋0 + 𝑎2𝑋1 + 𝑎3𝑋2 + 𝑎4𝑋3 + 𝑎5𝑋4 + 𝑎6𝑋5 + 𝑎7𝑋6 + 𝑎8𝑋7 + 𝑎9𝑋8 + 𝑎10𝑋9 (4) 

where: PCI =Pavement Condition Index, C= Constant, 𝑋 0= Age, 𝑋1= Rutting, 𝑋2= Fatigue Cracking, 

𝑋3= Block Cracking,  𝑋4=Longitudinal Cracking, 𝑋5=Transverse Cracking, 𝑋6=Patching, 𝑋7=Potholes, 

𝑋8=Bleeding, 𝑋9=Ravelling, an 𝑎1, 𝑎2, 𝑎3 … … … … 𝑎10= Coefficients. 

 
Fig. 3. Flowchart Research Methodology. 
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Artificial Neural Network (ANN) 

The network that has been used in this research was a forward feed network. This network was 

trained with the backpropagation method. The architectural network for PCI consists of an input 

layer (10 parameters), three hidden layers, and an output layer. The output layer has one neuron 

(PCI). The ANNs technique is an important tool for developing prediction models by simulating 

human biological neurons' work and finding the best resolution for complex problems instead of 

using traditional approaches [40,41]. One of the most effective methods for developing 

prediction models is a feedback multilayer perceptron (FBMLP), used in this research. An 

FBMLP has three layers, as follows: 

1-The first layer is the input layer 𝑥𝑖. In this study, the input variables are pavement distress. 

𝑥𝑖 = (𝑥1𝑖, 𝑥2𝑖, 𝑥3𝑖, … … 𝑥𝑎𝑖) (5) 

i=1,2 3, ……., n. 

2 - The second layer is the hidden layer, and it is used to connect the input layer with the output 

layer. 

3-The third layer is the output layer 𝑦𝑖 and the output variable is PCI. 

yi = (y1i, y2i, y3i, … … yai) (6) 

where i=1,2 3, ……., n. 

A weighted sum of the values of the input parameters is computed through Equation (7): 

Y=∑ 𝑤𝑖
𝑛
𝑖=1 𝑥𝑖 + 𝑤0 (7) 

where 𝑤𝑖= weight associated with the I th input parameter; 𝑥𝑖 = data corresponding to the input 

parameter; and 𝑤0 = bias. 

The hyperbolic tangent as expressed in Equation (8) is adopted in this study. 

𝑓(𝑎) =
2

1+𝑒−2𝑛 − 1 (8) 

A literature review of the existing PCI prediction models for various pavement types revealed 

that: 

 ANN models have demonstrated exemplary performance in predicting and determining the 

Pavement Condition Index. 

 Despite the benefits of the ANN technique, some authors consider ANN models to be a "black 

box" because it is impossible to know the precise effect of each variable on the prediction model 

[42,43]. 
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3.2. LTPP database in pavement research 

The long-term performance pavement (LTPP) is a program that was initiated in 1987 as part of 

the Strategic Highway Research Program (SHRP). The FHWA continued to work and extended 

the SHRP program after its completion in 1992 [44]. The pavements in the LTPP program are 

divided into two types: special pavement studies (SPS) at approximately 1,600 sites, and general 

pavement studies (GPS) at around 800 sites. These datasets were extracted, revised, then 

analyzed, and combined into a reliable and exhaustive data set. The authors examined 10 

variables listed in Table 1. The authors selected 333 observations from 43 road sections in the 

U.S. and Canada that were used to develop PCI prediction models. Ten pavement distress 

variables are evaluated to predict PCI for wet and wet no-freeze conditions. These variables 

include age, fatigue cracking, block cracking, longitudinal cracking, transverse cracking, 

potholes, patching, bleeding, ravelling, and rutting. The ASTM D6433-18 method was used to 

calculate PCI values. The method of calculating PCI for the flexible pavement system [16,17] is 

to assess the intensity and the extent of each distress initially. After that, the distress density is 

calculated using Equations 9, 10 and 11. 

