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Although the exploitation of GWO advances sharply, it has 

limitations for continuous implementing exploration. On the 

other hand, the EHO algorithm easily has shown its 

capability to prevent local optima. For hybridization and by 

considering the advantages of GWO and the abilities of 

EHO, it would be impressive to combine these two 

algorithms. In this respect, the exploitation and exploration 

performances and the convergence speed of the GWO 

algorithm are improved by combining it with the EHO 

algorithm. Therefore, this paper proposes a new hybrid Grey 

Wolf Optimizer (GWO) combined with Elephant Herding 

Optimization (EHO) algorithm. Twenty-three benchmark 

mathematical optimization challenges and six constrained 

engineering challenges are used to validate the performance 

of the suggested GWOEHO compared to both the original 

GWO and EHO algorithms and some other well-known 

optimization algorithms. Wilcoxon's rank-sum test outcomes 

revealed that GWOEHO outperforms others in most function 

minimization. The results also proved that the convergence 

speed of GWOEHO is faster than the original algorithms. 
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1. Introduction 

The goal of optimization is to seek the best acceptable solution, given the constraints and 

limitations of the problem. Each optimization problem has several independent variables called 

design variables, represented by the 𝑛-dimensional vector 𝑿. There may be different solutions for 

a problem, and a function called the objective function is defined to compare these solutions and 

choose the best vector 𝑿 as an optimal solution [1–5]. In general, various optimization 

techniques may be categorized into the two main local and global optimization methods. Among 

them, metaheuristics as a global optimization algorithms have a much better chance than the 

local algorithms to search out the global or near-global optimum [6–11]. Since the last twenty 

years, metaheuristic algorithms have become extremely popular thanks to their efficient and 

robust performance in addressing high-dimensional nonlinear optimization problems [12–14]. 

Genetic algorithm (GA) [15], flying squirrel optimizer (FSO) [16], cuckoo search (CS) [17], 

differential evolution (DE) [18], artificial bee colony (ABC) [19], grey wolf optimizer (GWO) 

[20], bat algorithm (BA) [21], elephant herding optimization (EHO) [22], moth search algorithm 

[23], ideal gas molecular movement (IGMM) algorithm [24] and particle swarm optimization 

(PSO) [25] are some of the metaheuristic algorithms. These algorithms are also classified into 

evolutionary algorithms, swarm-based algorithms, and trajectory-based algorithms. For instance, 

GA, DE, and HS are classified as evolutionary algorithms [26]. PSO is classed as a swarm-based 

algorithm and, ant colony optimization (ACO) is classed as a trajectory-based method [27,28]. 

Recently, a new metaheuristic algorithm called GWO, motivated by the hierarchy of leadership 

and also the hunting mechanism of gray wolves, has been developed by Mirjalili et al. [20]. The 

results of their study have shown that the GWO can deliver very competitive outcomes compared 

to the known algorithms. Nevertheless, the biggest issue in GWO is the liable to inactivity in 

local optima [29]. Therefore, the main objective of current study is to boost the performance of 

GWO when a new hybridizing approach is presented. 

2. Theoretical background 

Nowadays the utilization of GWO for various applications has been grown rapidly [30]. 

Medjahed et al. [31] employed the original GWO algorithm within the band selection problem to 

decrease the dimensionality of hyperspectral images. In [32], Emary et al. while minimizing the 

chosen specifications, recommended a new binary version of the GWO algorithm for finding a 

specific subset maximizing the categorization precision. 

Besides of the better performance of GWO on real-world problems than many other papulation-

based algorithms, it also encounters some challenging problems as well. For instance, the 

original GWO algorithm may be simply locked in within the local optima when searching multi-

modal functions, and also the convergence level will reduce considerably in the further iterations 

[33]. Hence, several alternatives of GWO are developed to solve the above-mentioned aspects. 

In order to set the bidding strategy for a producing company in a consistent price spot market, 

[31] and [34] developed a new modified version of the GWO algorithm. In 2018, Long et al. [35] 
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utilized EEGWO as an improved version of GWO for overcoming some engineering 

optimization challenges. The suggested EEGWO developed the improved position-updating 

equation to modify the exploration performance of the original GWO algorithm. In addition, 

Gupta and Deep [36] suggested a random walk strategy for a modified version of GWO to 

increase the global search performance of the original GWO algorithm. Furthermore, Mittal et al. 

[37] introduced an improved GWO (mGWO) employing an exponential function to decay 

parameters over iterations to balance exploitation and exploration. 

In the field of hybrid metaheuristics, GWO has also achieved much consideration. For example, 

for overcoming the feature selection and global optimization challenges, a GWO (CGWO) 

algorithm and a hybrid harmony search with an opposition learning strategy is presented in [38]. 

In 2017, Sanjay et al. [39] optimized distributed generator units' configuration using an original 

hybrid GWO approach based on mutation and crossover operators. Regarding to discover the 

best feature subset, [40] suggested a binary version of hybrid PSOGWO. In [41] and [42], a 

hybridized version of GWO with DE is presented for nonstop optimization and test scheduling. 

In order to minimize the potential energy functions, Tawhid and Ali [43] have hybridized GWO 

with GA. In addition, Gaidhane and Nigam [44] used an artificial bee colony (ABC) and a 

hybridized GWO to enhance the development system's functioning. Besides, [43] proposed a 

further hybrid method named GWOSCA, using the sine and cosine algorithm (SCA) and the 

GWO algorithm. For combining the algorithms' strengths to produce promising alternative 

solutions for achieving the efficient global optima, [45] proposed a hybrid GWO with CSA that 

is named GWOCSA. The above-mentioned researches have presented that in comparison with 

other global or local search methods, the hybrid methods achieved much better. 

On the other hand, Wang et al. [22] introduced an EHO algorithm motivated by the herding 

behavior of the elephant group. Although elephants are social animals, they have complex social 

behaviors. A group of elephants is comprised of several clans under the leadership of a matriarch. 

In recent years, many variants of EHO have been presented for continuous, combinatorial, 

constrained, and multiobjective optimization. A comprehensive review of the EHO-based 

algorithms and their applications is submitted in [46]. Tuba et al. [47] suggested a novel chaotic-

based EHO algorithm called CEHO to overcome unconstrained worldwide optimization 

challenges. Another study, ElShaarawy et al. [48], introduced an enhanced EHO algorithm to 

solve the fast convergence of EHO. Separating operators with balanced control was utilized to 

develop the exploitation and exploration performance of the proposed algorithm. 

Li et al. [49] suggested a hybrid algorithm (EHGWO) that unites the advantages of EHO and 

GWO. EHGWO uses a newly devised fitness function to select the optimal virtual machines 

(VMs). Exploring the search space and exploiting the optimal solutions found are two 

inconsistent instructions to be considered when modeling or utilizing a metaheuristic [50]. 

Reasonably balancing exploitation and exploration will improve the search algorithm's 

performance. One alternative is to employ a hybrid method where two or more algorithms are 

united to enhance each algorithm's ability, and the final hybrid method can be called as a mimetic 

method [51]. 
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In this study, with integrating the features of GWO and EHO algorithms and using a new 

separating operator, we recommended a hybrid algorithm named GWOEHO. Although the 

exploitation of GWO advances sharply, it has limitations for continuous implementing 

exploration. Therefore, in some cases, GWO cannot successfully deal with the problem always 

and fails to discover the optimal global solution [45]. The exploration and exploitation 

performances of the GWO algorithm are enhanced by embedding the EHO futures and using a 

novel separating operator. The convergence speed of GWO is also increased by combining it 

with the EHO algorithm. Utilizing a new separating operator is valuable to help the population to 

jump out of the local optima. The performance of the improved algorithm is then evaluated by 

twenty-three mathematical benchmark functions and six constrained engineering problems. The 

statistical test outcomes present the superiority of the suggested hybrid GWOEHO algorithm 

over the other well-known optimization algorithms. 

3. Grey wolf optimizer (GWO) 

GWO algorithm that first was suggested by Mirjalili et al. [20] mimics the leadership and 

hunting characteristics of the grey wolves that live in a group of 5-12 individuals. Each group of 

wolves is divided into alpha, beta, delta, and omega subgroups to simulate the leadership 

hierarchy characteristics. 

Alpha wolves are the pack leaders and make decisions about wake time, hunting and sleep place. 

Beta wolves are alpha's assistants in making decisions, and their primary responsibility is 

reaction suggestions. Delta wolves known as caretakers, hunters, elders, sentinels, and scouts 

control omega wolves by following alpha and beta. The lowest ranking grey wolf is an omega 

that always must follow wolves of other levels. In the hunting process, alpha, beta, and delta are 

pack leaders, respectively, and omega wolves must conform. Track and approach hunting, siege, 

and harassment of the hunt until the movement stops, and finally, attack on prey are three main 

stages for wolves hunting. The GWO algorithm has been designed based on the wolves' hunting 

method and their social hierarchy. The mathematical model of the GWO algorithm is described 

as follows. 

Mirjalili suggests two equations to mathematically model the encircling behavior of grey wolves 

[20]: 

(1) 

(2) 

 | (t)−𝑋⃗(𝑡) 𝑋⃗𝑃. 𝐶 | = 𝐷⃗⃗⃗ 

𝐷⃗⃗⃗ (t)−𝐴. 𝑋⃗𝑃 (t+1) = 𝑋⃗ 

where 𝑨⃗⃗⃗ and 𝑪⃗⃗⃗ are coefficient vectors while t shows the present iteration. 𝑿⃗⃗⃗𝑷 vector is related to 

the position of the prey and 𝑿⃗⃗⃗ vector indicates the grey wolf position. The vectors 𝑨⃗⃗⃗ and 𝑪⃗⃗⃗ can 

be calculated following equations 3 and 4: 

A⃗⃗⃗=2a⃗⃗.r⃗1 − a⃗⃗ (3) 



 Z. Hoseini et al./ Journal of Soft Computing in Civil Engineering 6-4 (2022) 1-42 5 

C⃗⃗=2.r⃗2 (4) 

where elements of 𝒂⃗⃗⃗ are linearly reduced from 2 to 0 over the course of iterations and 𝒓⃗⃗𝟏, 𝒓⃗⃗𝟐 are 

random vectors in [0, 1]. 

