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The aim of the present study is to apply machine learning 

technique to predict the ultimate bearing capacity of the 

rectangular footing on layered sand under inclined loading. 

For this purpose, a total 5400 data based on the finite 

element method for the rectangular footing on layered sand 

under inclined loading were collected from the literature to 

develop the machine learning model. The input variables 

chosen were the thickness ratio (0.00 to 2.00) of the upper 

dense sand layer, embedment ratio (0 to 2), the friction angle 

of upper dense (410 to 460) sand and lower loose (310 to 

360) sand layer and inclination (00 to 450) of the applied 

load with respect to vertical. The output is the ultimate 

bearing capacity. Further, the impact of the individual 

variable on the bearing capacity was also assessed by 

conducting sensitivity analysis. The results reveal that, the 

load inclination is the major variable affecting the bearing 

capacity at embedment ratio 0, 1 and 2. Finally, the 

performance of the developed machine learning model was 

assessed using six assessing statistical parameters. The 

results reveal that the developed model was performing 

satisfactorily for the prediction of the ultimate bearing 

capacity of the rectangular footing on layered sand under 

inclined loading. 
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1. Introduction 

The footing transfers the load of the superstructure to the soil beneath it. The depth-to-width ratio 

determines whether a footing is shallow or deep. The load must be conveyed beneath the footing 

without causing it to settle or shear. Experimental, numerical, and analytical investigations using 

vertical [1–9] and inclined [10–13] loading have been used to determine the ultimate bearing 

capacity of strip, circular, square, and rectangular footings on single layer or layered soils. In [7], 

a comparison was made between the various experimental methods, limit equilibrium 

approaches, and finite element studies for determining the bearing capacity of the strip footing 

on layered soils under vertical loading. The authors concluded that the ratio of the thickness of 

the first layer to the thickness of the base was the deciding element and had a greater impact than 

the other variables considered. There is no ultimate bearing capacity equation for the rectangular 

footing on layered sand under inclined loading as evident from literature [10–13]. In such cases, 

the only way to determine the bearing capacity is to conduct expensive and time-consuming 

experimental or numerical research. Another method is to calibrate and fit the experimental or 

numerical data to create a mathematical model to explain the interactions among the numerous 

variables. Because of their ability to store, learn, and represent the dynamic interaction between 

numerous variables without any prior ideas regarding bearing capacity, machine learning 

approaches are a superior alternative for modelling. Further, the problem of predicting the 

bearing capacity of shallow footings under inclined loading is very complex especially in the 

layered granular soils and not yet entirely understood. This fact has encouraged researchers [14–

28] to apply the machine learning technique to bearing capacity and settlement prediction under 

vertical and eccentric loading. In [22], in addition to limit equilibrium and numerical methods for 

calculating the ultimate bearing capacity of strip footings supported by multilayered soils under 

vertical loading, machine learning technique has also been successfully applied and used. The 

prediction of bearing capacity of strip footing resting on layered soil under vertical loading using 

various machine learning approaches (generalized reduced gradient, genetic programming, 

artificial neural network, and evolutionary polynomial regression) was reported. The study 

concluded that artificial neural network outperformed other techniques (generalized reduced 

gradient, genetic programming, and evolutionary polynomial regression). The ultimate bearing 

capacity of strip footing on multilayered soil under vertical loading was predicted by [23] using 

artificial neural network and certain metaheuristic approaches such as dragonfly approach, Harris 

hawk's optimization, and sparse polynomial chaos expansions. Using elephant herding 

optimization, shuffling frog leaping algorithm, salp swarm algorithm, wind-driven optimization, 

and artificial neural network to produce neural ensembles, The researcher [17] evaluated the 

usefulness of merging a black hole algorithm and a multi-verse optimizer with an artificial neural 

network (ANN) to produce hybrid models, the black hole algorithm and multi-verse optimizer 

(MVO) can improve the artificial neural network's accuracy. The author also indicated that 

