
Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73

How to cite this article: Nguyen TH, Vu AT. Comparison of machine learning classifiers for reducing fitness evaluations of

structural optimization. J Soft Comput Civ Eng 2021;5(4):57–73. https://doi.org/10.22115/scce.2021.306249.1367

2588-2872/ © 2021 The Authors. Published by Pouyan Press.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at SCCE

Journal of Soft Computing in Civil Engineering

Journal homepage: www.jsoftcivil.com

Comparison of Machine Learning Classifiers for Reducing

Fitness Evaluations of Structural Optimization

Tran-Hieu Nguyen
1*

, Anh-Tuan Vu
2

1. MSc., Ph.D. Student, Faculty of Building and Industrial Constructions, Hanoi University of Civil Engineering,

Hanoi, Vietnam

2. Associate Professor, Faculty of Building and Industrial Constructions, Hanoi University of Civil Engineering,

Hanoi, Vietnam

Corresponding author: hieunt2@nuce.edu.vn

 https://doi.org/10.22115/SCCE.2021.306249.1367

ARTICLE INFO

ABSTRACT

Article history:

Received: 23 September 2021

Revised: 05 November 2021

Accepted: 22 November 2021

Metaheuristic algorithms have been widely used to solve

structural optimization problems. Despite their powerful

search capabilities, these algorithms often require a large

number of fitness evaluations. Constructing a machine

learning classifier to identify which individuals should be

evaluated using the original fitness evaluation is a great

solution to reduce the computational cost. However, there is

still a lack of a thorough comparison between machine

learning classifiers when integrating into the optimization

process. This paper aims to evaluate the efficiencies of

different classifiers in eliminating unnecessary fitness

evaluations. For this purpose, the weight optimization of a

double-layer grid structure comprising 200 members is used

as a numerical experiment. Six machine learning classifiers

selected for assessment in this study include Artificial Neural

Network, Support Vector Machine, k-Nearest Neighbor,

Decision Tree, Random Forest, and Adaptive Boosting. The

comparison is made in terms of the optimal weight of the

structure, the rejection rate as well as the computing time.

Overall, it is found that the AdaBoost classifier achieves the

best performance.

Keywords:

Evolutionary algorithm;

Differential evolution;

Surrogate model;

Machine learning classifier;

AdaBoost.

https://doi.org/10.22115/SCCE.2021.306249.1367
https://doi.org/10.22115/scce.2021.306249.1367
http://creativecommons.org/licenses/by/4.0/
http://www.jsoftcivil.com/
mailto:hieunt2@nuce.edu.vn
https://doi.org/10.22115/SCCE.2021.306249.1367
https://orcid.org/0000-0002-1446-5859

58 T.H. Nguyen, A.T. Vu/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73

1. Introduction

Structural optimization has attracted a great deal of interest from both academia and industry.

Pioneering works of structural optimization were carried out by Maxwell in 1869 [1] and

Mitchell in 1904 [2]. During the 1960s, Mathematical Programming techniques were applied to

solve structural optimization problems, beginning with Schmit’s work [3]. In the early 1990s,

Genetic Algorithm (GA) was firstly used to optimize truss structures [4]. GA is a population-

based metaheuristic algorithm developed by John Holland in 1975. In comparison with classical

optimization approaches, metaheuristics have some advantages such as easily escaping from

local optima, handling discrete variables. During the last four decades, many metaheuristic

algorithms have been developed and successfully applied to solve structural optimization, for

example, Genetic Algorithm (GA) [4], Evolution Strategy [5], Differential Evolution (DE) [6],

Particle Swarm Optimization (PSO) [7], Ant Colony Optimization (ACO) [8], etc.