Grey wolves can recognize the location of prey, encircle it and finally hunt it. The pack leader, 

alpha, usually guides the hunting process; however, beta and delta wolves sometimes take part in 

this process. Consequently, we presume the alpha, beta, and delta as the first three best candidate 

solutions to mathematically reproduce the hunting behavior of grey wolves. And this is due to 

their better knowledge about prey's potential location than other kinds of wolves known as 

omega. In present work, the first three best solutions were saved for mathematic modeling and 

other agents were forced to update their positions by those three solutions. The following 

formulas are suggested in this regard: 

| −𝑋⃗ 𝑋⃗𝛿 .𝐶3 |  = 𝐷⃗⃗⃗𝛿  , | −𝑋⃗ 𝑋⃗ℬ . 𝐶2 |  = 𝐷⃗⃗⃗ℬ ,  | −𝑋⃗ 𝑋⃗∝ .  𝐶1 | =  𝐷⃗⃗⃗∝ (5) 

−𝐴3. 𝐷⃗⃗⃗𝛿  𝑋⃗𝛿  = 𝑋⃗3 , −𝐴2. 𝐷⃗⃗⃗ℬ  𝑋⃗ℬ  = 𝑋⃗2 , −𝐴1. 𝐷⃗⃗⃗∝  𝑋⃗∝  = 𝑋⃗1 (6) 

𝑋⃗(𝑡 + 1) =
𝑋⃗1 + 𝑋⃗1 +  𝑋⃗1

3
 

(7) 

where the best solution is believed as the alpha (𝛼); therefore, the second and third- fittest 

solutions are called beta (𝛽) and delta (𝛿), respectively. The rest of the alternative solutions are 

recognized to be omega (𝜔). 

As mentioned before, when the prey stops moving, the grey wolves attack. To mathematically 

model approaching the prey, we can reduce the value of 𝒂⃗⃗⃗. As 𝑨⃗⃗⃗ is dependent on 𝒂⃗⃗⃗, when 

random values of 𝑨⃗⃗⃗ are in [-1,1], the next location of a explore agent can be in any location 

between its present location and the location of the prey. 

In the exploration process, alpha, beta, and delta wolves separate from each other to explore for 

prey, and after finding a suitable prey, they converge to attack it. For modeling the separation 

mathematically, 𝑨⃗⃗⃗ is used with random values bigger than 1 or less than -1 to force the explore 

agents to diverge from the prey. In addition, grey wolves have to separate from the prey so that 

they can find a fitter prey as a result of values |A| > 1. 

𝑪⃗⃗⃗ vector is another component of the GWO algorithm that contains random values in [0,2] and 

consequently provides random weight for prey. As a result, the effect of prey in identifying the 

distance is stochastically emphasized or deemphasized when the value of 𝑪⃗⃗⃗ vector is respectively 

greater than 1 and less than -1. The pseudocode of the GWO is indicated as Algorithm 1: 
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Algorithm 1 

Begin 

Initialization 

       Generate the grey wolf population 𝑋𝑖 (i=1,2,…,n) 

       Set initial parameters a, A, and C 

Evaluation 

       Compute the fitness of each wolf 

       𝑋∝= the fittest wolf 

       𝑋𝛽= the second-fittest wolf 

       𝑋𝛿= the third-fittest wolf 

       while (t < Max number of iterations) 

             for each wolf 

                   Update the location of the present wolf by Eq. 7 

             end for 

       Update a, A, and C 

       Compute the fitness of all wolves 

       Update 𝑋∝.  𝑋𝛽 , and 𝑋𝛿 

        𝑡 = 𝑡 + 1 
       end while 

       return 𝑋∝ 

End 

4. Elephant herding optimization 

The elephant herding optimization (EHO) algorithm was first introduced by Wang et al. [22]. In 

the wild, elephants are social animals. The oldest matriarchal elephant leads a group of elephants, 

and females prefer to live in their families. In contrast, males favor leaving their tribe when they 

grow up and, if necessary, have the extraordinary ability to communicate through low-frequency 

vibrations with their tribe members [52] using the herding behavior of elephants, global 

optimization problems solved by ideal laws we describe below. 

 Elephants live in a tribe where each tribe has a fixed number of elephants. 

 A certain number of male elephants have left their tribe at the beginning of each 

generation and live alone. 

 In each tribe, the group is led to a matriarchy, which is seen as the eldest and best 

elephant for the optimization problem in the tribe. 

4.1. Clan updating operator 

Since all tribes are influenced by one matriarch, each elephant in clan 𝑐𝑖, its next location is 

controlled by matriarch 𝑐𝑖. For the elephant 𝑗 in clan 𝑐𝑖, it can be revised by: 

xnew,ci,j =  xci,j + α × (xbest,ci − xci,j) × r (8) 

where 𝑥𝑛𝑒𝑤,𝑐𝑖,𝑗 and 𝑥𝑐𝑖,𝑗 are recently revised and old location for elephant 𝑗 in clan 𝑐𝑖, 

respectively. α ∈ [0,1] is a scale factor that specifies the effect of matriarch ci on 𝑥𝑐𝑖,𝑗. 𝑥𝑏𝑒𝑠𝑡,𝑐𝑖 
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demonstrates matriarch 𝑐𝑖, which is the best elephant individual in clan 𝑐𝑖. 𝑟 ∈ [0, 1]. Uniform 

distribution is utilized in this study. 

xnew,ci,j =  β × xcenter,ci  (9) 

where 𝛽 ∈  [0, 1] is a factor that controls the effect of the 𝑥𝑐𝑒𝑛𝑡𝑒𝑟,𝑐𝑖 on 𝑥𝑛𝑒𝑤,𝑐𝑖,𝑗. It can be seen 

that, the new individual 𝑥𝑛𝑒𝑤,𝑐𝑖,𝑗 in Eq. (9) is produced by the data collected by all the elephant 

individuals in clan 𝑐𝑖. 𝑥𝑐𝑒𝑛𝑡𝑒𝑟,𝑐𝑖 is the center of clan 𝑐𝑖, and for the 𝑑th dimension it can be 

evaluated as: 

xcenter,ci,d =
1

nci
× ∑ xci,j,d

nci

j=1

 (10) 

where 1 ≤ 𝑑 ≤ 𝐷 specifies the 𝑑th dimension, and 𝐷 is its total dimension. 𝑛𝑐𝑖 shows the 

number of elephants in clan 𝑐𝑖 and 𝑥𝑐𝑖,𝑗,𝑑, is the 𝑑th of the elephant individual 𝑥𝑐𝑖,𝑗. The center of 

clan 𝑐𝑖, 𝑥𝑐𝑒𝑛𝑡𝑒𝑟,𝑐𝑖 can be evaluated through 𝐷 evaluations according to Eq. (10). 

According to the above explanation, the clan updating operator can be formulated like Algorithm 

2. 

Algorithm 2 Clan updating operator 

for ci=1 to nClan 

     for j=1 to nci 

          Update xci,j and produce xnew,ci,j by Eq. (8) 

          if xci,j = xbest,ci then 

               Update xci,j and produce xnew,ci,j by Eq. (9) 

          end if 

     end for j 

end for ci 

4.2. Separating operator 

In elephant tribes, adult male elephants have left their family group and are living alone. This 

separation procedure can be simulated on the separator operator when solving optimization 

challenges so that to improve further the study for the EHO approach, the male elephants, in any 

case, implement the separator operator in each generation as presented in Eq. (11): 

xworst,ci =  xmin + (xmax − xmin + 1) × rand (11) 

where 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are lower and upper border of the location of elephant individual, 

respectively. 𝑥𝑤𝑜𝑟𝑠𝑡,𝑐𝑖 is the worst elephant individual in clan 𝑐𝑖. 𝑟𝑎𝑛𝑑 ∈  [0, 1] is a random 

number uniformly distributed in the range [0, 1] [52]. Accordingly, algorithm 3 can model the 

separating operator. 

The schematic description of the EHO algorithm is shown in Algorithm 4. 
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Algorithm 3 Separating operator 

for ci=1 to nClan 

      Substitute the worst elephant in clan ci by Eq. (11) 

end for ci 

Algorithm 4 EHO algorithm 

Begin 

Initialization 

      Generate the elephant population 

      Set nKEL, MaxGen, ∝ , β, nClan, and nci 

      while t< MaxGen 

  Sort all elephants based on their fitness. 

  Save nKEL the elephant individuals. 

  Implement clan updating based on Algorithm 2. 

  Implement separating operator based on Algorithm 3. 

  Evaluate the population according to the newly updated positions. 

  Replace the worst elephant individuals with the nKEL saved ones. 

  t=t+1. 

      end while 

      Report the best solution. 

End 

5. Proposed GWOEHO 

This part presents a new hybrid algorithm by merging the features of GWO and EHO algorith. 

As aforesaid, the characteristic of the GWO algorithm is the use of the hierarchical structure of 

wolves and their behavior in hunting. Notwithstanding, the clan life of elephants and the 

subordination of the members of each clan to the leader, further the separation of male elephants 

from the group of elephants, have been inspiring point in the introduction of optimization 

algorithms. In the hybrid GWOEHO algorithm, the clan life of elephants is used to group wolves 

so that the wolf population is divided into a certain number of clans. The process of updating the 

condition of wolves is created using the proposed relationships in the GWO algorithm and after 

determining the alpha, beta, and gamma wolves for each clan. While updating the condition of 

alpha wolves in each clan, the text is done with alpha, beta, and gamma wolves among all 

wolves. 