 Density =  
Distress area m2

Section area m2 ×  100 (9) 

 Density =
Distress amount in the linear m2

Sample unit area in m2 ×  100 (10) 

 Density =
Number of potholes

Sample unit area in m2 ×  100 (11) 

Subsequently, deduct points (D.P.) from standard deduct value curves is determined for each 

distress type. Finally, PCI is determined from the total deduct value (TDV) using the corrected 

deduct value (CDV). A typical deduct value is given in Figure 4. More information about PCI 

calculation can be found in ASTM D6433-18. 

 
Fig. 4. Typical Deduct Value Curve [45]. 
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Table 1 

Details of Study Sections. 

Parameters 

Climate Regions 

Wet Freeze Wet no Freeze 

Range 
Mean 

Std. 

Deviation 

Range 
Mean 

Std. 

Deviation Minimum Maximum Minimum Maximum 
Statistic 

Std. 

Error 
Statistic 

Std. 

Error 

Number of data 

samples 
144 189 

Age (Year) 3 33 15.07 0.57 6.90 1 31 14.330 0.517 7.103 

Rutting (mm) 0 29 8.44 0.46 5.53 0 22 7.050 0.305 4.194 

Fatigue 

Cracking (𝑚2) 
0 218.7 24.34 4.08 48.85 0 377.9 20.36 4.464 61.204 

Block Cracking 

(𝑚2) 
0 0 0 0 0 0 0 0 0 0 

Longitudinal 

Cracking(𝑚2) 
0 342.7 92.36 9.79 117.05 0 337.1 48.78 5.908 80.797 

Transverse 

Cracking(𝑚2) 
0 293 31.94 4.64 55.58 0 193 18.05 2.362 32.390 

Patching (𝑚2) 0 0 0 0 0 0 0 0 0 0 

Potholes(Number) 0 0 0 0 0 0 0 0 0 0 

Bleeding (𝑚2) 0 350.8 18.19 5.49 65.94 0 0 0 0 0 

Ravelling (𝑚2) 0 564.3 37.66 10.04 120.559 0 0 0 0 0 

PCI % 8 91 77.77 1.65 19.877 8.0 100.0 71.45 1.645 22.618 

 

4. Evaluation of regression and neural network models 

The results of this study have been validated by applying three statistical criteria, including the 

coefficient of determination (𝑅2), root mean square error (RMSE), and mean absolute error 

(MAE). Equations 12, 13 and 14 below are used to calculate these criteria: 

𝑅2 = 1 −
∑ (𝑡𝑖−𝑜𝑖)2

𝑖

∑ (𝑜𝑖)2
𝑖

 (12) 

MAE=
1

𝑛
∑ |𝑡𝑖 − 𝑜𝑖|

𝑛
𝑖  (13) 

RMSE=√
∑ (𝑡𝑖−𝑜𝑖)2

𝑖

𝑛
 (14) 

𝑜  𝑖  = actual value observation i; ti = predicted value of observation I, and n = number of 

observations. 
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5. Results and discussion 

5.1. Multiple linear regression (MLR) results 

The PCI Regression models are shown in equations (15) and (16), which consider pavement 

distress, cracking by rutting, fatigue cracking, block cracking, longitudinal cracking, transverse 

cracking, potholes, patching, bleeding, and ravelling as input variables and PCI output variables. 

• Wet Freeze Climate 

Equation 15 indicates the PCI model in the wet freeze region. The model showed that PCI is 

negatively correlated with age and fatigue cracking. The PCI model has been positively 

associated with rutting, longitudinal cracking, transverse cracking, bleeding, and ravelling. 

However, there are still some contradictions between the PCI and a few influencing variables. 

PCI = 116.52 − 2.74𝑋0 + 0.178𝑋1 − 0.018𝑋2 + 0.004𝑋4 + 0.024𝑋5 + 0.010𝑋8 + 0.008𝑋9 (15) 

• Wet no Freeze Climate 

The PCI model in the wet no freeze region is indicated in equation 16. The model demonstrates 

that PCI has negatively correlated with age and longitudinal cracking. The PCI model has been 

positively associated with rutting and transverse cracking. 

PCI = 113.33– 3.078𝑋0 + 0.205𝑋1 + 0.007𝑋2 − 0.004𝑋4 + 0.045𝑋5 (16) 

The correlation coefficient (R2) of the wet freeze and wet no freeze relationship is 86.8% and 

89.3%, respectively. Table 2 shows the summary of MLR models used in the wet freeze and no 

freeze region. 

