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Metaheuristic algorithms have been widely used to solve 

structural optimization problems. Despite their powerful 

search capabilities, these algorithms often require a large 

number of fitness evaluations. Constructing a machine 

learning classifier to identify which individuals should be 

evaluated using the original fitness evaluation is a great 

solution to reduce the computational cost. However, there is 

still a lack of a thorough comparison between machine 

learning classifiers when integrating into the optimization 

process. This paper aims to evaluate the efficiencies of 

different classifiers in eliminating unnecessary fitness 

evaluations. For this purpose, the weight optimization of a 

double-layer grid structure comprising 200 members is used 

as a numerical experiment. Six machine learning classifiers 

selected for assessment in this study include Artificial Neural 

Network, Support Vector Machine, k-Nearest Neighbor, 

Decision Tree, Random Forest, and Adaptive Boosting. The 

comparison is made in terms of the optimal weight of the 

structure, the rejection rate as well as the computing time. 

Overall, it is found that the AdaBoost classifier achieves the 

best performance. 
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1. Introduction 

Structural optimization has attracted a great deal of interest from both academia and industry. 

Pioneering works of structural optimization were carried out by Maxwell in 1869 [1] and 

Mitchell in 1904 [2]. During the 1960s, Mathematical Programming techniques were applied to 

solve structural optimization problems, beginning with Schmit’s work [3]. In the early 1990s, 

Genetic Algorithm (GA) was firstly used to optimize truss structures [4]. GA is a population-

based metaheuristic algorithm developed by John Holland in 1975. In comparison with classical 

optimization approaches, metaheuristics have some advantages such as easily escaping from 

local optima, handling discrete variables. During the last four decades, many metaheuristic 

algorithms have been developed and successfully applied to solve structural optimization, for 

example, Genetic Algorithm (GA) [4], Evolution Strategy [5], Differential Evolution (DE) [6], 

Particle Swarm Optimization (PSO) [7], Ant Colony Optimization (ACO) [8], etc. 

Despite their advantages as mentioned above, metaheuristic algorithms often require a large 

number of fitness evaluations to obtain a good solution. In structural optimization, the evaluation 

of the fitness function is often computationally expensive due to conducting time-consuming 

finite element analyses. In the following cases, one potential solution is to construct an 

approximate model that can quickly evaluate fitness function [9–14]. Besides, there is another 

approach that is to employ machine learning (ML) classifiers to identify which individuals 

should be evaluated using the original fitness evaluation. Rosso et al. [15] proposed a hybrid 

method called SVM-PSO for structural optimization in which a Support Vector Machine (SVM) 

model is integrated into the PSO process with the aim of separating feasible and infeasible 

solutions, thereby reducing the search space. The proposed method is applied to solve two 

numerical examples of a simply supported beam and a Warren truss beam. Recently, Nguyen and 

Vu [16] employed Artificial Neural Network (ANN) to classify the safety state of a structural 

solution. The ANN classification model is used in conjunction with the objective function 

comparison for eliminating worse individuals during the DE optimization. An example of a 47-

bar planar tower is carried out and the results show that the proposed method saves about 20% of 

fitness evaluations. 

It is obvious that there exist many different ML classification algorithms and each algorithm will 

achieve its own percentage of rejection. Although there are numerous comparative studies on the 

performances of ML classifiers in structural problems [17–19], there is still a lack of a thorough 

evaluation of ML classifiers when embedding them into the optimization process. This is the aim 

of this study. 

For this purpose, six commonly used ML classifiers including ANN, SVM, k-Nearest Neighbor 

(kNN), Decision Tree (DT), Random Forest (RF), and Adaptive Boosting (AdaBoost) are 

carefully chosen for the comparison. The weight optimization of a double-layer grid structure of 

200 members is used as a numerical experiment. The comparison is made in terms of the optimal 

weight of the structure, the percentage in eliminating unnecessary fitness evaluations as well as 

the computing time. 
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The remainder of this paper is organized as follows. The paper first describes the technique for 

reducing fitness evaluations using ML classifiers. Six considered ML classifiers are briefly 

introduced in Section 3. In the following section, the comparison is conducted and the findings 

are discussed. Section 5 concludes this paper. 