Next, the separation process is described by a new separation operator. One or two clans are 

randomly selected from among the wolf clans in the proposed new operator  ,eht dna following 

formula changes the worst wolves from these clans. 

𝑥𝑤𝑜𝑟𝑠𝑡,𝑐𝑖 = 𝑡 × (𝑥𝑚𝑎𝑥) × (−1)𝐶𝑖𝑛𝑑𝑒𝑥 (12) 

The variable t in the above equation is reduced linearly using the Eq. (13) and proportional to 

Maxiter from the value of one to zero. 
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𝑡 =  1 − 𝐼𝑡𝑒𝑟 × (
2

Maxiter
) 

I𝑡𝑒𝑟 ∈ [0, Maxiter/2] 

(13) 

In the above relation, the current counter iter 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 is equivalent to the maximum repetition 

cycle of the algorithm and 𝑥𝑚𝑎𝑥 is the upper bound of the wolves and will be Cindex = 1 or 

cindex = 2. The pseudocode of the separation process is shown in Algorithm 5. 

Initialize the first population of gray wolves and 

set the initial parameters a, A, and C

Evaluate fitness of each wolves

Clan updating and separating operators

Generate clans (Ci)

Find three best wolves as leaders (Xα, Xβ, Xδ)

Replace best and worst wolves

Move toward the leaders (Xnew.ci)

Start

No

Yes

Converged?

Stop and return results

 
Fig. 1. flowchart of proposed GWO-EHO algorithm. 
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Algorithm 5 

for Ci=1 to nClan (1 or 2 clans in elephant population) 

     Substitute the worst elephant in clan Ci by Eq. (12) 

end for ci 

According to the described contents, the update of tribal operators of the GWOEHO algorithm is 

according to the pseudocode provided below as Algorithm 6. 

Algorithm 6 

Begin 

Initialization 

for ci=1 to nClan (for all clans in wolves population) 

     for j =1 to nci (for all wolves in clan ci) 

           Update xci,j and produce xnew,ci,j in accordance with GWOEHO by Eqs. (5), (6), (7) 

           if  xci,j=xbest,ci  then 

                Update xci,j and produce  xnew,ci,j by Eq. (8) 

           end if 

     end for j 

end for  ci 

End 

The flowchart of the proposed GWOEHO algorithm is displayed in Fig. 1. 

6. Results and discussion 

The GWOEHO algorithm is benchmarked on 23 benchmark functions in this part of the 

research. Many researchers [7,14,53,54] employed the first 23 benchmark functions for 

evaluating their proposed algorithms and methods. In spite of the simplicity, these test functions 

were selected to compare our outcomes to those of the present well-known meta-heuristics. 

Tables 1-3 indicated these benchmark functions where n demonstrates the dimension of the 

function, Range is the limitation of the function's explore area, and fmin is the target value. 

Additionally, these functions are the rotated, shifted, combined, and expanded deviations of the 

classical functions, which deliver the highest complexity between the present benchmark 

functions [55]. 

The employed benchmark functions are minimization functions and can be separated into three 

categories named unimodal, multi-modal, and fixed-dimension multi-modal. The GWOEHO 

algorithm was run 20 times on each benchmark function. The GWOEHO algorithm is compared 

to GA, DE, PSO, EHO, and GWO algorithms for verifying the results. The following parameters 

are also used in the algorithms for benchmark functions and engineering problems proposed in 

Table 4. 
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Table 1 
Unimodal benchmark functions. 

Test Function n  S fmin 

F1(X) = ∑ xi
2

n

i=1
 30 [−100.100]n 0 

F2(X) = ∑ |xi| + ∏ |xi|
n

i=1

n

i=1
 30 [−10.10]n 0 

F3(X) = ∑ (∑ xj

i

j=1
)

n

i=1

2

 30 [−100.100]n 0 

F4(X) = max
i

{|xi|. 1 ≤ i ≤ n} 30 [−100.100]n 0 

F5(X) = ∑ [100(xi+1 − xi
2)2 + (xi − 1)2]

n−1

i=1
 30 [−30.30]n 0 

F6(X) = ∑ ([xi + 0.5])2
n

i=1
 30 [−100.100]n 0 

F7(X) = ∑ ixi
4

n

i=1
+ random[0.1) 30 [−1.28.1.28]n 0 

Table 2 
Multi-modal benchmark functions. 

Test Function n S 𝑓𝑚𝑖𝑛 

𝐹8(𝑋) = ∑ −𝑥𝑖 𝑠𝑖𝑛 (√|𝑥𝑖|)
𝑛

𝑖=1
 30 [−500.500]𝑛 -418.983×30 

𝐹9(𝑋) = ∑ [𝑥𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1
 30 [−5.12.5.12]𝑛 0 

𝐹10(𝑋) = −20𝑒𝑥𝑝 (−0.2√
1

𝑛
∑ 𝑥𝑖

2
𝑛

𝑖=1
) − 𝑒𝑥𝑝 (

1

𝑛
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑛

𝑖=1
)

+ 20 + 𝑒 

30 [−32.32]𝑛 0 

𝐹11(𝑋) =
1

4000
∑ 𝑥𝑖

2 − ∏ 𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
)

𝑛

𝑖=1
+ 1

𝑛

𝑖=1
 30 [−600.600]𝑛 0 

𝐹12(𝑋) =
𝜋

𝑛
{10 𝑠𝑖𝑛(𝜋𝑦1) + ∑ (𝑦𝑖 − 1)2[1 + 10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1)]

𝑛−1

𝑖=1

+ (𝑦𝑛 − 1)2} + ∑ 𝑢(𝑥𝑖 . 10.100.4)
𝑛

𝑖=1
 

𝑦𝑖 = 1 +
𝑥𝑖 + 1

4
 

𝑢(𝑥𝑖 . 𝑎. 𝑘. 𝑚) = {

𝑘(𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 > 𝑎
0 −𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 < −𝑎
 

30 [−50.50]𝑛 0 

𝐹13(𝑋) = 0.1 {𝑠𝑖𝑛2(3𝜋𝑥1) + ∑ (𝑥𝑖 − 1)2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)]
𝑛

𝑖=1

+ (𝑥𝑛 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]} 
30 [−50.50]𝑛 0 
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Table 3 
Fixed-dimension multi-modal benchmark functions. 

Test Function n  S 𝑓𝑚𝑖𝑛 

𝐹14(𝑋) = (
1

500
+ ∑

1

𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)62
𝑖=1

25

𝑗=1
)−1 2 [−65,65] 1 

𝐹15(𝑋) = ∑ [
11

𝑖=1
𝑎𝑖−

𝑥1(𝑏𝑖
2 + 𝑏𝑖𝑥2)

𝑏𝑖
2 + 𝑏𝑖𝑥3 + 𝑥4

]2 4 [−5,5] 0.00030 

𝐹16(𝑋) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4 2 [−5,5] -1.0316 

𝐹17(𝑋) = (𝑥2 −
5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)2 + 10 (1 −

1

8𝜋
) 𝑐𝑜𝑠𝑥1 + 10 2 [−5,5] 0.398 

𝐹18(𝑋) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2 +

3𝑥2
2)] ×[30+(2𝑥1 − 3𝑥2)2 × (18 − 32𝑥1 + 12𝑥1

2 + 48𝑥2 − 36𝑥1𝑥2 +

27𝑥2
2)] 

2 [−2,2] 3 

𝐹19(𝑋) = − ∑ 𝑐𝑖 𝑒𝑥𝑝 (
4

𝑖=1
− ∑ 𝑎𝑖𝑗( 

3

𝑗=1
𝑥𝑗 − 𝑝𝑖𝑗)

2) 3 [1,3] -3.86 

𝐹20(𝑋) = − ∑ 𝑐𝑖 𝑒𝑥𝑝 (
4

𝑖=1
− ∑ 𝑎𝑖𝑗 (

6

𝑗=1
𝑥𝑗 − 𝑝𝑖𝑗)2) 6 [0,1] -3.32 

𝐹21(𝑋) = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1
5

𝑖=1
 4 [0,10] -10.1532 

𝐹22(𝑋) = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1
7

𝑖=1
 4 [0,10] -10.4028 

𝐹23(𝑋) = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1
10

𝑖=1
 4 [0,10] -10.5363 

Table 4 

Parameter settings of optimization algorithms. 

GA [56] DE [57] PSO [58] EHO Wang et al. [22] GWOEHO 

Pc 0.9 Beta-min 0.2 Vmax 6 Alpha 0.5 

Beta 0.1 

Pm 0.1 

Beta-max 0.1 Wmax, Wmin 0.2-0.9 

Beta 0.1 

PCR 0.2 C1,C2 2 

Fig. 2 displays the 2D versions of the benchmark functions and convergence rates of the best 

answer for GWOEHO, GWO, EHO, PSO, DE, GA algorithms. 
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Fig. 2. Convergence history of optimization problems. 

The statistical results (standard deviation and average) are stated in Tables 5–7. According to the 

results, GWOEHO can provide very competitive results.  
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Table 5 
Outcomes of the unimodal benchmark functions. 

EHOGWO GWO EHO PSO DE GA     

1.18E-28 1.12E-27 1.76E-03 2.09E-04 4.07E-04 1.76E+01 Ave   

3.92E-28 1.75E-27 9.61E-05 2.01E-04 1.20E-04 5.99E+00 Std.   

1.41E-30 1.27E-29 1.59E-03 8.11E-06 1.68E-04 9.18E+00 Best F1 

1.77E-27 6.68E-27 1.92E-03 7.60E-04 5.78E-04 2.75E+01 Worst   

1 2 5 3 4 6 Rank   

1.93E-09 8.80E-17 1.93E-02 5.03E+00 2.16E-03 1.39E+00 Ave   

1.77E-09 5.41E-17 7.49E-04 6.90E+00 3.87E-04 3.06E-01 Std.   