MVO-ANN can be employed as a trustworthy method for the realistic estimation of bearing 

capacity. Artificial neural networks to simulate 2430 finite element models to evaluate the 

bearing capacity in shallow footings and to optimize the performance of the model using an 

imperialist competitive strategy was employed by [18]. The shear strength using salp swarm 

algorithm was predicted by [19] and the authors concluded that it could serve as a viable 
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alternative to standard approaches. To forecast the factor of safety against slope failures, multi-

layer perceptron (MLP), Gaussian process regression, multiple linear regression, simple linear 

regression, and support vector regression was used by [20]. The authors concluded that the MLP 

performed better than other machine learning-based models. According to the literature, the 

novelty of this work resides in the fact that no work has yet been published that uses machine 

learning to predict the bearing capacity of rectangular footings constructed on layered sand under 

inclined loading. This paper proposes the use of machine learning to predict the bearing capacity 

of a rectangular footing constructed on layered sand and loaded at an angle. In addition, most 

existing investigations on rectangular footings on layered sand under vertical and inclined 

loading employed experimental or numerical approaches. Experimentally or numerically, the 

influence of embedment ratio on the bearing capacity of the rectangular footing on layered sand 

under inclined has not been studied. The following objectives were taken into consideration 

when developing this model. 

i. To determine the parameters that influence the bearing capacity of the rectangular footing 

on layered sand under inclined load, as well as to examine the relationships that exist 

between those parameters. 

ii. To design a machine learning model for predicting bearing capacity and to test the 

model's accuracy using statistical parameters. 

iii. To perform sensitivity analysis to examine the impact of various parameters on output 

bearing capacity. 

iv. To create an empirical model utilizing a machine learning approach to make a prediction 

about the bearing capacity of a rectangular foundation placed on layered sand and 

subjected to inclined loading. 

 
Fig. 1. Simplified illustration of machine learning approach. 
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The footing embedment ratio (D/W), upper dense sand layer thickness ratio (H/W), unit weight 

and friction angle of the upper dense (1, φ1) and lower loose (2, φ2) sand layers and load 

inclination () with respect to vertical were all employed as input variables. The schematic of the 

machine learning approach is depicted in Figure 1. 

2. Machine learning technique 

The application of artificial neural network (ANN) attempts to mimic the neural system and the 

functions of the human brain. Without any prior expectations, ANN modelling may differentiate 

intricate nonlinear linkages between the input and output variables. Furthermore, unlike 

conservative techniques, ANN can use raw data (input) without any editing or pre-processing, 

making it more helpful and less expensive. Before making any interpretation of new information, 

an ANN must be trained, for which several algorithms were available in the literature. A feed 

forward back propagation technique is the most adaptable and effective for multilayer neural 

networks [16,29,30]. Interconnected layers make up the backpropagation (BP) algorithm (input, 

hidden and output). The output of the input layer's neuron or node was supplied as an input to a 

hidden layer node, and the hidden layer's neuron or node's output was finally transferred to the 

output layer. The number of hidden layers and the number of hidden layers is determined by the 

problem at hand. As a result, researchers had to resort to a time-consuming trial-and-error 

method. In the BP network, all nodes (excluding the input layer) had an activation function and a 

bias node. A constant input is included in the bias. The aggregated output is filtered by the 

activation function. In ANN, activation functions were utilised depending on the objective. The 

output layer created computed vectors of the output corresponding to the problem's solution. The 

input/output data were often expressed as vectors (named as training pairs). The method is 

repeated for the training pairs in the data until the network error is aggregated to a brink, which 

is determined using an error function (RMSE, root mean square error). For connecting the hidden 

and output layers, the same approach was used. The above technique was also performed during 

the network's training (input to the hidden and hidden to the output layer). Iteration refers to a 

single step in the overall training sequence. As a result, the number of iterations is increased until 

the needed output is achieved (error is within the specified limit). ANN has the advantage of 

being a more reliable and precise alternative to regression-based methods and formulas. This is 

because this modelling strategy lacks a formal expression between input and output variables. 

ANN has the disadvantage of requiring a lengthy trial-and-error procedure to identify network 

properties such as hidden layers and neurons. 