2. Reduction of fitness evaluations using machine learning classifiers 

2.1. Statement of a structural optimization problem 

Structural optimization problems can be formulated as a constrained optimization problem 

(COP) where the objective function can be the weight or the cost of the whole structure while the 

constraints are often specified in design standards like stress conditions, buckling conditions, 

displacement conditions. The formulation of a structural optimization problem is expressed as 

follows: 
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where: x denotes the design variable vector; xi is the ith design variable; n is the number of 

design variables; f(x) is the objective function; gj(x) is the jth constraint; m is the number of 

constraints; li, ui are lower and upper limits of the variable xi, respectively. 

Metaheuristic algorithms are designed for solving unconstrained optimization problems. To 

handle COPs, a widely-used technique called the penalty method is applied in this study as 

follows: 

     2

11F cv f


   x x  (2) 

where: F(x) is called the penalty function; cv denotes the degree of constraint violation; 1 and 2 

are two parameters that are carefully selected to ensure a good balance between the exploration 

and the exploitation during the optimization process. In this study, 1 is set 1 and 2 is linearly 

increased from 20 to 40 based on the recommendation of Ref. [20]. The degree of constraint 

violation cv is determined by taking a sum of all violated constraints as follows: 

  
1

max 0,
m

j

j

cv g
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 x  (3) 

The variables can be the cross-sectional areas of structural members for sizing optimization, or 

the nodal coordinates for shape optimization, or the material distribution for topology 

optimization. This study is limited to sizing optimization. 
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2.2. Technique to reduce fitness evaluations using machine learning classifiers 

The application of machine learning classifiers to eliminate worse individuals during the 

optimization process is not new. This technique has been proposed in Ref. [16] and successfully 

applied to solve the problem of the 47-bar planar tower. The idea behind this technique is based 

on the observation that during the DE optimization, many trial individuals are worse than their 

parent individuals and will lose the pairwise tournament at the selection step. A classification 

model with the ability to detect whether an individual is feasible or not could save many useless 

fitness evaluations. The present study uses the same technique with few enhancements to 

improve efficiency. 

In particular, the optimization process is split into two stages. At stage I, after initializing a 

population P0={xi,0|i=1,…,NP}, three operators of the original DE algorithm (mutation, 

crossover, and selection) are sequentially carried out. At the certain iteration g, the current 

population is Pg={xi,g|i=1,…,NP}. The mutation operator creates the mutant individual vi,g while 

the crossover produces the trial individual ui,g by taking some components of vi,g and the rest 

from xi,g. Next, the selection operator chooses the better one among ui,g and xi,g to enter the next 

iteration. Implementing iterative three operators aims to move the population towards the 

optimum. The DE is a well-established metaheuristic algorithm that has been introduced in many 

previous documents. To avoid wordiness, the formulations of the DE algorithm are not presented 

in this paper. Readers can refer to Ref. [6,14] for more details. 

It is noted that each metaheuristic algorithm always comprises the exploration and the 

exploitation tasks, in which the exploration is the process of expanding bounding regions to find 

new solutions while the exploitation is the process of improving current solutions. The 

implementation of the original DE in the first stage ensures the exploration and collects data for 

training machine learning models. Accordingly, each newly produced individual is evaluated by 

the original fitness function and it is either labeled “+1” if it is feasible or “1” otherwise: 

 
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   


  

x

x
 (4) 

All newly evaluated individuals (xi,g, yi,g) are saved into the database. After several iterations, a 

training dataset is collected from historical fitness evaluations and an ML-based classification 

model is trained with the aim of classifying the feasibility of individuals. 

In stage II, the label of a trial individual ui,g produced by two operators mutation and crossover is 

predicted using the classification model just trained at the end of the previous stage. Three 

possible situations can occur as follows: (i) if the predicted label yi,pred=+1, the trial individual 

ui,g is then evaluated using the original fitness function; (ii) if the predicted label yi,pred=1 and 

the objective function of the trial individual f(ui,g) is smaller than that of the target individual 

f(xi,g), it is also evaluated using the original fitness function; (iii) if the predicted label yi,pred =1 

and f(ui,g)>f(xi,g), it is eliminated. Among three situations, there is one case that does not require 

conducting the original fitness evaluation. As a result, the computational cost is significantly 
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reduced. This technique is called the Classification-Assisted Differential Evolution (CADE). 

Both flowcharts of the CADE and the DE are schematized in Fig. 1 to clearly illustrate the 

proposed technique. 