1.61E-18 5.17E-18 1.79E-02 7.78E-03 1.46E-03 9.27E-01 Best F2 

4.40E-09 2.10E-16 2.05E-02 2.02E+01 2.95E-03 2.15E+00 Worst   

1 2 5 4 3 6 Rank   

4.12E-11 1.38E-05 2.93E-03 7.80E+01 3.11E+04 7.66E+02 Ave   

3.16E-11 2.42E-05 7.55E-04 2.74E+01 3.71E+03 2.43E+02 Std.   

5.52E-12 1.09E-07 1.22E-03 3.38E+01 2.30E+04 4.00E+02 Best F3 

1.12E-10 1.05E-04 4.28E-03 1.42E+02 3.53E+04 1.38E+03 Worst   

1 2 3 4 6 5 Rank   

2.52E-06 6.73E-07 1.31E-02 1.07E+00 1.32E+01 3.78E+00 Ave   

2.10E-06 7.60E-07 1.35E-03 1.77E-01 1.83E+00 3.94E-01 Std.   

2.05E-07 7.68E-08 9.97E-03 6.57E-01 9.70E+00 6.57E-01 Best F4 

6.35E-06 2.93E-06 1.56E-02 1.36E+00 1.57E+01 4.33E+00 Worst   

2 1 3 4 5 4 Rank   

2.37E+00 2.70E+01 2.88E+01 7.33E+01 1.41E+02 5.21E+02 Ave   

4.86E+00 9.00E-01 2.17E-02 5.14E+01 5.32E+01 1.99E+02 Std.   

1.69E-01 2.59E+01 2.88E+01 1.92E+01 4.58E+01 2.55E+02 Best F5 

1.92E+01 2.87E+01 2.89E+01 2.04E+02 2.37E+02 9.49E+02 Worst   

1 3 4 2 5 6 Rank   

8.21E-05 8.96E-01 3.12E+00 2.10E-04 4.08E-04 1.84E+01 Ave   

2.68E-05 3.16E-01 3.49E-01 4.45E-04 1.25E-04 6.47E+00 Std.   

5.51E-05 2.57E-01 2.10E+00 3.29E-06 2.32E-04 8.86E+00 Best F6 

1.51E-04 1.51E+00 3.63E+00 1.84E-03 5.94E-04 2.95E+01 Worst   

2 4 5 1 3 6 Rank   

1.32E-03 2.34E-03 1.22E-04 3.61E+00 5.57E-02 2.62E-02 Ave   

1.02E-03 1.43E-03 1.25E-04 4.09E+00 9.93E-03 8.01E-03 Std.   

6.61E-05 6.05E-04 5.24E-06 8.28E-02 4.26E-02 1.03E-02 Best F7 

4.56E-03 5.73E-03 4.46E-04 1.36E+01 7.60E-02 4.46E-02 Worst   

2 3 1 6 5 4 Rank   

1.43 2.43 3.71 3.43 4.43 5.28 Average Rank 

1 2 4 3 5 6 Overall Rank 
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Table 6 
Outcomes of the multi-modal benchmark functions. 

EHOGWO GWO EHO PSO DE GA     

-1.26E+04 -5.98E+03 -3.68E+03 -4.87E+03 -9.77E+03 -8.32E+03 Ave   

3.71E+00 1.08E+03 3.79E+02 1.42E+03 4.98E+02 6.15E+02 Std.   

-1.26E+04 -8.13E+03 -4.69E+03 -8.30E+03 -1.09E+04 -9.48E+03 Best F8 

-1.26E+04 -3.11E+03 -3.18E+03 -2.90E+03 -8.60E+03 -6.94E+03 Worst   

1 5 6 4 2 3 Rank   

3.92E-13 2.68E+00 1.17E-03 1.11E+02 8.61E+01 2.30E+01 Ave   

8.83E-14 5.71E+00 1.27E-04 2.96E+01 8.93E+00 5.85E+00 Std.   

2.27E-13 5.68E-14 9.57E-04 6.87E+01 7.24E+01 1.38E+01 Best F9 

5.68E-13 2.50E+01 1.40E-03 1.91E+02 1.05E+02 3.22E+01 Worst   

2 1 3 5 6 4 Rank   

2.31E-13 9.97E-14 1.05E-02 2.11E-01 5.52E-03 1.89E+00 Ave   

4.27E-13 2.13E-14 4.45E-04 4.04E-01 1.00E-03 3.87E-01 Std.   

7.55E-14 6.84E-14 9.53E-03 2.05E-03 3.69E-03 8.36E-01 Best F10 

1.99E-12 1.36E-13 1.13E-02 1.16E+00 7.22E-03 2.52E+00 Worst   

2 1 5 3 4 6 Rank   

1.01E-15 5.60E-03 2.24E-03 8.29E-03 7.05E-03 1.14E+00 Ave   

1.82E-15 1.00E-02 7.26E-04 8.12E-03 7.94E-03 4.41E-02 Std.   

0.00E+00 0.00E+00 7.64E-04 1.16E-06 3.43E-04 1.06E+00 Best F11 

4.66E-15 3.62E-02 3.42E-03 2.22E-02 2.60E-02 1.23E+00 Worst   

1 1 4 2 3 5 Rank   

6.51E-06 4.42E-02 5.97E-01 1.04E-02 5.73E-05 3.93E-02 Ave   

2.09E-06 2.07E-02 8.91E-02 4.64E-02 3.21E-05 2.46E-02 Std.   

3.06E-06 1.98E-02 4.10E-01 7.45E-08 2.24E-05 1.28E-02 Best F12 

1.05E-05 1.05E-01 7.74E-01 2.07E-01 1.47E-04 1.21E-01 Worst   

2 5 6 1 3 4 Rank   

1.28E-04 7.30E-01 2.84E+00 6.02E-03 2.93E-04 7.95E-01 Ave   

7.62E-05 3.08E-01 1.97E-01 1.09E-02 1.56E-04 2.56E-01 Std.   

5.18E-05 3.75E-01 2.38E+00 1.18E-06 7.70E-05 4.38E-01 Best F13 

3.39E-04 1.72E+00 2.98E+00 4.40E-02 6.59E-04 1.50E+00 Worst   

2 4 6 1 3 5 Rank   

1.67 3 5 2.67 3.5 4.5 Average Rank 

1 3 6 2 4 5 Overall Rank 
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Table 7 
Outcomes of the fixed-dimension multi-modal benchmark functions. 

EHOGWO GWO EHO PSO DE GA     

9.98E-01 4.82E+00 2.17E+00 2.67E+00 1.24E+00 9.98E-01 Ave   

1.40E-10 4.06E+00 7.34E-01 2.75E+00 1.10E+00 4.30E-11 Std.   

9.98E-01 9.98E-01 1.01E+00 9.98E-01 9.98E-01 9.98E-01 Best F14 

9.98E-01 1.27E+01 3.97E+00 1.08E+01 5.93E+00 9.98E-01 Worst   

1 1 1 1 1 1 Rank   

4.72E-04 4.40E-03 1.42E-03 1.02E-02 7.14E-04 2.68E-03 Ave   

1.93E-04 8.19E-03 7.58E-04 9.78E-03 9.77E-05 6.05E-03 Std.   

3.08E-04 3.07E-04 4.60E-04 4.67E-04 5.06E-04 4.82E-04 Best F15 

1.22E-03 2.04E-02 3.46E-03 2.26E-02 7.86E-04 2.04E-02 Worst   

2 1 3 5 6 4 Rank   

-1.03E+00 -1.03E+00 -9.88E-01 -1.03E+00 -1.03E+00 -1.03E+00 Ave   

2.36E-08 1.54E-08 4.62E-02 2.10E-16 2.28E-16 3.74E-08 Std.   

-1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 Best F16 

-1.03E+00 -1.03E+00 -8.47E-01 -1.03E+00 -1.03E+00 -1.03E+00 Worst   

1 1 1 1 1 1 Rank   

3.99E-01 3.98E-01 4.07E-01 3.98E-01 3.98E-01 3.98E-01 Ave   

2.76E-03 2.68E-06 1.09E-02 0.00E+00 0.00E+00 3.68E-07 Std.   

3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 Best F17 

4.08E-01 3.98E-01 4.45E-01 3.98E-01 3.98E-01 3.98E-01 Worst   

1 1 2 1 1 1 Rank   

3.00E+00 3.00E+00 3.23E+00 3.00E+00 3.00E+00 3.00E+00 Ave   

1.91E-05 3.82E-05 5.42E-01 2.19E-15 4.78E-16 7.81E-07 Std.   

3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 Best F18 

3.00E+00 3.00E+00 4.93E+00 3.00E+00 3.00E+00 3.00E+00 Worst   

1 1 1 1 1 1 Rank   

-3.86E+00 -3.86E+00 -3.81E+00 -3.86E+00 -3.86E+00 -3.86E+00 Ave   

3.04E-03 3.14E-03 2.12E-02 2.89E-03 2.28E-15 3.67E-08 Std.   

-3.86E+00 -3.86E+00 -3.85E+00 -3.86E+00 -3.86E+00 -3.86E+00 Best F19 

-3.85E+00 -3.85E+00 -3.76E+00 -3.85E+00 -3.86E+00 -3.86E+00 Worst   

1 1 2 1 1 1 Rank   

-3.21E+00 -3.26E+00 -2.90E+00 -3.23E+00 -3.32E+00 -3.29E+00 Ave   

1.55E-01 8.07E-02 1.65E-01 1.23E-01 9.22E-06 5.59E-02 Std.   