3. Data 

A total of 5400 data points were collected using the ABAQUS software and the C3D8R element 

to determine the bearing capacity of a rectangular footing on layered sand (dense sand over loose 

sand) under inclined loading. Importantly, none of these 5400 data had previously been reported 

in a machine learning study. The modelling utilised the data generated by the numerical study 

described in [5,13]. Table 1 provides additional information about the parameters used. Using the 
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parameters shown in Table 1 for various embedment ratios, additional numerical research was 

conducted. 

Table 1 

Details of parameters varied for modelling. 
Property Range of variation 

Friction angle (Deg.) 31° 32° 33° 34° 35° 36° 41° 42° 43° 44° 45° 46° 

Unit weight(kN/m
3
) 14.5 15.0 15.5 16.0 16.5 17.0 19.5 20.0 20.5 21.0 21.5 22.0 

Modulus (MPa) 22.8 26.4 31.2 33.6 38.4 43.2 68.4 74.4 82.8 91.2 102.0 120.0 

Dilation angle (Deg.) 1° 2° 3° 4° 5° 6° 11° 12° 13° 14° 15° 16° 

Poission ratio 0.35 0.34 0.33 0.32 0.31 0.30 0.30 0.28 0.26 0.24 0.22 0.20 

Embedment ratio 0, 1 and 2 

Thickness ratio 0.0, 0.50, 1.00, 1.50, 2.00 

Load inclination (Deg.) 0˚, 5˚, 10˚, 15˚, 20˚, 25˚, 30˚, 35˚, 40˚, 45˚ 

Table 2 

Range of data used for the training and testing at different embedment ratio. 
Input & 

output 

parameters 

Training data set Testing data set 

Minimum Maximum Mean 
Standard 

deviation 
Minimum Maximum Mean 

Standard 

deviation 

D/W 0 0 0 0 0 0 0 0 

H/W 0 2 0.929 0.69 0 2 1.16 0.70 

1 19.5 22 20.75 0.85 19.5 22 20.75 0.85 

2 14.5 17 15.85 0.85 14.5 17 15.51 0.81 

φ1 41 46 43.5 1.70 41 46 43.50 1.70 

φ2 31 36 33.70 1.70 31 36 33.02 1.62 

 0 45 22.5 14.36 0 45 22.50 14.37 

BCDA 75.41 6212.64 926.87 931.29 72.526 6524.59 1080.91 1176.79 

D/W 1 1 1 0 1 1 1 0 

H/W 0 2 0.92 0.69 0 2 1.171 0.70 

1 19.5 22 20.75 0.85 19.5 22 20.75 0.85 

2 14.5 17 15.87 0.84 14.5 17 15.50 0.81 

φ1 41 46 43.5 1.70 0 45 22.50 14.37 

φ2 31 36 33.71 1.69 41 46 43.50 1.70 

 0 45 22.5 14.36 31 36 33 1.63 

BCDA 371.62 13973.31 3061.58 2179.27 358.62 16021.20 3564.47 2804.63 

D/W 2 2 2 0 2 2 2 0 

H/W 0 2 0.92 0.69 0 2 1.16 0.70 

1 19.5 22 20.75 0.85 19.5 22 20.75 0.85 

2 14.5 17 15.85 0.84 14.5 17 15.50 0.81 

φ1 41 46 43.5 1.70 41 46 43.5 1.70 

φ2 31 36 33.71 1.69 31 36 33.00 1.63 

 0 45 22.50 14.36 0 45 22.50 14.37 

BCDA 1398.63 19826.43 4883.45 2862.87 1348.63 25733.37 5616.06 4002.85 

 

As a result, for the model creation in this study, seven input (D/W, H/W, 1, 2, φ1, φ2, ) and one 

output (BCDP) variables were included. Table 2 shows the lowest, maximum, average, and 

standard deviation of all gathered data for training and testing at varied embedment ratios. It 

should be mentioned that the data is separated into 70 % and 30 % for training and testing 

purposes at each embedment ratio. The thickness ratio (H/W), load inclination angle (θ), unit 

weight of higher dense (γ1) and lower loose sand layer (γ2), Friction angle of upper dense (φ1) 
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and lower loose sand (φ2) layer, and embedment ratio (D/W) all affect the rectangular footing's 

bearing capacity (BCD). As a result, a model was created with all the variables as inputs, and the 

output was the bearing capacity (BCD), which is defined as follows in equation (1). 