MLR Model Performance Validation 

For validation purposes, cross-validation tests and sensitivity tests were conducted between the 

predicted and measured values for PCI. 

 Cross-Validation 

Cross-validation is either used to determine how accurately PCI models can forecast or to assess 

the consistency of the model across multiple data samples. 80% of the data samples for each 

category are randomly selected to construct deterioration models. The remaining 20 % of the 

data samples are used to test the empirical model’s accuracy. Figures 5 and 6 show each climate 

area's deterioration model. 

As seen in Table 3, the reduction in R2, RMSE and MAE values for roads in the wet freeze and 

wet no freeze are insignificant. However, the accuracy reductions are 10.83 % and 3.56% for the 

same variables in the R2value, respectively, while RMSE and MAE are 4.003%, 17.79%, 

6.416%, and 6.01%, respectively. The MLR methods can accurately predict PCI models of 

pavement distress in two climate regions (wet freeze and wet no freeze). 
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Table 2 

Summary of Performance of MLR Models. 

Independent 

variable 

Climate Regions and Coefficients 

Wet Freeze Wet no Freeze 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

 Unstandardized 

Coefficients 

Standardized 

Coefficients 

 

B 

Std. 

Error Beta t 
B 

Std. 

Error 
Beta t 

𝑅2 86.8  89.3 

p-value 0.04  0.041 

Constant 116.456 1.723 -  67.576 113.33 1.54 - 73.608 

Age -2.733 0.105 -0.947 -26.116 -3.074 0.082 -0.967 -37.314 

Rutting 0.178 0.119 0.049 1.492 0.205 0.135 0.037 1.47 

Fatigue Cracking -0.018 0.014 -0.044 -1.235 0.007 0.009 0.02 0.776 

Longitudinal Cracking 0.004 0.003 0.013 0.406 -0.004 0.008 -0.015 -0.542 

Transverse Cracking 0.024 0.013 0.068 1.929 0.045 0.02 0.065 2.186 

Bleeding  0.01 0.01 0.033 1.022 - - - - 

Ravelling 0.008 0.005 0.051 1.604 - - - - 

 

Table 3 

Cross-Validation Deterioration Models Result. 

Climate 

Regions 

Statistical Error Measures (PCI) 

MLR Cross-validation Reduction % (±) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝐌𝐀𝐄 𝑹𝟐 RMSE 𝐌𝐀𝐄 

Wet Freeze 86.8 7.195 5.616 77.4 7.495 6.001 -10.83 +4.003 +6.416 

Wet no Freeze 89.3 7.324 5.79 92.6 8.909 6.16 +3.56 +17.79 +6.01 
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Fig. 5. Deterioration model for the wet freeze region. 

 
Fig. 6. Deterioration model for the wet no freeze region. 

MLR Model Sensitivity Analysis 

To develop an accurate PCI prediction model, an analysis of sensitivities is essential in any study 

that includes multiple inputs. The sensitivity index indicates which independent factor generates 
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the most significant input into the generated dependent variable and which independent variable 

is the least effective. MLR using the backward elimination approach is conducted using the IBM 

SPSS package. The sensitivity analysis results are presented in Equations (17) and (18). The 

correlation coefficient (R2) for equations 17 and 18 are 86.3% and 89.3% respectively, Tables 4 

and 5 illustrate the Correlation matrix between variables utilizing the Pearson correlation 

coefficient. 

PCI = 118.004 − 2.74X0 + 0.178X1 + 0.021X5 + 0.009X9 (17) 

PCI = 113.42– 3.07X0 + 0.175X1 + 0.007X2 + 0.045X5 (18) 

As observed in Table 4, age showed a strong negative correlation of -0.93 with the PCI, which 

means with an increase in age the PCI decreases. Similarly, fatigue cracking, transverse cracking, 

longitudinal cracking, and rutting negatively correlate with the PCI. Fatigue cracking and 

transverse cracking are the second and third most significant factors for the decrease in PCI. 

While block cracking, patching, and potholes have no correlation with PCI. The influence of 

block cracking, patching and potholes can be due to the limited number of data available in the 

LTPP for these factors. Similarly, in Table 5, age showed a strong negative correlation with the 

PCI, and Transverse cracking has a low negative relationship with PCI. Rutting, fatigue cracking, 

and longitudinal cracking have a minor relationship with PCI. While block cracking, patching, 

potholes, bleeding, and ravelling have no correlation with PCI. 