-3.32E+00 -3.32E+00 -3.07E+00 -3.32E+00 -3.32E+00 -3.32E+00 Best F20 

-2.84E+00 -3.10E+00 -2.49E+00 -2.84E+00 -3.32E+00 -3.20E+00 Worst   

1 1 2 1 1 1 Rank   

-9.63E+00 -9.14E+00 -3.87E+00 -7.01E+00 -9.24E+00 -7.65E+00 Ave   

1.17E+00 2.08E+00 4.88E-01 3.34E+00 2.18E+00 3.54E+00 Std.   

-1.02E+01 -1.02E+01 -4.89E+00 -1.02E+01 -1.02E+01 -1.02E+01 Best F21 

-5.69E+00 -5.06E+00 -3.22E+00 -2.63E+00 -2.68E+00 -2.63E+00 Worst   

1 1 2 1 1 1 Rank   

-1.02E+01 -1.04E+01 -4.04E+00 -8.25E+00 -1.03E+01 -8.27E+00 Ave   

5.49E-01 1.10E-03 3.88E-01 3.08E+00 6.72E-01 3.37E+00 Std.   

-1.04E+01 -1.04E+01 -4.79E+00 -1.04E+01 -1.04E+01 -1.04E+01 Best F22 

-8.24E+00 -1.04E+01 -3.38E+00 -2.77E+00 -7.40E+00 -2.75E+00 Worst   

1 1 2 1 1 1 Rank   

-1.04E+01 -1.03E+01 -4.23E+00 -8.46E+00 -1.05E+01 -7.62E+00 Ave   

2.98E-01 1.21E+00 4.79E-01 2.97E+00 2.27E-01 3.69E+00 Std.   

-1.05E+01 -1.05E+01 -6.07E+00 -1.05E+01 -1.05E+01 -1.05E+01 Best F23 

-9.56E+00 -5.13E+00 -3.69E+00 -2.42E+00 -9.52E+00 -2.42E+00 Worst   

1 1 2 1 1 1 Rank   

1.348 1.913 3.217 2.348 2.913 3.348 Average rank 

1 2 5 3 4 6 Overall Rank 



18 Z. Hoseini et al./ Journal of Soft Computing in Civil Engineering 6-4 (2022) 1-42 

6.1. Exploitation analysis 

From Table 5, it is clear that GWOEHO can produce very competitive outcomes. According to 

the results, the suggested GWOEHO algorithm has the highest overall ranking of the whole 

benchmark suites. It can be said that the unimodal functions are usually utilized to evaluate the 

algorithms' exploitation ability. GWO, PSO, EHO, DE, and GA are in the following ranks, 

respectively. Hence, these outcomes present the extreme ability of GWOEHO in terms of 

exploiting the optimum. And this is because of the previous dissection of the suggested 

exploitation operators. 

6.2. Exploration analysis 

As opposed to the unimodal functions, multi-modal functions have many local optima, 

expanding exponentially with dimension. This ability makes them appropriate for benchmarking 

the exploration performance of an algorithm. Tables 6 and 7 present the outcomes for multi-

modal benchmark functions and those with fixed dimensions. From the results, it is clear that the 

suggested GWOEHO has the best ranking when compared to the other algorithms. Meanwhile, 

PSO, GWO, DE, GA, and EHO are in the following ranks in relation to the multi-modal 

benchmark functions. In the case of multi-modal benchmark functions with rigid dimensions, 

GWOEHO still got the best rank, and GWO, PSO, DE, EHO, and GA are after GWOEHO, 

respectively. 

6.3. Statistical testing 

Wilcoxon's rank-sum test as a nonparametric statistical test [59] is performed to determine the 

efficiency of the suggested GWOEHO algorithm when compared to the other algorithms. The 

test was accomplished by utilizing the outcomes of the suggested GWOEHO in each test 

function and in comparison with other algorithms at 5% importance. Table 8 displays the p-

values attained by the test, where the p-values less than 0.05 indicates that the null hypothesis is 

not acceptable and therefore must be declined, i.e., there is a considerable variance at a level of 

5%. In contrast, the p-values (bigger than 0.05) are underlined, meaning no considerable 

variance exists among the compared values. By analyzing the results obtained, given that in most 

comparisons, the values of the p-values are less than 0.05, which confirms that the improvement 

obtained by the suggested GWOEHO is statistically considerable. The box-plot and MCT results 

of the considered problems are presented in Fig. 3. 
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Table 8 
p-values obtained from the rank-sum test on different benchmark functions 

Function GWO EHO PSO DE GA 

1 2.04E-05 6.80E-08 6.80E-08 6.80E-08 6.80E-08 

2 1.20E-06 6.80E-08 6.80E-08 6.80E-08 6.80E-08 

3 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 

4 0.000758 6.80E-08 6.80E-08 6.80E-08 6.80E-08 

5 6.70E-08 6.70E-08 7.79E-08 6.70E-08 6.70E-08 

6 6.80E-08 6.80E-08 0.323482 6.80E-08 6.80E-08 

7 0.009045 6.01E-07 6.80E-08 6.80E-08 6.80E-08 

8 5.37E-08 5.37E-08 5.37E-08 5.37E-08 5.37E-08 

9 0.673626 6.38E-08 6.38E-08 6.38E-08 6.38E-08 

10 0.415586 6.67E-08 6.67E-08 6.67E-08 6.67E-08 

11 0.399648 2.96E-08 2.96E-08 2.96E-08 2.96E-08 

12 6.80E-08 6.80E-08 7.41E-05 6.80E-08 6.80E-08 

13 6.80E-08 6.80E-08 0.285305 0.000179 6.80E-08 

14 5.87E-06 6.80E-08 1 2.78E-07 1.19E-06 

15 1 6.92E-07 4.41E-07 3.07E-06 2.06E-06 

16 0.036048 6.80E-08 1.94E-08 8.01E-09 0.002319 

17 0.218406 9.75E-06 8.01E-09 8.01E-09 6.76E-07 

18 2.28E-05 0.470696 1.98E-08 5.86E-09 0.855798 

19 0.323482 6.80E-08 6.49E-05 8.01E-09 6.80E-08 

20 0.364842 5.87E-06 0.093541 2.66E-07 0.002139 

21 0.946074 6.76E-08 1 0.040991 0.13321 

22 0.00148 6.79E-08 0.101388 4.98E-06 0.038506 

23 0.027447 6.75E-08 0.105926 1.92E-06 0.424775 
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Fig. 3. Box-plot of F1 to F23 objective function using the reported optimizers. 

7. GWOEHO for classical engineering challenges 

In order to solve the classical engineering challenges, six constrained engineering design 

challenges including welded beam, three bar truss design, pressure vessel, tension/compression 
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spring, speed reducer design, and tabular design column, are employed. Updating search agents 

can be very challenging due to the constraints and the possibility of affecting the amount of 

function. However, the search agents are updated without changing the algorithm and the direct 

relationship between the search agents and the main function. In this process, by violating any 

constraints, a large value is allocated to the main function's fitness value. Thus, if the best search 

agents include penalty functions, the algorithm will be replaced automatically in the following 

process. A variety of penalty functions can be used to penalize based on the amount of the 

violation. 

The GWOEHO algorithm is compared to GA, DE, PSO, EHO, GWO, and algorithms for 

verifying the results. The previously mentioned parameters in Table 4 are also used in the 

algorithms for engineering design problems. 

7.1. Tension/compression spring design 

This problem minimizes tension/compression spring weight, as illustrated in Fig. 4 [60–62]. 

 
Fig. 4. Schematic of the Tension/compression spring. 

Wire diameter (𝑑), mean coil diameter (𝐷), and the number of active coils (𝑁) are three variables 

of the problem and, shear stress, surge frequency, and minimum deflection are defined as design 

constraints. The mathematical formulation of this challenge is as follows: 

Consider        𝑋⃗ = [𝑋1  𝑋2  𝑋3 ] = [𝑑𝐷𝑁] 

Minimize       𝑓(𝑋⃗) = (𝑋3 + 2)𝑋3𝑋1
2 

(14) Subject to 

𝑔1 = 1 −
𝑋3𝑋2

3

71785𝑋1
4 ≤ 0 

𝑔2 = 1 −
4𝑋2

2+𝑋1𝑋2

12566(𝑋2𝑋1
3−𝑋1

4)
 + 

1

5108𝑋1
2  ≤ 0 

𝑔3 = 1 −
140.45𝑋1

𝑋2
2𝑋3

 ≤ 0 

𝑔4 =
𝑋1+𝑋2

1.5
 −1 ≤ 0 

Variable range               0.05 ≤ 𝑋1 ≤ 2 

                                      0.25 ≤ 𝑋2 ≤ 1.3 

                                      2 ≤ 𝑋3 ≤ 15 

This problem was tackled by both heuristic and mathematical methods. With utilizing PSO, Ha 

and Wang attempted to solve this problem [63]. Besides, there are various algorithms have been 
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utilized as heuristic optimizers for solving this problem including the Harmony Search (HS) [64], 

Differential Evolution (DE) [65] , GA [66], and Evolution Strategy (ES) [67]. In addition, the 

mathematical optimization technique [61] and the numerical optimization technique (constraints 

correction at constant cost) [60] are two mathematical methods that have been employed to solve 

this problem. Table 9 presented the results of GWO in comparison with the outcomes of the 

above-mentioned techniques. 

Table 9 
Comparison of results for tension/compression spring design problem. 

Algorithm 
Optimum variables Optimum 

weight d D N 

GWO 0.05169 0.356737 11.28885 0.0126660 

GSA 0.050276 0.32368 13.52541 0.0127022 

PSO  0.051728 0.357644 11.24454 0.0126747 

ES  0.051989 0.363965 10.89052 0.0126810 

GA  0.05148 0.351661 11.6322 0.0127048 

HS  0.051154 0.349871 12.07764 0.0126706 

DE  0.051609 0.354714 11.41083 0.0126702 

Mathematical optimization  0.053396 0.39918 9.1854 0.0127303 

Constraint correction  0.05 0.3159 14.25 0.0128334 

GWOEHO 0.0508 0.3350 12.7033 0.0127035 

Note that in evaluating the algorithm, 30 algorithm populations have been selected. The number 

of tribes in the algorithm is set to five, and the maximum number of iterations is equal to 500. 