Initial population P0

Fitness Evaluation

Mutation  vi,g

Crossover  ui,g

Fitness Evaluation

Selection  xi,g+1

g > gmax

End
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N

Classification 
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Fig. 1. Flowcharts: (a) Differential Evolution; (b) Classification-Assisted Differential Evolution. 

3. Review of machine learning classifiers 

Obviously, any ML classifier can be used in the CADE. In this work, six most commonly used 

classifiers that are selected for the comparison include Artificial Neural Network, Support Vector 

Machine, k-Nearest Neighbor, Decision Tree, Random Forest, and Adaptive Boosting. In the 

following subsections, these classifiers are briefly introduced. 

3.1. Artificial neural network (ANN) 

The ANN model comprises many nodes which are arranged into three types of layer: input layer, 

hidden layers, and output layer (Fig. 2). In this model, the weighted sum of outputs from nodes 
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of the previous layer becomes the input for nodes of the current layer. At each node, the input is 

transformed into the output by the activation function like the sigmoid function, the tanh 

function, the softmax function, or the ReLU function. These nonlinear functions will allow the 

model to create a complex mapping between the inputs and the outputs of the data. The model is 

trained using a technique called the back-propagation algorithm for minimizing the error 

between the predictions and ground truth values. ANN models can well handle both regression 

and classification tasks. For classification tasks, the cross-entropy is frequently used to measure 

the error. 

Hidden 

layer 1

Hidden 

layer 2

Output 

layer

Input 

layer  
Fig. 2. Artificial Neural Network. 

3.2. Support vector machine (SVM) 

The goal of this algorithm is to find an optimal hyperplane in multi-dimensional space that can 

separate data points into distinct regions. Fig. 3 illustrates the SVM model for a binary 

classification problem with two features. There are, in fact, many hyperplanes that could be 

detected. The optimal hyperplane is the one having the largest margin. 

small margin

support 

vectors

 
Fig. 3. Support Vector Machine. 
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3.3. k-Nearest neighbor (kNN) 

The kNN is categorized as a “lazy learner” algorithm in which all data points are stored in the 

database without conducting any training process. When a prediction is requested, the algorithm 

will search k points that are closest to the considered point, and then the prediction is determined 

by taking a plurality vote of newly detected neighbors. In addition, a useful technique can be 

applied to improve the accuracy where distance-based weights are assigned to neighbors. This 

technique ensures that nearer neighbors will contribute more to the prediction than that of far 

neighbors. Euclidean, Manhattan, and Minkowski distances are three distance functions that are 

commonly used in the kNN. Fig. 4 displayed a simply kNN model with two cases of k=3 and 

k=7. 

Class B

?
k=3

k=7

Class A

New point 

to classify

 
Fig. 4. k-Nearest Neighbor. 

3.4. Decision tree (DT) 

The DT model is a tree-like graph that is frequently used to split data into smaller subsets. A 

simple DT model is visualized in Fig. 5, in which, each internal node denotes a test on an 

attribute, and each branch represents an outcome of the test and each leaf node holds a class 

label. The quality of a split can be measured using the information gain or the Gini impurity. 

Root node

Internal node

Leaf 

node

Leaf 

node

Leaf 

node

No Yes

NoYes

 
Fig. 5. Decision Tree. 

3.5. Random forest (RF) 

There is an effective way to enhance the classification accuracy by using many DT models 

simultaneously. Each DE model is trained by a random subset from the training data. The final 
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output of the prediction is obtained through the majority vote. This technique is called bagging 

and this is very efficient to improve the stability for unstable algorithms like DT or ANN. One of 

the most bagging-type methods is the RF where only a few features are randomly chosen to train 

the DT model. An illustration of the concept of the RF is presented in Fig. 6. 

Training Dataset

Subset 1 Subset 2 Subset 3

Tree 1 Tree 2 Tree 3

Output 1 Output 2 Output 3

Majority Vote

Final Prediction  
Fig. 6. Random Forest. 

3.6. Adaptive boosting (AdaBoost) 

Boosting is also a method for reducing the variance and the bias of machine learning models. 

Like bagging, boosting combines several weak classifiers to create a strong classifier. The main 

difference between the two methods is that weak classifiers in bagging are built independently 

while weak models in boosting are trained sequentially. There exist many boosting algorithms, of 

which the AdaBoost is the first one. This algorithm is proposed by Schapire and Freund in 1997 

[21]. Fig. 7 illustrates the initial idea of the AdaBoost. 