Tables 4 

Correlation matrix between variables for wet freeze. 

  PCI Age Rutting 
Fatigue 

cracking 

Block 

cracking 
Long Transverse Patching Potholes Bleeding Ravelling 

PCI 1 

    

  

 

      

 Age -0.93 1 

         Rutting -0.15 0.2 1 

        Fatigue cracking -0.39 0.4 0.11 1 

       Block cracking 0 0 0 0 1 

      longitudinal -0.19 0.24 -0.27 0.12 0 1 

     Transverse -0.28 0.35 -0.03 0.32 0 0.45 1 

    Patching 0 . 0 0 0 0 0 1 

   Potholes 0 0 0 0 0 0 0 0 1 

  Bleeding 0.01 0.03 -0.07 -0.03 0 0.16 0.04 0 0 1 

 Ravelling 0 0.06 0.05 0.08 0 -0.01 -0.05 0 0 0.15 1 

 

Tables 5 
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Correlation matrix between variables for wet no freeze. 

  PCI Age Rutting 
Fatigue 

cracking 

Block 

cracking 
Long Transverse Patching Potholes Bleeding Ravelling 

PCI 1 

    

  

 

      

 Age -0.94 1 

         Rutting 0.01 0.04 1 

        Fatigue cracking -0.09 0.13 -0.08 1 

       Block cracking 0 0 0 0 1 

      longitudinal -0.09 0.12 0.24 0.05 0 1 

     Transverse -0.26 0.34 0.19 0.26 0 0.45 1 

    Patching 0 0 0 0 0 0 0 1 

   Potholes 0 0 0 0 0 0 0 0 1 

  Bleeding 0 0 0 0 0 0.16 0 0 0 1 

 Ravelling 0 0 0 0 0 0 0 0 0 0 1 

 

5.2. Artificial neural network (ANN) models results 

The performance models were assessed using three standard methods, the 𝑅2 value, RMSE, and 

MAE. The 𝑅2 value, which is a method to calculate the correlation between observed and 

predicted values, close to 1, reflects a strong relationship between the predicted values from the 

ANNs model and observed values. The lower the RMSE and MAE values, the lower the 

prediction error. As a result, they were obtained from the three models. The best neural network 

model was obtained by utilizing a variety of network structures and training algorithms, 

including a backpropagation learning approach with the Levenberg-Marquardt training algorithm 

(10-14-10-10-1-1). Random distribution was used to divide the data into the following three 

groups: training (70%), testing (15%), and validation (15%). MATLAB 2021a, with its neural 

network (NN) toolbox was used to analyze the data. Table 6 summarizes all the results for ANN, 

presenting the PCI model's 𝑅2, RMSE and MAE values for two climate regions. Figures 7 and 8 

show the ANN prediction results for PCI models for two climatic regions, i.e., wet freeze and 

wet no freeze. 

Table 6 presents 𝑅2, RMSE and MAE values of the PCI model for two climate regions for the 

(333 observations) flexible pavement sections in the two climatic regions. The highest 𝑅2 value 

was 99.8% for wet freeze. The lowest 𝑅2value for PCI 98.3% was observed for wet no freeze 

climate regions. The lowest RMSE and MAE values for PCI were 0.44% and 0.44% and were 

observed for the wet freeze climate region. 
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Table 6 

Performance of ANN Models. 

Climate Regions Procedure 
ANN Model 

𝑅2 RMSE MAE 

Wet Freeze 

Training 0.999 0.12 0.12 

Testing 0.996 0.84 0.84 

Validation 0.998 1.5 1.5 

All 0.998 0.44 0.44 

Wet no Freeze 

Training 0.984 1.994 1.434 

Testing 0.986 4.115 4.115 

Validation 0.984 0.964 0.729 

All 0.983 1.413 1.022 

 

 

 
Fig. 7. ANN Model for Wet Freeze. 
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Fig. 8. ANN Model for Wet no Freeze. 

 

6. Comparison of the MLR generated and ANNs model 

ANNs model development has been carried out using the same data as regression model 

development. Comparing the ANN model to the MLR, the ANNs model had a better fit in the 

goodness of fit parameter according to Table 7. Figures 8 and 9 show the comparison of the 

MLR models to the ANN models for PCI. 
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Table 7 

Comparison Between MLR and ANN Model. 