Despite their advantages as mentioned above, metaheuristic algorithms often require a large

number of fitness evaluations to obtain a good solution. In structural optimization, the evaluation

of the fitness function is often computationally expensive due to conducting time-consuming

finite element analyses. In the following cases, one potential solution is to construct an

approximate model that can quickly evaluate fitness function [9–14]. Besides, there is another

approach that is to employ machine learning (ML) classifiers to identify which individuals

should be evaluated using the original fitness evaluation. Rosso et al. [15] proposed a hybrid

method called SVM-PSO for structural optimization in which a Support Vector Machine (SVM)

model is integrated into the PSO process with the aim of separating feasible and infeasible

solutions, thereby reducing the search space. The proposed method is applied to solve two

numerical examples of a simply supported beam and a Warren truss beam. Recently, Nguyen and

Vu [16] employed Artificial Neural Network (ANN) to classify the safety state of a structural

solution. The ANN classification model is used in conjunction with the objective function

comparison for eliminating worse individuals during the DE optimization. An example of a 47-

bar planar tower is carried out and the results show that the proposed method saves about 20% of

fitness evaluations.

It is obvious that there exist many different ML classification algorithms and each algorithm will

achieve its own percentage of rejection. Although there are numerous comparative studies on the

performances of ML classifiers in structural problems [17–19], there is still a lack of a thorough

evaluation of ML classifiers when embedding them into the optimization process. This is the aim

of this study.

For this purpose, six commonly used ML classifiers including ANN, SVM, k-Nearest Neighbor

(kNN), Decision Tree (DT), Random Forest (RF), and Adaptive Boosting (AdaBoost) are

carefully chosen for the comparison. The weight optimization of a double-layer grid structure of

200 members is used as a numerical experiment. The comparison is made in terms of the optimal

weight of the structure, the percentage in eliminating unnecessary fitness evaluations as well as

the computing time.

 T.H. Nguyen, A.T. Vu/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73 59

The remainder of this paper is organized as follows. The paper first describes the technique for

reducing fitness evaluations using ML classifiers. Six considered ML classifiers are briefly

introduced in Section 3. In the following section, the comparison is conducted and the findings

are discussed. Section 5 concludes this paper.

2. Reduction of fitness evaluations using machine learning classifiers

2.1. Statement of a structural optimization problem

Structural optimization problems can be formulated as a constrained optimization problem

(COP) where the objective function can be the weight or the cost of the whole structure while the

constraints are often specified in design standards like stress conditions, buckling conditions,

displacement conditions. The formulation of a structural optimization problem is expressed as

follows:

 

 

 

1

Find , 1,2,...,

to minimize:

0, 1,2,...,
subject to:

i

n

i i i

i

j

i i i

x i n

f l x

g j m

l x u




 



  


 



x

x

x

 (1)

where: x denotes the design variable vector; xi is the ith design variable; n is the number of

design variables; f(x) is the objective function; gj(x) is the jth constraint; m is the number of

constraints; li, ui are lower and upper limits of the variable xi, respectively.

Metaheuristic algorithms are designed for solving unconstrained optimization problems. To

handle COPs, a widely-used technique called the penalty method is applied in this study as

follows:

     2

11F cv f


   x x (2)

where: F(x) is called the penalty function; cv denotes the degree of constraint violation; 1 and 2

are two parameters that are carefully selected to ensure a good balance between the exploration

and the exploitation during the optimization process. In this study, 1 is set 1 and 2 is linearly

increased from 20 to 40 based on the recommendation of Ref. [20]. The degree of constraint

violation cv is determined by taking a sum of all violated constraints as follows:

  
1

max 0,
m

j

j

cv g


 x (3)

The variables can be the cross-sectional areas of structural members for sizing optimization, or

the nodal coordinates for shape optimization, or the material distribution for topology

optimization. This study is limited to sizing optimization.

60 T.H. Nguyen, A.T. Vu/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73

2.2. Technique to reduce fitness evaluations using machine learning classifiers

The application of machine learning classifiers to eliminate worse individuals during the

optimization process is not new. This technique has been proposed in Ref. [16] and successfully

applied to solve the problem of the 47-bar planar tower. The idea behind this technique is based

on the observation that during the DE optimization, many trial individuals are worse than their

parent individuals and will lose the pairwise tournament at the selection step. A classification

model with the ability to detect whether an individual is feasible or not could save many useless

fitness evaluations. The present study uses the same technique with few enhancements to

improve efficiency.