The results and outputs of the program after twenty independent runs are presented in the table 

10. Similar penalty function for all algorithms were employed to perform a fair comparison [68]. 

This table shows and compares the results of the six algorithms GA, DE, PSO, EHO, GWO, 

GWOEHO. The typical convergence history of the six algorithms is displayed in Fig. 5. 

 
Fig. 5. Typical convergence history. 
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Table 10 
Comparison of outputs for tension/compression spring design problem. 

GWOEHO GWO EHO PSO DE GA   

0.0128155 0.0127631 0.0142334 0.0140182 0.0130328 0.0151251 Ave 

0.0001535 0.0001007 0.0003761 0.0019070 0.0003045 0.0016294 Std. 

0.0127034 0.0126794 0.0134147 0.0126970 0.0127103 0.0127486 Best 

0.0131679 0.0131131 0.0150044 0.0177731 0.0138408 0.0176103 Worst 

3 1 6 2 4 5 Rank 

7.2. Welded beam design 

This challenge aims to reduce the fabrication cost of a welded beam, as presented in Fig. 6 [66]. 

The following constraints were used: 

- Shear stress (𝜏). 

- Bending stress in the beam (𝜎). 

- Buckling load on the bar (𝑃). 

- End deflection of the beam (𝛿). 

- Side constraints. 

Four variables including the thickness of the bar (ℎ), the height of the bar (𝑑), the length of an 

attached part of the bar (𝐿), and the thickness of weld (𝑤) are the main factors affecting this 

problem. The mathematical formulation can be found as follows: 

Minimize 

𝑚𝑖𝑛 𝑓(𝑤. 𝐿. 𝑑. ℎ) = 1.1047𝑤2𝐿 + 0.04811𝑑ℎ(14.0 + 𝐿) (15) 

Subject to 

𝑔1 = 𝜏 − 13600 ≤ 0 

𝑔2 = 𝜎 − 30000 ≤ 0 

𝑔3 = 𝑤 − ℎ ≤ 0 

𝑔4 = 0.1047𝑤2 + 0.04811ℎ𝑑(14 + 𝐿) − 0.5 ≤ 0 

𝑔5 = 0.125 − 𝑤 ≤ 0 

𝑔6 = 𝛿 − 0.25 ≤ 0 

𝑔7 = 6000 − 𝑃 ≤ 0 

(16) 

where 

𝜎 =
504000

ℎ𝑑2
 

𝑄 = 6000 (14 +
𝐿

2
) 

𝐷 =
1

2
√(𝐿2 + (𝑤 + 𝑑)2 

𝐽 = √2𝑤𝐿 [
𝐿2

6
+

(𝑤 + 𝑑)2

2
] 

𝛿 =
65856

30000ℎ𝑑3
 

𝛽 =
𝑄𝐷

𝐽
 

𝛼 =
6000

√2𝑤𝐿
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𝜏 = √𝛼2 +
𝛼𝛽𝐿

𝐷
+ 𝛽2 

𝑃 = 0.61423 × 106
𝑑ℎ3

6
(1 −

𝑑√30 48⁄

28
) 

𝜎 =
504000

ℎ𝑑2
 

𝑄 = 6000 (14 +
𝐿

2
) 

𝐷 =
1

2
√(𝐿2 + (𝑤 + 𝑑)2 

𝐽 = √2𝑤𝐿 [
𝐿2

6
+

(𝑤 + 𝑑)2

2
] 

𝛿 =
65856

30000ℎ𝑑3
 

𝛽 =
𝑄𝐷

𝐽
 

𝛼 =
6000

√2𝑤𝐿
 

𝜏 = √𝛼2 +
𝛼𝛽𝐿

𝐷
+ 𝛽2 

𝑃 = 0.61423 × 106
𝑑ℎ3

6
(1 −

𝑑√30 48⁄

28
) 

 

Variable range 

0.1 ≤ 𝐿. 𝑑 ≤ 10.0 

0.1 ≤ 𝑤. ℎ ≤ 2.0 
 

 
Fig. 6. Schematic of the welded beam. 

Coello [69] and Deb [70,71] utilized GA, on the other hand Lee and Geem [72] employed HS for 

solving this problem. Ragsdell and Philips [73] to solve this problem, employed five different 

mathematical methods named: Stewart's successive linear approximation, Simplex method, 
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Griffith, Richardson's random method, and Davidon-Fletcher-Powell. Table 11 displayed the 

comparison outputs for these mathematical approaches. 

Table 11 
Comparison outputs of the welded beam design problem. 

Algorithm 
Optimum variables 

Optimum cost ℎ 𝑙 𝑡 𝑏 

GWO 0.205676 3.478377 9.03681 0.205778 1.72624 

GSA 0.182129 3.856979 10.0000 0.202376 1.879952 

GA  N/A N/A N/A N/A 1.8245 

GA N/A N/A N/A N/A 2.3800 

GA  0.2489 6.1730 8.1789 0.2533 2.4331 

HS  0.2442 6.2231 8.2915 0.2443 2.3807 

Random 0.4575 4.7313 5.0853 0.6600 4.1185 

simplex 0.2792 5.6256 7.7512 0.2796 2.5307 

David 0.2434 6.2552 8.2915 0.2444 2.3841 

APPROX 0.2444 6.2189 8.2915 0.2444 2.3815 

GWOEHO 0.2044 3.2813 9.0357 0.2058 1.697348 

 

Note that in evaluating the algorithm, 30 algorithm populations have been selected by example. 

The number of tribes in the algorithm is considered to be five tribes. The number of loops of the 

algorithm is equal to 500 cycles. 

The results and outputs of the program after twenty runs from the program are presented in the 

following tables. A comparable penalty function for GWOEHO was utilized for performing a fair 

comparison [68]. Table 12 shows the results of the six algorithms GA, DE, PSO, EHO, GWO, 

GWOEHO. 

Table 12 
Comparison of outputs for Welded beam design problem. 

GWOEHO GWO EHO PSO DE GA   

1.7038 1.7016 2.9186 1.7157 1.9346 1.9080 Ave 

0.0061 0.0038 0.3243 0.0402 0.1423 0.1462 Std. 

1.6973 1.6976 2.3160 1.6952 1.7287 1.7071 Best 

1.7189 1.7100 3.4147 1.7938 2.2020 2.1410 Worst 

3.6043 0.5500 3.7557 0.4185 1.8342 2.7980 Time 

2 3 6 1 5 4 Rank 

 

Fig. 7 presents the typical convergence history of the six algorithms GA, DE, PSO, EHO, GWO, 

GWOEHO and are compared. 
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Fig. 7. Typical convergence history 

7.3. Pressure vessel design 

As presented in Fig. 8, pressure vessel design minimizes the total cost of forming, welding of a 

cylindrical vessel, and material. The following four variables were employed for pressure vessel 

design in this study. 

- Thickness of the shell (𝑇𝑠). 

- Thickness of the head (𝑇ℎ). 

- Inner radius (𝑅). 

- Length of the cylindrical section without considering the head (𝐿). 

 
Fig. 8. Schematic of Pressure vessel. 
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The pressure vessel design is subject to four constraints. All the constraints and the problem are 

formulated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑇𝑠, 𝑇ℎ, 𝑅, 𝐿) = 0.6224𝑇𝑠𝑅𝐿 + 1.7781𝑇ℎ𝑅2 + 3.1661𝑇𝑠
2𝐿 + 19.84𝑇𝑠

2𝑅  

Subject to 

𝑔1 = −𝑇𝑠 + 0.0193𝑅 ≤ 0 

𝑔2 = −𝑇ℎ + 0.0095𝑅 ≤ 0 

𝑔3 = −𝜋𝑅2𝐿 −
4

3
𝜋𝑅3 + 1.296.000 ≤ 0 

𝑔4 = 𝐿 − 240 ≤ 0 

Variable range 

(17) 

1 × 0.0625 ≤ 𝑇𝑠 ≤ 99 × 0.0625 

1 × 0.0625 ≤ 𝑇ℎ ≤ 99 × 0.0625 

10 ≤ 𝑅 ≤ 200 

10 ≤ 𝐿 ≤ 200 

Pressure vessel design is a popular problem between researchers and there are so many solutions 

for this problem in several studies. The heuristic approaches that have been employed to improve 

this problem are: PSO [63], GA [62,66,74], ES [67], DE [65], and ACO [75]. In addition, 

Branch-and-bound [76] and augmented Lagrangian Multiplier [77] are two mathematical 

approaches which utilized in this study. The outputs of pressure vessel design are presented in 

Table 13. 

Table 13 
Comparison outputs for pressure vessel design problem. 

Algorithm 
Optimum variables 

Optimum cost 
𝑇𝑠 𝑇ℎ 𝑅 𝐿 

GWO 0.812500 0.4345 42.089181 176.758731 6051.563900 

GSA 1.125000 0.625 55.9886598 84.454203 8538.8359 

PSO  0.812500 0.4375 42.091266 176.746500 6061.077700 

GA  0.812500 0.4345 40.323900 200.000000 6288.744500 

GA  0.812500 0.4375 42.097398 176.654050 6059.946300 

GA  0.937500 0.5 48.329000 112.679000 6410.381100 

ES  0.812500 0.4375 42.098087 176.640518 6059.745600 

DE  0.812500 0.4375 42.098411 176.637690 6059.734000 

ACO  0.812500 0.4375 42.103624 176.572656 6059.088800 

Larangian Multiplier  1.125000 0.625 58.291000 43.690000 7198.042800 

Branch-bound 1.125000 0.625 47.700000 117.701000 8129.103600 

GWOEHO 0.8125 0.4375 42.097985 176.647321 6059.876173 

Note that in evaluating the algorithm, 30 algorithm populations have been selected by example. 