 
1 2, 1 2,/ , , , , /D u H W D W

BC q
    

  (1) 

 
1 2, 1 2,/ , , , , /u H W D W

q
    

 = Bearing capacity of rectangular footing on layer sand under inclined 

loading 

A model was created based on the input and output. The proposed model was evaluated using a 

model that assessed metrics such as correlation (coefficient (r), coefficient of determination (R2), 

mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), and 

mean absolute percentage error (MAPE). 

4. Model development 

Modeling was done with the WEKA software. It is pertinent to mention here that during K-fold 

cross-validation, WEKA software randomly divides the original sample into K subsamples. One 

subsample is used for model validation, while the remaining K-1 subsamples are used for model 

training. The procedure is then repeated K times, with each of the K subsamples serving as 

validation data exactly once. The K results from the folds can then be averaged to produce a 

single estimate. The value of K used in the applied K-fold- CV technique by WEKA is 10 in the 

present analysis for the model development. The initial step in the model construction process is 

to train using the training data. The connection weights were generated after the network had 

been trained. According to [31], the number of hidden layers was initially set to one, with the 

number of hidden layer neurons accounting for two-thirds of the input variable for each 

embedment ratio. For the creation of the model in this study, a default-learning rate of 0.7 was 

chosen. The next step is to determine the number of iterations that are compatible with mean 

square error (MSE) and coefficient of determination (R
2
), with MSE being the smallest and R

2
 

being as near to 1 as possible. The number of hidden layer neurons also had a substantial impact 

on the mean square error (MSE) and coefficient of determination (R
2
). Figure 2 demonstrates 

how the MSE changes as the number of iterations increases for each embedment ratio (0, 1 and 

2). The MSE reduces as the number of iterations grows and remains nearly constant or increases 

after reaching the minimal value, according to this graph. The smallest value of MSE was 

recorded at 1360, 960, and 840 number of iterations at varied embedment ratios, as shown in 

Figure 2. The next stage was to determine the best number of hidden layer neurons to use for 

model construction. 
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Fig. 2. Estimation of the optimum number of iterations at different embedment ratio. 
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Fig. 3. Estimation of the optimum number of hidden layer neuron at different embedment ratio. 
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Figure 3 shows how the R
2
 and MSE affect the hidden layer neurons. Figure 3 indicates that the 

R
2
 and MSE observed were highest and minimum at 5 hidden layer neurons, respectively, and 

that as the number of hidden layer neurons rises, either R
2
 declines or MSE increases for each of 

the embedment ratios. A model structure with 7 input variables, 1 hidden layer, 5 hidden layer 

neurons, and 1 output layer was chosen based on this investigation. Figure 4 displays the 

completed network. 

To verify the generated model's prediction accuracy, the bearing capacity (BCDP) obtained from 

the model was compared to the actual bearing capacity (BCDA). Equations (2 to 7) describe the 

model's equations for measuring characteristics such as correlation coefficient (r), coefficient of 

determination (R
2
), mean square error (MSE), root mean square error (RMSE), mean absolute 

error (MAE), and mean absolute percentage error (MAPE). 

 
Fig. 4. Architecture of the model. 
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1

1
( ) 100

n
DAi DPi

i DAi

BC BC
Mean absolute percentageerror MAPE MAPE

n BC

 
   
 
  (7) 

  
Note: BCDAi, BCDPi : actual and predicted bearing capacity respectively, 

DAiBC , 
DPiBC : mean of actual 

and predicted bearing capacity respectively, SDAi, SDPi : Standard deviation of actual and predicted 

bearing capacity respectively, n: number of observations. 

Table 3 

Assessing parameters for the developed model at different embedment ratio. 