In particular, the optimization process is split into two stages. At stage I, after initializing a

population P0={xi,0|i=1,…,NP}, three operators of the original DE algorithm (mutation,

crossover, and selection) are sequentially carried out. At the certain iteration g, the current

population is Pg={xi,g|i=1,…,NP}. The mutation operator creates the mutant individual vi,g while

the crossover produces the trial individual ui,g by taking some components of vi,g and the rest

from xi,g. Next, the selection operator chooses the better one among ui,g and xi,g to enter the next

iteration. Implementing iterative three operators aims to move the population towards the

optimum. The DE is a well-established metaheuristic algorithm that has been introduced in many

previous documents. To avoid wordiness, the formulations of the DE algorithm are not presented

in this paper. Readers can refer to Ref. [6,14] for more details.

It is noted that each metaheuristic algorithm always comprises the exploration and the

exploitation tasks, in which the exploration is the process of expanding bounding regions to find

new solutions while the exploitation is the process of improving current solutions. The

implementation of the original DE in the first stage ensures the exploration and collects data for

training machine learning models. Accordingly, each newly produced individual is evaluated by

the original fitness function and it is either labeled “+1” if it is feasible or “1” otherwise:

 

 
, ,

, ,

1 if 0

1 if 0

i g i g

i g i g

y cv

y cv

   


  

x

x
 (4)

All newly evaluated individuals (xi,g, yi,g) are saved into the database. After several iterations, a

training dataset is collected from historical fitness evaluations and an ML-based classification

model is trained with the aim of classifying the feasibility of individuals.

In stage II, the label of a trial individual ui,g produced by two operators mutation and crossover is

predicted using the classification model just trained at the end of the previous stage. Three

possible situations can occur as follows: (i) if the predicted label yi,pred=+1, the trial individual

ui,g is then evaluated using the original fitness function; (ii) if the predicted label yi,pred=1 and

the objective function of the trial individual f(ui,g) is smaller than that of the target individual

f(xi,g), it is also evaluated using the original fitness function; (iii) if the predicted label yi,pred =1

and f(ui,g)>f(xi,g), it is eliminated. Among three situations, there is one case that does not require

conducting the original fitness evaluation. As a result, the computational cost is significantly

 T.H. Nguyen, A.T. Vu/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73 61

reduced. This technique is called the Classification-Assisted Differential Evolution (CADE).

Both flowcharts of the CADE and the DE are schematized in Fig. 1 to clearly illustrate the

proposed technique.

Initial population P0

Fitness Evaluation

Mutation  vi,g

Crossover  ui,g

Fitness Evaluation

Selection  xi,g+1

g > gmax

End

YN

Stage II

Stage IInitial population P0

Fitness Evaluation

Labeling

yi,g{-1,+1}

Mutation  vi,g

Crossover  ui,g

Fitness Evaluation

Selection  xi,g+1

Training

Data

g > g1

Mutation  vi,g

Crossover  ui,g

Elimination

yi,pred = �-1

f(u) > f(x)

Predicting label yi,pred

yi,pred = �+1

Fitness Evaluation

Selection  xi,g+1

g > gmax

End

Y

Y

N

Y

N

N

Classification

model

(a) (b)

Fig. 1. Flowcharts: (a) Differential Evolution; (b) Classification-Assisted Differential Evolution.

3. Review of machine learning classifiers

Obviously, any ML classifier can be used in the CADE. In this work, six most commonly used

classifiers that are selected for the comparison include Artificial Neural Network, Support Vector

Machine, k-Nearest Neighbor, Decision Tree, Random Forest, and Adaptive Boosting. In the

following subsections, these classifiers are briefly introduced.

3.1. Artificial neural network (ANN)

The ANN model comprises many nodes which are arranged into three types of layer: input layer,

hidden layers, and output layer (Fig. 2). In this model, the weighted sum of outputs from nodes

62 T.H. Nguyen, A.T. Vu/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73

of the previous layer becomes the input for nodes of the current layer. At each node, the input is

transformed into the output by the activation function like the sigmoid function, the tanh

function, the softmax function, or the ReLU function. These nonlinear functions will allow the

model to create a complex mapping between the inputs and the outputs of the data. The model is

trained using a technique called the back-propagation algorithm for minimizing the error

between the predictions and ground truth values. ANN models can well handle both regression

and classification tasks. For classification tasks, the cross-entropy is frequently used to measure

the error.

Hidden

layer 1

Hidden

layer 2

Output

layer

Input

layer
Fig. 2. Artificial Neural Network.