Original Dataset Weighted Dataset

Weak classifier #1 Weak classifier #2

Strong classifier

 
Fig. 7. Adaptive Boosting. 
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4. Comparison 

In this section, a numerical example of a real-size structure is carried out using both the original 

DE and the CADE. As mentioned above, the CADE can be used in conjunction with any 

classification algorithm. Six ML classifiers selected in Section 3 will be employed in turn and 

their efficiencies are compared thoroughly. 

4.1. Numerical example 

The example considered in this work is a 10x10m double-layer grid structure consisting of 200 

bars. The aim of this example is to find the cross-sectional areas of members for minimizing the 

weight of the structure. The formulation of this problem is expressed as follows: 

 

 

1 2
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1 1
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in which: Ai is the cross-sectional area of members of the ith group; ng is the number of groups; 

Lj is the length of jth member; nm(i) is the number of members which belongs to the ith group;  

is the density of the material used in this structure; gk(A) denotes the kth constraint; nc is the 

number of constraints; S represents the list of available profiles. 

In this problem, members are divided into ng=9 groups as presented in Fig. 8. All members are 

fabricated from the material steel having mechanical properties as follows: the density =7850 

kg/m
3
; the modulus of elasticity E=2.1E+10 kg/m

2
; and the yield strength Fy=3.515E+07 kg/m

2
. 

This structure subjects to a load of q=250 kgf/m
2
 on the top surface. The list of available profiles 

S is described in Table 1. There are three types of constraints: tensile stress constraint, 

compressive stress constraint, slenderness ratio constraint, and displacement constraint. The 

tensile stress constraint is as follows: 

          0.9t t y tF     (6) 

where: t is the tensile stress of the member; Fy is the yield strength. 

The compressive stress constraint is as follows: 

;          0.85c c cr cF     (7) 

where: c is the compressive stress of the member; Fcr is the critical stress of the corresponding 

member which is calculated based on the following formula: 
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where: Fe=
2
E/(KL/r)

2
; K is the effective length factor which equals 1.0 in this case; L is the 

length of the member; and r is the radius of gyration of the member’s cross-section 

The limitations of the slenderness ratio (KL/r) are 200 for compression members while 300 for 

tension members. Finally, the allowable vertical displacement of this structure equals 7.5 cm. 
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Fig. 8. Configuration of the 10x10m double layer grid structure. 
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Table 1 
List of available profiles. 

No. Profile A (cm
2
) r (cm) No. Profile A (cm

2
) r (cm) 

1 33.702.6 2.54 1.1 14 159.04.0 19.48 5.4814 

2 48.302.6 3.73 1.62 15 168.34.0 20.65 5.8102 

3 60.303.2 5.74 2.02 16 193.74.5 26.75 6.6922 

4 76.103.2 7.329 2.5799 17 219.15.0 33.63 7.5716 

5 82.503.2 7.972 2.806 18 244.55.4 40.56 8.4557 

6 88.903.2 8.616 3.0321 19 273.05.6 47.04 9.457 

7 101.63.6 11.08 3.4672 20 298.55.9 54.23 10.3471 

8 108.03.6 11.81 3.6934 21 323.95.9 58.94 11.245 

9 114.33.6 12.52 3.9161 22 355.66.3 69.13 12.3536 

10 127.04.0 15.45 4.3504 23 368.06.3 71.59 12.7895 

11 133.04.0 16.21 4.5629 24 406.46.3 79.19 14.1475 

12 139.74.0 17.05 4.8004 25 419.07.1 91.88 14.5645 

13 152.44.0 18.65 5.2483 26 457.27.1 100.4 15.915 

 

4.2. Experimental setup 

This problem is categorized as a discrete optimization problem in which design variables are 

selected among a limited number of values. In this work, a simple technique is employed to 

handle discrete variables. The design variable AiS in Eq. (5) are replaced by an integer 

Ii{1,2,…,26} representing the sequence number of the considered profile in the list S. During 

the optimization process, a continuous value that is newly generated by the mutation and 

crossover operators is rounded to the nearest integer value. The cross-sectional area Ai and the 

radius of gyration ri corresponding to the position Ii are looked up from Table 1. Next, their 

values are used to evaluate the feasibility of the solution as well as save as the inputs of the 

training data. According to the evaluation result, this solution is labeled and the value is saved as 

the output of the training data. The data processing flow is illustrated in Fig. 9. 
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I9
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...