D/W Assessing parameters Training Testing 

0 

r 0.99 0.98 

R
2
 0.98 0.97 

MSE 12863.50 32408.40 

RMSE 113.41 180.02 

MAE 81.73 131.60 

MAPE (%) 8.82 0.03 

1 

r 0.98 0.97 

R
2
 0.96 0.95 

MSE 179453.60 349926.50 

RMSE 423.61 591.54 

MAE 269.88 370.14 

MAPE (%) 9.40 0.003 

2 

r 0.99 0.98 

R
2
 0.98 0.97 

MSE 158080.40 333542.56 

RMSE 397.59 577.53 

MAE 283.17 410.98 

MAPE (%) 6.27 0.002 

 

The constructed model's assessment statistical parameters (r, R
2
, MSE, RMSE, MAE, and 

MAPE) were summarized in Table 3 for both the training and testing data. At embedment ratios 

of 0, 1, and 2, the coefficient of correlation (r) of the constructed model was determined to be 

0.99, 0.98, and 0.99 for training data and 0.98, 0.97, and 0.98 for testing data. The relative 

correlation and goodness-of-fit between the predicted and actual values are represented by the 

coefficient of correlation. |r| should fall between 0.0 and 1.0. In fact, the correlation must have a r 

value between zero and one, which is a necessary condition but not a sufficient one condition. In 

machine learning, the only acceptable correlations are those that are close to one. Table 3 further 

demonstrates that all the evaluating parameters are within acceptable limits. Figures 5 and 6 

show the contrast between the BCDP calculated by the neural network and the real BCDA for the 

training and testing data, respectively. Figures 5 and 6 shows that for both training and testing 

data, the predicted and actual values of bearing capacity have coefficients of determination (R
2
) 

greater than 0.95, indicating a good fit for the data and the model developed could be used to 

predict the output. The final connection weights between the input layers to the hidden layer 

[xDij] and the hidden layer to the output layer [yDjk], input bias [zDj] and output bias [zD], as well 

as the matrices of correlation created, are shown as follows. 
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Generalized form of matrices: -      

     

11 12 13 14 15 16 17

21 22 23 24 25 26 27

31 32 33 34 35 36 37

41 42 43 44 45 46 47

51 52 53 54 55 56 57

,

D D D D D D D

D D D D D D D

Dij D D D D D D D

D D D D D D D

D D D D D D D

x x x x x x x

x x x x x x x

x x x x x x x x

x x x x x x x

x x x x x x x

 
 
 
 
 
 
 
 

 

11

21

31

41

51

,

D

D

Djk D

D

D

y

y

y y

y

y

 
 
 
 
 
 
 
 

 

1

2

3

4

5

,

D

D

D j D

D

D

z

z

z z

z

z

 
 
 
 
 
 
 
 

 

 D Dz z  (8) 

     

Matrices for D/W = 0     

     

1

3.40 0.55 0.85 3.76 0.53 0.90 1.37

1.69 1.45 0.17 5.27 1.48 0.30 0.51

0.78 0.12 0.26 5.12 0.14 0.34 2.92 ,

3.31 1.63 1.27 9.77 1.49 1.32 4.37

3.81 0.69 0.02 1.39 0.68 0.06 0.44

ijx

     
 

    
 
      
 
     
    

 

1

1.46

1.81

3.77 ,

5.47

2.59

jky

 
 

 
  
 
 
  

 

1

1.35

0.45

2.91 ,

4.24

0.34

jz

 
 

 
  
 
 
  

 

 1 6.60z   (9) 

     

Matrices for D/W = 1     

     

2

2.53 0.45 0.14 1.67 0.37 0.24 1.90

0.12 0.17 0.33 6.72 0.17 0.22 3.36

5.33 1.88 2.20 4.53 1.88 2.27 6.41 ,

10.24 0.08 0.05 0.70 0.07 0.09 0.55

1.78 0.43 0.68 4.32 0.50 0.70 0.54

ijx

  
 
     

 
      
 
   

     

 

2

1.27

5.94

4.56 ,

4.27

1.74

jky

 
 

 
  
 
 
  

 

2

1.94

3.22

6.35 ,

0.62

0.58

jz

 
 

 
  
 
 
  

 

 2 4.65z   (10) 

     

Matrices for D/W = 2     

     