3.2. Support vector machine (SVM)

The goal of this algorithm is to find an optimal hyperplane in multi-dimensional space that can

separate data points into distinct regions. Fig. 3 illustrates the SVM model for a binary

classification problem with two features. There are, in fact, many hyperplanes that could be

detected. The optimal hyperplane is the one having the largest margin.

small margin

support

vectors

Fig. 3. Support Vector Machine.

 T.H. Nguyen, A.T. Vu/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73 63

3.3. k-Nearest neighbor (kNN)

The kNN is categorized as a “lazy learner” algorithm in which all data points are stored in the

database without conducting any training process. When a prediction is requested, the algorithm

will search k points that are closest to the considered point, and then the prediction is determined

by taking a plurality vote of newly detected neighbors. In addition, a useful technique can be

applied to improve the accuracy where distance-based weights are assigned to neighbors. This

technique ensures that nearer neighbors will contribute more to the prediction than that of far

neighbors. Euclidean, Manhattan, and Minkowski distances are three distance functions that are

commonly used in the kNN. Fig. 4 displayed a simply kNN model with two cases of k=3 and

k=7.

Class B

?
k=3

k=7

Class A

New point

to classify

Fig. 4. k-Nearest Neighbor.

3.4. Decision tree (DT)

The DT model is a tree-like graph that is frequently used to split data into smaller subsets. A

simple DT model is visualized in Fig. 5, in which, each internal node denotes a test on an

attribute, and each branch represents an outcome of the test and each leaf node holds a class

label. The quality of a split can be measured using the information gain or the Gini impurity.

Root node

Internal node

Leaf

node

Leaf

node

Leaf

node

No Yes

NoYes

Fig. 5. Decision Tree.

3.5. Random forest (RF)

There is an effective way to enhance the classification accuracy by using many DT models

simultaneously. Each DE model is trained by a random subset from the training data. The final

64 T.H. Nguyen, A.T. Vu/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73

output of the prediction is obtained through the majority vote. This technique is called bagging

and this is very efficient to improve the stability for unstable algorithms like DT or ANN. One of

the most bagging-type methods is the RF where only a few features are randomly chosen to train

the DT model. An illustration of the concept of the RF is presented in Fig. 6.

Training Dataset

Subset 1 Subset 2 Subset 3

Tree 1 Tree 2 Tree 3

Output 1 Output 2 Output 3

Majority Vote

Final Prediction
Fig. 6. Random Forest.

3.6. Adaptive boosting (AdaBoost)

Boosting is also a method for reducing the variance and the bias of machine learning models.

Like bagging, boosting combines several weak classifiers to create a strong classifier. The main

difference between the two methods is that weak classifiers in bagging are built independently

while weak models in boosting are trained sequentially. There exist many boosting algorithms, of

which the AdaBoost is the first one. This algorithm is proposed by Schapire and Freund in 1997

[21]. Fig. 7 illustrates the initial idea of the AdaBoost.

Original Dataset Weighted Dataset

Weak classifier #1 Weak classifier #2

Strong classifier

Fig. 7. Adaptive Boosting.

 T.H. Nguyen, A.T. Vu/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73 65

4. Comparison

In this section, a numerical example of a real-size structure is carried out using both the original

DE and the CADE. As mentioned above, the CADE can be used in conjunction with any

classification algorithm. Six ML classifiers selected in Section 3 will be employed in turn and

their efficiencies are compared thoroughly.

4.1. Numerical example

The example considered in this work is a 10x10m double-layer grid structure consisting of 200

bars. The aim of this example is to find the cross-sectional areas of members for minimizing the

weight of the structure. The formulation of this problem is expressed as follows:

 

 

1 2

()

1 1

Find , , ,

to minimize:

0, 1, 2,...,
subject to:

ng

ng nm i

i j

i j

k

i

A A A

W A L

g k nc

A


 

   



  




 

A

A

A

S

K

 (5)

in which: Ai is the cross-sectional area of members of the ith group; ng is the number of groups;

Lj is the length of jth member; nm(i) is the number of members which belongs to the ith group; 

is the density of the material used in this structure; gk(A) denotes the kth constraint; nc is the

number of constraints; S represents the list of available profiles.