The number of tribes in the algorithm is considered to be five tribes. The number of loops of the 

algorithm is equal to 500 cycles. 

The results and outputs of the program after twenty runs from the program are presented in the 

following tables. A comparable penalty function for GWOEHO was utilized for performing a fair 

comparison. Table 14 indicates the comparison outputs of the six algorithms GA, DE, PSO, 

EHO, GWO, GWOEHO. 
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Table 14 
Comparison of outputs for Pressure vessel design problem. 

GWOEHO GWO EHO PSO DE GA   

6.207E+03 6.369E+03 1.095E+04 6.526E+03 6.319E+03 6.737E+03 Ave 

3.181E+02 4.801E+02 1.727E+03 3.634E+02 2.474E+02 4.034E+02 Std. 

6.0598E+03 6.061E+03 7.971E+03 6.090E+03 6.067E+03 6.085E+03 Best 

7.2839E+03 7.375E+03 1.381E+04 7.333E+03 6.824E+03 7.399E+03 Worst 

       

1 2 6 5 3 4 Rank 

 

Fig. 9 presents the typical convergence history of the six algorithms GA, DE, PSO, EHO, GWO, 

GWOEHO and are compared. 

 
Fig. 9. Typical convergence history. 

7.4. Three bar truss design 

The structure of three bar truss design is presented in Fig. 10. The reduction of the volume 

related to the stress constraints of the truss members (on each side) is the main objective of this 

design. In this regard, the following mathematical approach is employed in current work: 

Minimize 𝑓(𝐴1, 𝐴2) = (2√2 𝐴1 + 𝐴2) × 𝐿 

𝑔1 =
√2 𝐴1+𝐴2

√2 𝐴1
2+2𝐴1𝐴2

𝑃 −  𝜎 ≤ 0  

𝑔2 =
𝐴2

√2 𝐴1
2 + 2𝐴1𝐴2

𝑃 −  𝜎 ≤ 0 

𝑔3 =
1

𝐴1 +√2 𝐴2
𝑃 −  𝜎 ≤ 0  

0 ≤ 𝐴1, 𝐴2 ≤ 1 

where 𝑙 = 100 cm, 𝑃 = 2 KN/cm 2, 𝜎= 2 KN/cm2 

(18) 
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Fig. 10. Three bar truss design. 

Various techniques including a swarm-like based approach [78,79], cuckoo search [17], dynamic 

stochastic selection differential evolution [80], evolutionary computational technique [81], GSA-

GA [82] and convexification strategies [83] were employed by researchers to solve this 

benchmark problem. Table 15 presents these techniques and summarizes their results along. In 

addition of that, the statistical measures of these approaches are provided in Table 16. 

Table 15 
Comparison of the best solution for the three-bar truss design problem. 

 
𝐴1 𝐴2 𝑔1 𝑔2 𝑔3 𝑓 

Hernandez [84] 0.788 0.408 NA
a
 NA NA 263.9 

Ray and Saini [79] 0.795 0.395 -0.00169 -0.26124 -0.74045 264.3 

Ray and Liew [78] 0.788621037 0.408401334 NA -1.46392765 -0.536072358 263.8958466 

Raj et al. [81] 0.78976441 0.40517605 NA -1.4675992 -0.53240078 263.89671 

Tsai [85] 0.788 0.408 NA -0.2674 -0.73178 263.68 

Zhang et al. [86] 0.788675136 0.408248287 NA -1.46410161 -0.5358983 263.8958434 

Gandomi et al. [17] 0.78867 0..40902 -0.00029 -0.26853 -0.73176 263.9716 

GSA-GA [82] 0.788676171 0.408245358 NA -1.4641049 -0.535895 263.8958433 

GWOEHO 0.788353026 0.409169566 -0.0000 -1.4631 -0.7552 263.8968650 
a
 not available 

Table 16 

Statistically result of different methods for the truss-bar problem. 
Method Best Mean Worst Std.  Median 

Ray and Liew  263.8958 263.9033 263.9698 1.26E-02 263.8989 

Zhang et al.  263.8958 263.8958 263.8958 9.72E-07 263.8958 

Gandomi et al.  263.9716 264.0669 NA
a
 9.00E-05 NA 

GSA-GA  263.8958 263.8958 263.8958 5.34E-07 263.8958 

GWOEHO 263.8968 263.9074 263.9314 0.009777 NA 
a
 not available 

 

Note that in evaluating the algorithm, 30 algorithm populations have been selected by example. 

The number of tribes in the algorithm is considered to be five tribes. The number of loops of the 

algorithm is equal to 500 cycles. 
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The results and outputs of the program after twenty runs from the program are presented in the 

following tables. A comparable penalty function for GWOEHO was utilized for performing a fair 

comparison. Table 17 shows the results of the six algorithms GA, DE, PSO, EHO, GWO, 

GWOEHO and are compared. 

Table 17 
Comparison of the outputs for three bar truss design. 

GWOEHO GWO EHO PSO DE GA   

263.9074 263.9016 264.4008 264.8443 263.8961 263.9076 Ave 

0.0098 0.0059 0.4353 4.2364 0.0002 0.0154 Std. 

263.8969 263.8962 264.0066 263.8959 263.8959 263.8964 Best 

263.9314 263.9170 265.7766 282.8427 263.8964 263.9459 Worst 

4 2 5 1 1 3 Rank 

 

Fig. 11 presents the typical convergence history of the six algorithms GA, DE, PSO, EHO, 

GWO, GWOEHO and are compared. 

 
Fig. 11. Typical convergence history. 

7.5. Speed reducer design 

One of the most critical benchmark design problems is speed reducer problem that was proposed 

by [87] and presented in Fig. 12. The main focus of this benchmark design is to decrease the 

speed reducer total weight. Seven decision variables called, module of teeth (𝑚), number of teeth 

on pinion (𝑧), diameter of shaft1 (𝑑1), face width (𝑏), diameter of shaft 2 (𝑑2), length of shaft 

one between bearing (𝑙1), and length of shaft two between bearing (𝑙2) were employed in speed 

reducer design problems. 
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Fig. 12. Speed reducer design. 

The optimization model of this problem is given as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑏. 𝑚. 𝑧. 𝑙1. 𝑙2. 𝑑1. 𝑑2)
= 0.7854𝑏𝑚2(3.3333𝑧2 + 14.9334𝑧 − 43.0934) − 1.508𝑏(𝑑1

2 + 𝑑2
2)

+ 7.4777(𝑑1
3 + 𝑑2

3) + 0.7854(𝑙1𝑑1
2 + 𝑙2𝑑2

2) 

(19) 

Subject to: 

𝑔1 =
27

𝑏𝑚2𝑧
− 1 ≤ 0 

𝑔2 =
397.5

𝑏𝑚2𝑧2
− 1 ≤ 0 

𝑔3 =
1.93𝑙1

3

𝑚𝑧𝑑1
4 − 1 ≤ 0 

𝑔4 =
1.93𝑙2

3

𝑚𝑧𝑑2
4 − 1 ≤ 0 

𝑔5 =

√(
745𝑙1

𝑚𝑧
)2 + 16.9 × 106

110𝑑1
3 − 1 ≤ 0 

𝑔6 =
√(

745𝑙2

𝑚𝑧
)

2

+ 157.5 × 106

85𝑑2
3 − 1 ≤ 0 

𝑔7 =
𝑚𝑧

40
− 1 ≤ 0 

𝑔8 =
5𝑚

𝑏
− 1 ≤ 0 

𝑔9 =
𝑏

12𝑚
− 1 ≤ 0 

𝑔10 =
1.5𝑑1 + 1.9

𝑙1
− 1 ≤ 0 

𝑔11 =
1.1𝑑2 + 1.9

𝑙2
− 1 ≤ 0 
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where 2.6 ≤𝑦1 ≤3.6, 0.7 ≤𝑦2 ≤0.8, 17 ≤𝑦3 ≤28, 7.3 ≤𝑦4 ≤8.3, 7.8 ≤𝑦5 ≤8.3, 2.9 ≤𝑦6 ≤3.9, 5.0 ≤𝑦7 

≤5.5. Many researchers [88–91] have proposed solutions to speed reducer design problem, 

presented in Table 18. Their statistical evaluations of these methods are indicated in Table 19; the 

answer given by the authors is infeasible as they violate the 𝑔6 constraints. 

Table 18 
Comparison of the best solution for speed reducer problem. 

 

Kuang 

et al. 

[77] 

Ray 

and 

Saini 

[71] 

Akhtar 

et al. 

[78] 

Ray and 

Liew [70] 

Raj et al. 