3

0.72 1.24 0.74 0.94 0.19 0.91 1.11

1.46 3.32 1.02 0.06 0.65 0.97 0.06

4.46 4.89 1.00 1.33 4.20 1.02 1.19 ,

5.05 1.48 0.36 0.20 0.48 0.29 0.22

0.08 7.27 0.28 0.01 3.80 0.19 0.02

ijx

    
 
    

 
       
 
      

     

 

3

0.83

1.69

4.94 ,

2.39

6.07

jky

 
 

 
  
 
 
  

 

3

0.20

0.57

4.16 ,

0.62

3.89

jz

 
 
 
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 3 5.39z   (11) 

Here: 

[xDji] = connection weight of i
th

 hidden layer neuron and i
th

 input layer neuron respectively for 

each set of data at different embedment ratio 

[yDjk] = connection weight of the k
th

 output layer neuron and j
th

 hidden layer neuron respectively 

for each set of data at different embedment ratio. 

[zDj] = bias for j
th

 hidden layer neuron respectively for each set of data at different embedment 

ratio 

[zD] = bias for output layer for respectively for each set of data at different embedment ratio 
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Fig. 5. Comparison of predicted bearing capacity with the actual bearing capacity for the training (a, b 

and c) data at different embedment ratio. 
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Fig. 6. Comparison of predicted bearing capacity with the actual bearing capacity for the testing (a, b and 

c) data at different embedment ratio. 
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5. Sensitivity analysis 

By using sensitivity analysis, this section of the study examines the impact of various factors on 

output bearing capacity. Sensitivity analysis was performed using a method described by [32] 

and based on the weight configuration. However, because it estimates the value of absolute 

weights, this method has its own limitations. It was reported by [33] that another approach to 

circumvent this issue, and this method was used to do the sensitivity analysis. For every input 

neuron, this method estimates the sum of the finalized connection weight from the input layer 

neuron to the hidden layer neurons plus connection weights from the hidden layer neurons to the 

output layer neuron. Equation (12) is used to calculate the contribution of each individual 

variable to a given input. 

1

h

Dj Djk k

k

IR x x


   (12) 

here: 

xDjk = connection weight between k
th

 neuron of the hidden layer and j
th

 input variable. 

 xk = connection weight between the single output neuron and the k
th

 neuron of a hidden layer. 

IRj = relative importance of the j
th

 neuron in the input layer 

h = number of the hidden layer neurons. 

The relative influence of the individual input variable on output bearing capacity using equation 

(12) was shown in Figures 7, 8 and 9. 

 
Fig. 7. Sensitivity analysis of the individual variable on the output bearing capacity at an embedment ratio 

of 0. 
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Fig. 8. Sensitivity analysis of the individual variable on the output bearing capacity at an embedment ratio 

of 1. 

 
Fig. 9. Sensitivity analysis of the individual variable on the output bearing capacity at an embedment ratio 

of 2. 

Study of Figures 7, 8 and 9 reveals that the output bearing capacity was mostly influenced by the 

load inclination (θ) at an embedment ratio 0, 1 and 2 i.e. 39.19 %, 32.77 % and 34.52 % 
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respectively. The difference between the most influencing input (H/W and θ) variables is very 

small (1.61 %) for an embedment ratio of 1, hence it can be stated that the most influencing input 

variable is load inclination to output bearing capacity. This could be because when the load 

inclination rises, the horizontal displacement of the footing rises, causing the rectangular footing 

to break. As a result, the load inclination has the greatest influence on the output bearing capacity 

at all embedment ratios. The order for the other input variable to influence the output was as 

H/W>D/W> γ1 >φ1> φ2 >γ2, θ> D/W> φ1> γ2> γ1> φ2 and H/W> D/W> φ1 >γ1> φ2 > γ2 for 

embedment ratio 0, 1 and 2 respectively. Again, as the thickness of the upper layer of dense soil 

increases, so does the bearing capacity, and as the depth of the footing from the top surface of 

upper dense soil increases, so does the surcharge load and, as a result, the bearing capacity. The 

output is also influenced by upper dense soil properties, since denser sand has better grain to 

grain interlocking than loose sand. Thus, it can be concluded that performing sensitivity analysis 

is an effective way to physically connect the input variables with the output bearing capacity. 