In this problem, members are divided into ng=9 groups as presented in Fig. 8. All members are

fabricated from the material steel having mechanical properties as follows: the density =7850

kg/m
3
; the modulus of elasticity E=2.1E+10 kg/m

2
; and the yield strength Fy=3.515E+07 kg/m

2
.

This structure subjects to a load of q=250 kgf/m
2
 on the top surface. The list of available profiles

S is described in Table 1. There are three types of constraints: tensile stress constraint,

compressive stress constraint, slenderness ratio constraint, and displacement constraint. The

tensile stress constraint is as follows:

 0.9t t y tF    (6)

where: t is the tensile stress of the member; Fy is the yield strength.

The compressive stress constraint is as follows:

; 0.85c c cr cF    (7)

where: c is the compressive stress of the member; Fcr is the critical stress of the corresponding

member which is calculated based on the following formula:

66 T.H. Nguyen, A.T. Vu/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73

0.658 if 4.71

0.877 if 4.71

Fy
Fe

y y

cr

e y

F KL r E F
F

F KL r E F

 
   

 


 (8)

where: Fe=
2
E/(KL/r)

2
; K is the effective length factor which equals 1.0 in this case; L is the

length of the member; and r is the radius of gyration of the member’s cross-section

The limitations of the slenderness ratio (KL/r) are 200 for compression members while 300 for

tension members. Finally, the allowable vertical displacement of this structure equals 7.5 cm.

500

10000

1 1 1

2 2 2

2 2 2

2

2

2

2

2

2

1 1 1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1

3

3

3

3 3

3

3

3

3

3

3

33

3

3

35 5

55

4 4

44

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5 5

5

5

5

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5 5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

66

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

1250 1250

7 7

7

7

7

7

7 7

8 8 8

8 8 8

8 8

8 8

8 8

8

8

8

8

8 8

8 8

9 9

9 9

9 9

9 9 9

9 9 9

q

Fig. 8. Configuration of the 10x10m double layer grid structure.

 T.H. Nguyen, A.T. Vu/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73 67

Table 1
List of available profiles.

No. Profile A (cm
2
) r (cm) No. Profile A (cm

2
) r (cm)

1 33.702.6 2.54 1.1 14 159.04.0 19.48 5.4814

2 48.302.6 3.73 1.62 15 168.34.0 20.65 5.8102

3 60.303.2 5.74 2.02 16 193.74.5 26.75 6.6922

4 76.103.2 7.329 2.5799 17 219.15.0 33.63 7.5716

5 82.503.2 7.972 2.806 18 244.55.4 40.56 8.4557

6 88.903.2 8.616 3.0321 19 273.05.6 47.04 9.457

7 101.63.6 11.08 3.4672 20 298.55.9 54.23 10.3471

8 108.03.6 11.81 3.6934 21 323.95.9 58.94 11.245

9 114.33.6 12.52 3.9161 22 355.66.3 69.13 12.3536

10 127.04.0 15.45 4.3504 23 368.06.3 71.59 12.7895

11 133.04.0 16.21 4.5629 24 406.46.3 79.19 14.1475

12 139.74.0 17.05 4.8004 25 419.07.1 91.88 14.5645

13 152.44.0 18.65 5.2483 26 457.27.1 100.4 15.915

4.2. Experimental setup

This problem is categorized as a discrete optimization problem in which design variables are

selected among a limited number of values. In this work, a simple technique is employed to

handle discrete variables. The design variable AiS in Eq. (5) are replaced by an integer

Ii{1,2,…,26} representing the sequence number of the considered profile in the list S. During

the optimization process, a continuous value that is newly generated by the mutation and

crossover operators is rounded to the nearest integer value. The cross-sectional area Ai and the

radius of gyration ri corresponding to the position Ii are looked up from Table 1. Next, their

values are used to evaluate the feasibility of the solution as well as save as the inputs of the

training data. According to the evaluation result, this solution is labeled and the value is saved as

the output of the training data. The data processing flow is illustrated in Fig. 9.

I1

I2

...

I9

A1

A2

...

A9

r1

r2

...

r9

Feasible solution (cv=0)

Infeasible solution (cv>0)

x1=A1/r1

y=+1

y=1

yx2=A2/r2 ... x9=A9/r9

Inputs Output

Fig. 9. Data processing flow.