Statistical Error Measures 

Climate Regions 
MLR Generated ANNs Generated Improvement (%) 

𝑅2 RMSE MAE 𝑅2 RMSE MAE 𝑅2 RMSE MAE 

Wet Freeze 86.8 7.195 5.616 99.8 0.44 0.44 +13.03 +93.88 +92.17 

Wet no Freeze 89.4 7.324 5.79 98.3 1.413 1.022 +9.05 +80.71 +82.35 

 

Table 7 presented a comparison between MLR Generated and ANN models and summarized 

several points as follows: 

• Prediction models based on the MLR and ANN techniques based on pavement distress volume 

have been developed in this study. 

• ANN models provided more accurate predictions than MLR models. 

• The statistics indicated 𝑅2values from the ANN models are higher than the 𝑅2values of the MLR 

models by 13.03 % and 9.05% for wet freeze and wet no freeze regions, respectively. 

• The RMSE values of the ANN models are less than the RMSE values of the MLR models by 

93.88% and 80.71%for wet freeze and wet no freeze regions, respectively. 

• The MAE values of the ANN models are less than the MAE values of the MLR models by 

92.17% and 82.35% for wet freeze and wet no freeze, respectively. 

Several conclusions can be drawn from the data in Figures 9 and 10: 

• The MLR approach has a slight corrugation while ANN has a straight line, which explains why 

ANN models tend to be more accurate. 

• Figures clearly show that the ANN prediction models provided more accuracy than the MLR 

models under different climate conditions. 

According to the results, the pavement distress model can predict the PCI models with high 

accuracy when used in different climate regions conditions. 
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Fig. 9. Comparison between the Collected and Predicted PCI Using MLR and ANN Models for wet 

freeze. 

 

 
Fig. 10. Comparison between the Collected and Predicted PCI Using MLR and ANN Models for wet no 

freeze. 
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7. Conclusions 

This present study proposed an approach to illustrate the relationship between the (PCI) indicator 

in asphalt pavements and ten independent variables (age of pavement and nine pavement 

distresses) more precisely and statistically reliable. The pavement distress data collected on wet 

freeze and wet no freeze climate regions in the U.S. and Canada are used in the present study to 

develop PCI models. This study investigates pavement distress parameters and predicts the PCI 

of flexible pavements, using 43 road sections (333 observations) from the LTPP database, 

pavement distress data were collected, including rutting, fatigue block cracking, longitudinal 

cracking, transverse cracking, potholes, patching, bleeding, and ravelling with performance 

indicator data (PCI). The following can be concluded: 

• The PCI values of the test section varied from ranging from 8 to 100 based on the different 

distress levels of the data. 

• To ensure a safe driving experience, roads with PCI values of less than 40 should undergo 

maintenance. Therefore, the threshold PCI value of 40 should be maintained. 

• For the wet freeze region, the PCI from MLR is dependent on the age, rutting, fatigue cracking, 

longitudinal cracking, transverse cracking, bleeding, and ravelling. Similarly, for the wet no 

freeze region, the PCI is related to age, rutting, fatigue cracking, longitudinal cracking, and 

transverse cracking. 

• For the MLR, the 𝑅2 value for wet freeze and wet no freeze was 86.8% and 89.3 %. The ANN 

has shown an increased 𝑅2 of more than 99%. Additionally, the validation of the model is more 

effective for ANN than the MLR with a 𝑅2 value of more than 98% and 77% respectively. 

• Although ANN doesn’t provide an equation for the prediction of PCI, but the model can correlate 

with the pavement damage. Alternatively, for comparison, the RMSE and MAE values were 

7.195% and 5.616% for the wet freeze region, while for ANN, the minimum RMSE and MAE 

values were 0.44% and 0.44%. Therefore, ANN correlates better with PCI and distress in terms of 

error. 

• Results illustrated that the MLR model with 10 independent variables was capable of predicting 

pavement performance for two climate regions i.e., wet freeze and wet no freeze, but the ANN 

models predicted the pavement condition with more accuracy and the lowest errors. 

• Modelling of distress parameters helps evaluate pavement deterioration and pavement 

management systems. The present study uses nine distress parameters for predicting the PCI. 
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Future studies may include some more parameters like corrugation, slippage cracks, depression, 

polished aggregate and shoving to further improve these models. 
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