6. Proposed model 

The weights and biases obtained are used for the development of a model equation as per [34]. 

The generated optimal weights and biases are presented by equations (8 to 11), the model takes 

the following form as per equation (13): 

 
1 2, 1 2,/ , , , , /

1 1

h n

DP u D Djk n Dij DiH W D W
i i

BC q fn z y f x F
    

 

    
     

    
   (13) 

Here; 

h = number of hidden layer neuron 

FDi = normalized inputs in the range of 0 to 1. 

fn = sigmoid activation function 

n = number of input variables 

The equations (14 to 16) show the generalized form of expressions to convert the optimal 

connections weight matrices in the required model equation. The following steps as shown in 

equations 16(a-e) and 17(a-e) were carried out using the generalized equations for embedment 

ratio 0. The final expression is shown in the equation (18) and equation (19) for embedment ratio 

0. 

         Di1 Di2 1 Di3 2 Di4 Di5 1 Di5 2 Di6Di Di

H D
A x x x x x x x z

W W
    

   
                 

   
 

(14) 

  

 21

Djk

2*0.5*
1

Dj A

y
B

e


 
 

 
 (15) 
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 
0

n

DP Dj D

i

BC B z


   (16) 

  

For D/W = 0,  
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H D
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    

   
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 
1 2, 1 2,

1 1 11 12 13 14 15/ , , , , /P u H W D W
C q z B B B B B

    
        (18) 

13 1511 12 14
1 ( ) ( )( ) ( ) ( )
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   
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    
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1
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1

1 exp
P C
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


 (20) 
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Similar steps (from 16(a-e),17(a-e) and 19) are followed for embedment ratio 1 and 2 and the 

finally obtained expression are shown in the equation (22) and equation (24). 

For D/W = 1,  
  

23 2521 22 24
2 ( ) ( )( ) ( ) ( )

1.27 5.94 4.56 4.27 1.74
4.65

1 exp 1 exp 1 exp 1 exp 1 exp
A AA A A

C
   

     
    

 (21) 

  

2
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1
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



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For D/W = 2,  
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3
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1 exp
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




 (24) 

The bearing capacity equations (20, 22 and 24) can be presented in the denormalized form using 

a generalized expression as per equation (25) and are shown in equation (26), equation (27) and 

equation (28) at embedment ratio 0, 1 and 2 respectively. 

         
1 2, 1 2, max min min/ , , , , /

0.5 1u DP DP DP DP DPH W D W
q BC BC BC BC BC

    
        (25) 
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1 2, 1 2,

1 1/ , , , , 0
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q BC BC
    

     (26) 

    
1 2, 1 2,

2 2/ , , , , ,1
0.5 1 13601.69 371.62u P PH W

q BC BC
    

     (27) 

    
1 2, 1 2,

3 3/ , , , , 2
0.5 1 18427.80 1398.63u P PH W

q BC BC
    

     (28) 

 
Fig. 10. Comparison between the actual bearing capacity and the predicted bearing capacity using model 

equations at an embedment ratio of 0. 
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Fig. 11. Comparison between the actual bearing capacity and the predicted bearing capacity using model 

equations at an embedment ratio of 0. 

 
Fig. 12. Comparison between the actual bearing capacity and the predicted bearing capacity using model 

equations at an embedment ratio of 2. 

Based on the data collected as per [5,13], the final model expressions are proposed through 

equation (26), equation (27) and equation (28) at embedment ratio 0, 1 and 2 respectively. These 

equations can be used to predict the ultimate bearing capacity of the rectangular footing on the 

layered sand under the influence of inclined loading. Figures 10, 11 and 12 shows the 

comparison between the actual bearing capacity and the predicted bearing capacity determined 

by using model equation (26), equation (27) and equation (28). Study of Figures 10, 11 and 12 

reveals that the deviation between the predicted bearing capacity and the actual bearing capacity 

was ±10%, ±15% and ±10% at an embedment ratio 0, 1 and 2 respectively. Normally acceptable 
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range of error is supposed to be within ±10% for predictions in the field of geotechnical 

engineering as per [35]. Therefore, the proposed models can be effectively used for the 

prediction of the bearing capacity of the rectangular footing resting on layered soil under inclined 

loading. 