68 T.H. Nguyen, A.T. Vu/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73

Both the DE and the CADE use “DE/current-to-best/1” which is recognized as one of the most

effective mutation strategies. For a fair comparison, two algorithms are set with the same

parameters as follows: the number of individuals NP=25, the scale factor F=0.8, the crossover

rate Cr=0.9, and the maximum iterations gmax=100. In particular, the number of the first stage of

the CADE is set to g1=20 which means the training dataset consists of 500 samples. Both the DE

and the CADE algorithms are written in Python language. The finite element analysis code is

developed based on the direct stiffness method. All ML models are constructed using the open-

source library scikit-learn [22]. Optimal parameters of these models that were found after the

hyperparameter tuning process are presented in Table 2.

Table 2
Summary of ML model parameters.

 Parameters

ANN
activation='relu', solver='adam', batch_size=10, max_iter=1000,

hidden_layer_sizes=(200,200,200,), shuffle=True, early_stopping=True

SVM kernel='rbf', C=1000, gamma=0.1

kNN n_neighbors=50

DT criterion='gini', max_depth=None

RF
n_estimators=50, max_depth=None, max_features='auto',

max_leaf_nodes=None, min_impurity_decrease=1e-07, bootstrap=True

AdaBoost DecisionTreeClassifier(max_depth=1), n_estimators=50

The performance of machine learning models is evaluated through the accuracy metric. Due to

the limited number of data samples, a widely-used technique called k-fold cross-validation is

employed. In more detail, the training dataset is split into k subsets, in which the model is trained

on (k-1) parts and then the trained model is validated on the remaining one. The process is

repeadly carried out for k times. In this study, the parameter k is set to 5 and the mean values of

the obtained accuracies are reported in Table 3. Next, the model is re-trained with the full

training dataset and it will be embedded into the DE optimization. Particularly for the ANN

model, the early stopping technique is used for preventing the overfitting phenomena. This

feature is available in the library scikit-learn and it is enabled by the setting

“early_stopping=True” when defining the model.

Table 3
Accuracies of ML models.

 ANN SVM kNN DT RF AdaBoost

Accuracy 0.775 0.757 0.651 0.884 0.903 0.905

It is clearly seen that two ensemble models including the RF and the AdaBoost reach high

accuracy (over 90%), followed by the DT (88.4%). The ANN and the SVM achieve an accuracy

of approximately 75% while the kNN has the worst performance with an accuracy of 65.1%. The

observation is consistent with the findings of Ref. [19].

 T.H. Nguyen, A.T. Vu/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73 69

4.3. Results

These are a total of seven cases that are carried for comparison. In general, the name of each case

has the same form “A(B)” in which A represents the optimization algorithm and B denotes the

ML classifier. For example, the case “CADE(AdaBoost)” means that the CADE is used to

optimize the weight of the structure while the AdaBoost classifier is employed to reduce fitness

evaluation. In particular, the name “DE” particularly denotes that the original DE is employed in

this case. Each case is carried out 30 times. The best results in 30 independent runs are presented

in Table 4. It is noted that all six cases of the CADE are performed, however, the best designs

found by them are the same. Therefore, Table 4 presents one case of CADE. Additionally, the

design found by Gholizadeh [23] using the commercial software SAP2000 is also reported to

demonstrate the effectiveness of the proposed method. Fig. 10 shows the convergence curves of

seven cases. The values indicated in Fig. 10 are averages of 30 runs. To compare the efficiency

of six classifiers in reducing fitness evaluations, five metrics are used including the minimum

weight (best), the average weight (mean), the standard deviation (SD), the average number of

fitness evaluations (nFE), and the average computing time (time) of 30 independent runs. The

obtained values of five metrics for six cases are reported in Table 5.

Table 4
Best results for the double-layer grid structure.