A9

r1

r2

...

r9

Feasible solution (cv=0)

Infeasible solution (cv>0)

x1=A1/r1

y=+1

y=1

yx2=A2/r2 ... x9=A9/r9

Inputs Output

 

Fig. 9. Data processing flow. 
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Both the DE and the CADE use “DE/current-to-best/1” which is recognized as one of the most 

effective mutation strategies. For a fair comparison, two algorithms are set with the same 

parameters as follows: the number of individuals NP=25, the scale factor F=0.8, the crossover 

rate Cr=0.9, and the maximum iterations gmax=100. In particular, the number of the first stage of 

the CADE is set to g1=20 which means the training dataset consists of 500 samples. Both the DE 

and the CADE algorithms are written in Python language. The finite element analysis code is 

developed based on the direct stiffness method. All ML models are constructed using the open-

source library scikit-learn [22]. Optimal parameters of these models that were found after the 

hyperparameter tuning process are presented in Table 2. 

Table 2 
Summary of ML model parameters. 

 Parameters 

ANN 
activation='relu', solver='adam', batch_size=10, max_iter=1000, 

hidden_layer_sizes=(200,200,200,), shuffle=True, early_stopping=True 

SVM kernel='rbf', C=1000, gamma=0.1 

kNN n_neighbors=50 

DT criterion='gini', max_depth=None 

RF 
n_estimators=50, max_depth=None, max_features='auto', 

max_leaf_nodes=None, min_impurity_decrease=1e-07, bootstrap=True 

AdaBoost DecisionTreeClassifier(max_depth=1), n_estimators=50 

The performance of machine learning models is evaluated through the accuracy metric. Due to 

the limited number of data samples, a widely-used technique called k-fold cross-validation is 

employed. In more detail, the training dataset is split into k subsets, in which the model is trained 

on (k-1) parts and then the trained model is validated on the remaining one. The process is 

repeadly carried out for k times. In this study, the parameter k is set to 5 and the mean values of 

the obtained accuracies are reported in Table 3. Next, the model is re-trained with the full 

training dataset and it will be embedded into the DE optimization. Particularly for the ANN 

model, the early stopping technique is used for preventing the overfitting phenomena. This 

feature is available in the library scikit-learn and it is enabled by the setting 

“early_stopping=True” when defining the model. 

Table 3 
Accuracies of ML models. 

 ANN SVM kNN DT RF AdaBoost 

Accuracy 0.775 0.757 0.651 0.884 0.903 0.905 

 

It is clearly seen that two ensemble models including the RF and the AdaBoost reach high 

accuracy (over 90%), followed by the DT (88.4%). The ANN and the SVM achieve an accuracy 

of approximately 75% while the kNN has the worst performance with an accuracy of 65.1%. The 

observation is consistent with the findings of Ref. [19]. 
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4.3. Results 

These are a total of seven cases that are carried for comparison. In general, the name of each case 

has the same form “A(B)” in which A represents the optimization algorithm and B denotes the 

ML classifier. For example, the case “CADE(AdaBoost)” means that the CADE is used to 

optimize the weight of the structure while the AdaBoost classifier is employed to reduce fitness 

evaluation. In particular, the name “DE” particularly denotes that the original DE is employed in 

this case. Each case is carried out 30 times. The best results in 30 independent runs are presented 

in Table 4. It is noted that all six cases of the CADE are performed, however, the best designs 

found by them are the same. Therefore, Table 4 presents one case of CADE. Additionally, the 

design found by Gholizadeh [23] using the commercial software SAP2000 is also reported to 

demonstrate the effectiveness of the proposed method. Fig. 10 shows the convergence curves of 

seven cases. The values indicated in Fig. 10 are averages of 30 runs. To compare the efficiency 

of six classifiers in reducing fitness evaluations, five metrics are used including the minimum 

weight (best), the average weight (mean), the standard deviation (SD), the average number of 

fitness evaluations (nFE), and the average computing time (time) of 30 independent runs. The 

obtained values of five metrics for six cases are reported in Table 5. 

Table 4 
Best results for the double-layer grid structure. 