6.1. Comparison 

Using an approach based on machine learning, the experimental results reported in [36] were 

compared to the results predicted by the current study. The dimensionless bearing capacity 

obtained from this study for L/W=1.5 was calculated and compared to the results reported by 

[36] for the circular footing. It is important to note that [36] determined the friction angle and 

unit weight of the upper dense and lower loose sand layers to be 47.5° and 34°, respectively, and 

16.33 kN/m
3
 and 13.78 kN/m

3
. 50 mm was the diameter of the circular footing and 600 mm x 

200 mm x 500 mm was the size of the model used in the experimental work. The comparison 

was depicted in Table 4 for a load inclination of 0°, 10°, 20°, and 30° at a thickness ratio of 1. 

Table 4 reveals that the bearing capacity of the circular footing decreased by 79.00 % when the 

load inclination was increased from 0° to 30°, as shown by the results of [36] presented in Table 

4. The associated comparison shown in Table 4 suggests that the current results compare 

favourably with a standard deviation of 21.99% in the dimensionless bearing capacity. The 

difference between the current results and those of [36] can be attributed to the difference in the 

shape factors of the footing considered for comparison. 

Table 4 

Comparison of present results for L/W=1.5 at H/W =1 and φ1= 46° & φ2= 34° with literature. 
Load inclination Dimensionless bearing capacity (qu/γ1W) 

Meyerhof and Hanna [36] Present study  

φ1= 47.5° & φ2= 34° φ1= 46° & φ2= 34° 

0° 58.26 81.12 

10° 40.49 52.43 

20° 26.30 36.07 

30° 12.23 21.37 

7.Conclusions 

Using a machine learning approach, the current research aims to build model equations for the 

bearing capacity of a rectangular foundation built on layered sand under the effect of inclined 

loading. The independent variables utilised to predict the output bearing capacity were thickness 

ratio (H/W), load inclination angle (θ), unit weight of higher dense (γ1) and lower loose sand 

layer (γ2), Friction angle of upper dense (φ1) and lower loose sand (φ2) layer and embedment 

ratio (D/W) with BCDP as an output. Following conclusions can be drawn based on the 

discussions as given below: - 

1. The sigmoid activation function obtained to predict output bearing capacity of the 

rectangular footing on layered sand under inclined loading are same corresponding to an 

embedment ratio of 0, 1 and 2. 
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2. All the assessing parameter (r, R
2
, MSE, RMSE, MAE, MAPE) are observed to be 

optimum for the sigmoid activation function. 

3. The coefficient of determination for training and testing data observed to be 0.98 and 

0.97, 0.96 and 0.95, 0.98 and 0.97 at embedment ratio 0, 1 and 2 respectively. 

4. The mean absolute percentage error for training and testing data lies at 8.82, 9.40, 6.27 

and 0.03, 0.003, 0.002 corresponding to an embedment ratio 0, 1 and 2 respectively. 

5. The most influencing input variable to affect the output bearing capacity at embedment 

ratio 0, 1 and 2 was load inclination and its relative importance was 39.19 %, 32.77 % 

and 34.52 % respectively. 

6. The deviation between the actual bearing capacity and predicted bearing capacity was 

±10%, ±15% and ±10% at an embedment ratio 0, 1 and 2 respectively. 

The primary purpose of this research was to establish how to use machine learning to forecast the 

bearing capacity of a rectangular foundation on layered sand under the influence of inclined 

loading. The presented models can predict the bearing capacity at different embedment ratios 

within the variance allowed. Using numerical or machine learning techniques, the rectangular 

footing on layered sand subjected to eccentric inclined loading must be explored further. In 

addition, the proposed formulas in this work will assist researchers in eliminating the need to 

conduct time- and cost-intensive experimental or numerical studies. 
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