 Gholizadeh [23] DE CADE

A1 76.103.2 76.103.2 76.103.2

A2 101.63.6 101.63.6 101.63.6

A3 33.702.6 33.702.6 33.702.6

A4 101.63.6 101.63.6 101.63.6

A5 60.303.2 60.303.2 60.303.2

A5 33.702.6 33.702.6 33.702.6

A7 76.103.2 76.103.2 76.103.2

A8 48.302.6 33.702.6 33.702.6

A9 33.702.6 48.302.6 48.302.6

Weight (kg) 1702.73 1683.904 1683.904

Table 5
Evaluation metrics of six classifiers.

 best (kg) mean (kg) SD (kg) nFE time (s)

CADE(ANN) 1683.904 1686.596 6.151 2095 80.6

CADE(SVM) 1683.904 1719.392 155.850 1820 66.7

CADE(kNN) 1683.904 1687.766 7.193 1818 45.4

CADE(DT) 1683.904 1691.031 12.298 2030 43.7

CADE(RF) 1683.904 1691.710 11.002 1819 54.5

CADE(AdaBoost) 1683.904 1687.218 6.762 1743 48.9

70 T.H. Nguyen, A.T. Vu/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73

Fig. 10. Convergence curves of seven cases.

4.4. Comparison and discussion

Based on the results described in Table 5, six CADE cases are ranked according to each metric.

Next, their ranks are displayed on a radar chart as shown in Fig. 11. Some observations are as

follows.

Fig. 11. Comparison of six ML classifiers in the CADE.

 T.H. Nguyen, A.T. Vu/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73 71

First of all, it can be seen that the weights of the grid structure found by the DE and the CADE

(1683.904 kg) are smaller than that of Gholizadeh (1702.73 kg). It demonstrates the effectiveness

of applying metaheuristic algorithms in structural optimization.

Secondly, Fig. 10 indicates that the convergence speeds of all CADE cases are faster than the

original DE. Specifically, the DE finishes after 2500 iterations while six CADE cases converge

after about 1700 to 2100 iterations. Among six cases, the CADE(AdaBoost) is fastest with the

average number of fitness evaluations of 1743, followed by the CADE(kNN) with 1818

evaluations, the CADE(RF) with 1819 evaluations, the CADE(SVM) with 1820 evaluation, the

CADE(DT) with 2030 evaluations, and the CADE(ANN) with 2095 evaluations. In comparison

with the original DE, the reduction rates of six cases are 30.3%, 27.3%, 27.2%, 27.2%, and

16.2%, respectively.

However, there is an inconsistency when comparing the number of fitness evaluations and the

computing time. Although the CADE(DT) requires an average of 2030 evaluations, the total time

of the CADE(DT) is 43.7s, ranking first in 6 cases. Next is the CADE(kNN), the

CADE(AdaBoost), the CADE(RF), the CADE(SVM), and the CADE(ANN). The reason is that

the training speed of the DT model is very fast. It should be noted that for large-scale structures

where the time for each finite element analysis is much larger than the training model time, the

above ranking can be changed.

Comparing in terms of the optimal weight, the CADE(ANN) is superior to others. In more detail,

the mean value and the SD value of the CADE(ANN) are 1686.596 kg and 6.151 kg,

respectively. The following cases are: the CADE(AdaBoost) with mean=1687.218 kg and

SD=6.762 kg; the CADE(kNN) with mean=1687.766 kg and SD=7.193 kg, the CADE(DT) with

mean=1691.031 kg and SD=12.298 kg, the CADE(RF) with mean=1691.71 kg and SD=11.002

kg, and the CADE(SVM) with mean=1719.392 kg and SD=155.85 kg.

Overall, it is apparent that the application of ML classifiers into the optimization process

significantly reduces the number of fitness evaluations. The reduction rate ranges from 16% to

30%. The CADE(AdaBoost) achieves the best performance when balancing five evaluation

metrics.

5. Conclusions

This paper presents a hybrid method called CADE with the aim of reducing the number of fitness

evaluations of metaheuristic algorithms. In this method, an ML classifier is constructed based on

historical fitness evaluations in order to predict the feasibility of newly produced individuals. In

later generations, the ML classifier is employed as a filter to eliminate worse individuals,

thereby, omitting many useless fitness evaluations.

For comparing the efficiencies of ML classifiers, a 10x10m double-layer grid structure is

optimized using six cases of the CADE with six different ML classifiers. The results show that

applying ML classifier rejects approximately 16 to 30% of fitness evaluations. Among six

compared ML classifiers, the AdaBoost gives the best performance. With lower computationally

72 T.H. Nguyen, A.T. Vu/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73

cost, the AdaBoost classifier-assisted Differential Evolution is very effective when optimizing

large-scale structures.