[69] 

Montes et 

al. [80] 

Cagnina 

et al. [79] 

Gandomi 

et al. [73] 

present 

study 

𝑦1 3.6 3.51419 3.50612 3.5000068 3.500071 3.50001 3.5 3.5015 3.4997 

𝑦2 0.7 0.70001 0.70001 0.7 0.7 0.7 0.7 0.7 0.6999 

𝑦3 17 17 17 17 17 17 17 17 16.999 

𝑦4 7.3 7.49734 7.54913 7.3276021 7.3 7.3 7.3 7.605 7.3004 

𝑦5 7.8 7.8346 7.85933 7.7153218 7.820728 7.8 7.8 7.8181 7.7994 

𝑦6 3.4 2.9018 3.36558 3.350267 2.900173 3.350214 3.350214 3.352 2.8997 

𝑦7 5 5.0022 5.28977 5.2866545 5.000005 5.286683 5.286683 5.2875 5.2867 

𝑔1 -0.01 -0.0777 -0.0755 -0.0739171 -0.073934 -0.073915 -0.073915 -0.0743 -0.074 

𝑔2 -0.22 -0.2012 -0.1994 -0.1980001 -0.198015 -0.197998 -0.197998 -0.1983 -0.1981 

𝑔3 -0.528 -0.036 -0.4562 -0.9999967 -0.999994 -0.499172 -0.499172 -0.4349 -0.1009 

𝑔4 -0.877 -0.8754 -0.8994 -0.9999995 -0.999999 -0.901471 -0.901471 -0.9008 -0.9015 

𝑔5 -0.043 -0.4857 -0.0132 -0.6667294 -0.48645 0 0 -0.0011 -0.4862 

𝑔6 0.1821
a
 0.1805

a
 -0.0017 -1.95E-08 0.1820623

a
 -5.00E-16 -5.00E-16 -0.0004 -0.0002 

𝑔7 -0.703 -0.7025 -0.7025 -0.7024999 -0.7025 -0.7025 -0.7025 -0.7025 -0.7025 

𝑔8 -0.028 -0.004 -0.0017 -0.0000019 -2.03E-05 -1.00E-16 -1.00E-16 -0.0004 -0.0001 

𝑔9 -0.571 -0.5816 -0.5826 -0.5833325 -0.583325 -0.583333 -0.583333 -0.5832 -0.5833 

𝑔10 -0.041 -0.166 -0.0796 -0.0548885 -0.1438 -0.051325 -5.13E-02 -0.089 -0.1461 

𝑔11 -0.051 -0.0552 -0.0179 -2.33E-07 -0.053796 -0.010852 -0.010852 -0.013 -0.0108 

𝑓(𝑦) 2876.1 2732.9 3008.08 2994.7442 2724.055 2996.3482 2996.3482 3001 2895.8317 
a
 violate constraint; 

Table 19 
Statistical data for speed reducer design problem. 

Algorithm Best Median Mean Worst Std. 

Kuang et al. [30] 2876.117623 NA 
a
 NA NA NA 

Ray and Saini 2732.9006 NA 2741.5642 2757.8581 NA 

Akhtar et al. [2] 3008.08 NA 3012.12 3028 NA 

Montes et al. [35] 3025.005 NA  3088.7778 3078.5918 NA 

Ray and Liew [42] 2994.744241 3001.758 3001.758226 3009.964736 4.009142 

Montes et al. [34] 2996.356689 NA 2996.36722 NA 8.20E-03 

Cagnina et al. [5] 2994.471066 NA 2996.3482 NA 0 

Zhang et al. [50] 3000.981 2994.471 2994.3482 2994.471066 3.58E-12 

Gandomi et al. [50] 2894.73832 NA 3007.1997 NA 4.9634 

GSA-GA [75] 2894.73832 2894.971 2894.71248 2895.03219 4.96E-04 

GWOEHO 2895.831781  NA 2903.158785 2911.287901 3.98 
a
 not available 
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Note that in evaluating the algorithm, 30 algorithm populations have been selected by example. 

The number of tribes in the algorithm is considered to be five tribes. The number of loops of the 

algorithm is equal to 500 cycles. 

The results and outputs of the program after twenty runs from the program are presented in the 

following tables. A comparable penalty function for GWOEHO was utilized for performing a fair 

comparison [59]. Table 20 presents the results of the six algorithms GA, DE, PSO, EHO, GWO, 

GWOEHO and are compared. 

Table 20 
Comparison of outputs for speed reducer design. 

GWOEHO GWO EHO PSO DE GA   

2903.16 2902.82 3364.06 2932.86 2895.33 2895.42 Ave 

3.98 3.19 153.15 15.88 0.00 0.07 Std. 

2895.83 2897.83 3020.77 2895.33 2895.33 2895.34 Best 

2911.29 2910.67 3683.38 2955.62 2895.33 2895.62 Worst 

3.63 0.53 3.14 0.41 1.73 2.44 Time 

3 4 5 1 1 2 Rank 

 

Fig. 13 presents the typical convergence history of the six algorithms GA, DE, PSO, EHO, 

GWO, GWOEHO. 

 
Fig. 13. Typical convergence history. 

7.6. Tabular column design 

In tabular column design problems, the target is to develop an identical column of a tabular 

section, with length (𝐿) 250 cm, at lowest cost, that comprises construction and material cost, to 

tolerate a compressive load 𝑃 = 2500 kgf presented in Fig. 14 [92]. The mean diameter (𝑑) of the 
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column is limited among 2 and 14 cm while thickness (𝑡) restricted between 0.2 - 0.8 cm. The 

column is constructed of a material with a yield stress (𝜎𝑦 = 500 kgf/cm2), a modulus of 

elasticity (𝐸 = 0.85 ×10 6 kgf/cm2), and a density (𝜌= 0.0025 kgf/cm2). Based on these 

specifications, the optimization approach is formulated as 

Minimize       𝑓(𝑌) = 9.82𝑑𝑡 + 2𝑑 (20) 

𝑔1 =
𝑝

𝜋𝑑𝑡𝜎𝑦

− 1 ≤ 0 
 

𝑔2 =
8𝑝𝑙2

𝜋
3

𝐸𝑑𝑡(𝑑2 + 𝑡2)
− 1 ≤ 0 

 

𝑔3 =
2

𝑑
− 1 ≤ 0 

 

𝑔4 =
𝑑

14
− 1 ≤ 0 

𝑔5 =
0.2

𝑡
− 1 ≤ 0 

 

𝑔6 =
𝑡

0.8
− 1 ≤ 0 

 

 
Fig. 14. Tabular column design. 

Previous studies [17,92,93] dealt with tabular column design problems and solved them. Among 

these researches, the best solutions were proposed by Hsu and Liu [93], Rao [92], but their 

reported solutions are infeasible. However, by utilizing the proposed method in the current work 
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(GSA-GA algorithm) to solve tabular column design problems, the best solution to it can be 

achieved. Table 21 indicates the results of existing solutions and our proposed method. 

According to this table, the reported solution (GSA-GA algorithm) is much better than the 

current outputs. In addition, to present their constancy, the statistical analysis outcomes are 

indicated in Table 22, showing that the variation in the optimal outcomes is reasonably low in 

comparison with other methods [17,82,92,93]. 

Table 21 
Comparison of the best solution for the tabular column design problem. 

  Hsu and Liu [25] Rao [40] Gandomi et al. [16] GSA-GA [75] GWOEHO 

𝑑 5.4507 5.44 5.45139 5.45115623 5.451156 

 𝑡 0.292 0.293 0.29196 0.29196548 0.291965 

g2 0.1317a 0.0026
a
 -0.1095 -7.50E-09 -7.50E-09 

g3 -0.6331 -0.8571 -0.6331 -0.633105 -0.63311 

g4 -0.6107 0 -0.6106 -0.610631 -0.61063 

g5 -0.3151 -0.75 -0.315 -0.314987 -0.31499 

g6 -0.635 0 -0.6351 -0.635043 -0.63504 

f(y) 25.5316 26.5323 26.5321 26.531328 26.53133 
a
 Violate constraint 

Table 22 
Statistical data for the tubular column problem. 

Algorithms Best Median Mean Worst Std. 

Gandomi et al. 26.53217 NA 
a
 26.53504 26.53972 0.00193 

GSA-GA  26.531328 26.53133 26.531332 26.55315 3.94E-04 

GWOEHO 26.53201094 NA 26.536874 26.54626 3.52E-03 
a
 not available 

 

Note that in evaluating the proposed algorithm's performance, the population size is set to 30, 

The number of tribes is set to 5, and the maximum number of iterations is equal to 500. 

Results of the optimization algorithm after twenty independent runs are displayed in the 

following tables. Table 23 shows the results of six algorithms, GA, DE, PSO, EHO, GWO, 

GWOEHO, using the same penalty function. 

Table 23 
Comparison of results for tabular column design. 

GWOEHO GWO EHO PSO DE GA   

26.5369 26.5377 27.4663 26.5313 26.5313 26.5399 Ave 

0.0035 0.0033 0.4606 0.0000 0.0000 0.0114 Std. 

26.5320 26.5328 26.5914 26.5313 26.5313 26.5313 Best 

26.5463 26.5436 28.2970 26.5313 26.5313 26.5748 Worst 

2.72 0.24 3.15 0.23 1.72 2.47 Time 

2 3 4 1 1 1 Rank 
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Fig. 15 presents the typical convergence history of the six algorithms GA, DE, PSO, EHO, 

GWO, GWOEHO. 

 
Fig. 15. Typical convergence history. 

8. Conclusion 

A new hybrid algorithm named GWOEHO is introduced in the present study by combining 

GWO and EHO algorithms' features and adding a new separating operator. The main idea is to 

integrate the strength of GWO in exploitation and the ability of EHO in exploration and avoid 

getting trapped in local optima. The convergence speed and accuracy of the proposed algorithm 

are also improved by embedding a new separating operator. Twenty-three benchmark 

mathematical functions and six constrained engineering problems are used to validate the 

proposed GWOEHO compared to the original GWO and EHO and some other well-known 

algorithms. The results show that GWOEHO outperforms both GWO and EHO algorithms in 

most problems. The GWOEHO algorithm has gained the first rank in fifteen benchmark 

mathematical functions and achieved the second best rank in 5 remained examples. Results 

obtained from Wilcoxon's rank-sum test as a nonparametric statistical test confirmed that the 

suggested GWOEHO overcomes the other algorithms, significantly. 

The small standard deviation of the best solutions in most examples shows that the proposed 

GWOEHO algorithm exhibits robust performance in different independent runs of the same 

problem. This feature is especially important in complex and large-scale engineering problems. 

The application of the proposed algorithm in 6 different engineering problems and the 

comparison of the results with several well-known algorithms and the results from the technical 

literature show that GWOEHO can provide comparable results in this type of problem. 
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