 Gholizadeh [23] DE CADE 

A1 76.103.2 76.103.2 76.103.2 

A2 101.63.6 101.63.6 101.63.6 

A3 33.702.6 33.702.6 33.702.6 

A4 101.63.6 101.63.6 101.63.6 

A5 60.303.2 60.303.2 60.303.2 

A5 33.702.6 33.702.6 33.702.6 

A7 76.103.2 76.103.2 76.103.2 

A8 48.302.6 33.702.6 33.702.6 

A9 33.702.6 48.302.6 48.302.6 

Weight (kg) 1702.73 1683.904 1683.904 

Table 5 
Evaluation metrics of six classifiers. 

 best (kg) mean (kg) SD (kg) nFE time (s) 

CADE(ANN) 1683.904 1686.596 6.151 2095 80.6 

CADE(SVM) 1683.904 1719.392 155.850 1820 66.7 

CADE(kNN) 1683.904 1687.766 7.193 1818 45.4 

CADE(DT) 1683.904 1691.031 12.298 2030 43.7 

CADE(RF) 1683.904 1691.710 11.002 1819 54.5 

CADE(AdaBoost) 1683.904 1687.218 6.762 1743 48.9 
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Fig. 10. Convergence curves of seven cases. 

4.4. Comparison and discussion 

Based on the results described in Table 5, six CADE cases are ranked according to each metric. 

Next, their ranks are displayed on a radar chart as shown in Fig. 11. Some observations are as 

follows. 

 

Fig. 11. Comparison of six ML classifiers in the CADE. 
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First of all, it can be seen that the weights of the grid structure found by the DE and the CADE 

(1683.904 kg) are smaller than that of Gholizadeh (1702.73 kg). It demonstrates the effectiveness 

of applying metaheuristic algorithms in structural optimization. 

Secondly, Fig. 10 indicates that the convergence speeds of all CADE cases are faster than the 

original DE. Specifically, the DE finishes after 2500 iterations while six CADE cases converge 

after about 1700 to 2100 iterations. Among six cases, the CADE(AdaBoost) is fastest with the 

average number of fitness evaluations of 1743, followed by the CADE(kNN) with 1818 

evaluations, the CADE(RF) with 1819 evaluations, the CADE(SVM) with 1820 evaluation, the 

CADE(DT) with 2030 evaluations, and the CADE(ANN) with 2095 evaluations. In comparison 

with the original DE, the reduction rates of six cases are 30.3%, 27.3%, 27.2%, 27.2%, and 

16.2%, respectively. 

However, there is an inconsistency when comparing the number of fitness evaluations and the 

computing time. Although the CADE(DT) requires an average of 2030 evaluations, the total time 

of the CADE(DT) is 43.7s, ranking first in 6 cases. Next is the CADE(kNN), the 

CADE(AdaBoost), the CADE(RF), the CADE(SVM), and the CADE(ANN). The reason is that 

the training speed of the DT model is very fast. It should be noted that for large-scale structures 

where the time for each finite element analysis is much larger than the training model time, the 

above ranking can be changed. 

Comparing in terms of the optimal weight, the CADE(ANN) is superior to others. In more detail, 

the mean value and the SD value of the CADE(ANN) are 1686.596 kg and 6.151 kg, 

respectively. The following cases are: the CADE(AdaBoost) with mean=1687.218 kg and 

SD=6.762 kg; the CADE(kNN) with mean=1687.766 kg and SD=7.193 kg, the CADE(DT) with 

mean=1691.031 kg and SD=12.298 kg, the CADE(RF) with mean=1691.71 kg and SD=11.002 

kg, and the CADE(SVM) with mean=1719.392 kg and SD=155.85 kg. 

Overall, it is apparent that the application of ML classifiers into the optimization process 

significantly reduces the number of fitness evaluations. The reduction rate ranges from 16% to 

30%. The CADE(AdaBoost) achieves the best performance when balancing five evaluation 

metrics. 

5. Conclusions 

This paper presents a hybrid method called CADE with the aim of reducing the number of fitness 

evaluations of metaheuristic algorithms. In this method, an ML classifier is constructed based on 

historical fitness evaluations in order to predict the feasibility of newly produced individuals. In 

later generations, the ML classifier is employed as a filter to eliminate worse individuals, 

thereby, omitting many useless fitness evaluations. 

For comparing the efficiencies of ML classifiers, a 10x10m double-layer grid structure is 

optimized using six cases of the CADE with six different ML classifiers. The results show that 

applying ML classifier rejects approximately 16 to 30% of fitness evaluations. Among six 

compared ML classifiers, the AdaBoost gives the best performance. With lower computationally 
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cost, the AdaBoost classifier-assisted Differential Evolution is very effective when optimizing 

large-scale structures. 
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