Acknowledgments

The author T.-H. Nguyen was funded by Vingroup Joint Stock Company and supported by the

Domestic Ph.D. Scholarship Programme of Vingroup Innovation Foundation (VINIF), Vingroup

Big Data Institute (VINBIGDATA) code VINIF.2020.TS.134.

Funding

This research received funding from Vingroup Innovation Foundation under grant number

VINIF.2020.TS.134.

Conflicts of Interest

The authors declare no conflict of interest.

Authors Contribution Statement

T.-H. Nguyen: Conceptualization; Methodology; Data curation; Formal analysis; Investigation;

Writing – original draft. A.-T. Vu: Conceptualization; Methodology; Investigation; Supervision;

Writing – review & editing.

References

[1] Maxwell JC. I.— On Reciprocal Figures, Frames, and Diagrams of Forces. Trans R Soc Edinburgh

1870;26:1–40. https://doi.org/10.1017/S0080456800026351.

[2] Michelle AGM. The Limits of Economy of Material in Frame-structures, Philos Mag 1906.

[3] Schmit LA. Structural design by systematic synthesis. Proc. Second Natl. Conf. Electron. Comput.

ASCE, Sept., 1960, 1960.

[4] Goldberg DE, Samtani MP. Engineering optimization via genetic algorithm. Electron. Comput.,

ASCE; 1986, p. 471–82.

[5] Papadrakakis M, Lagaros ND, Thierauf G, Cai J. Advanced solution methods in structural

optimization based on evolution strategies. Eng Comput 1998;15:12–34.

https://doi.org/10.1108/02644409810200668.

[6] Wang Z, Tang H, Li P. Optimum Design of Truss Structures Based on Differential Evolution

Strategy. 2009 Int. Conf. Inf. Eng. Comput. Sci., IEEE; 2009, p. 1–5.

https://doi.org/10.1109/ICIECS.2009.5365996.

[7] Perez RE, Behdinan K. Particle swarm approach for structural design optimization. Comput Struct

2007;85:1579–88. https://doi.org/10.1016/j.compstruc.2006.10.013.

[8] Kaveh A, Azar BF, Talatahari S. Ant Colony Optimization for Design of Space Trusses. Int J Sp

Struct 2008;23:167–81. https://doi.org/10.1260/026635108786260956.

[9] Papadrakakis M, Lagaros ND, Tsompanakis Y. Optimization of Large-Scale 3-D Trusses Using

Evolution Strategies and Neural Networks. Int J Sp Struct 1999;14:211–23.

https://doi.org/10.1260/0266351991494830.

 T.H. Nguyen, A.T. Vu/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 57-73 73

[10] Salajegheh E, Gholizadeh S. Optimum design of structures by an improved genetic algorithm using

neural networks. Adv Eng Softw 2005;36:757–67.

https://doi.org/10.1016/j.advengsoft.2005.03.022.

[11] Kaveh A, Gholipour Y, Rahami H. Optimal Design of Transmission Towers Using Genetic

Algorithm and Neural Networks. Int J Sp Struct 2008;23:1–19.

https://doi.org/10.1260/026635108785342073.

[12] Salajegheh E, Salajegheh J, SEYEDPOUR SM, Khatibinia M. Optimal design of geometrically

nonlinear space trusses using an adaptive neuro-fuzzy inference system 2009.

[13] Chen T-Y, Cheng Y-L. Data-mining assisted structural optimization using the evolutionary

algorithm and neural network. Eng Optim 2010;42:205–22.

https://doi.org/10.1080/03052150903110942.

[14] Nguyen T-H, Vu A-T. Using Neural Networks as Surrogate Models in Differential Evolution

Optimization of Truss Structures, 2020, p. 152–63. https://doi.org/10.1007/978-3-030-63007-2_12.

[15] Rosso MM, Cucuzza R, Di Trapani F, Marano GC. Nonpenalty Machine Learning Constraint

Handling Using PSO-SVM for Structural Optimization. Adv Civ Eng 2021;2021:1–17.

https://doi.org/10.1155/2021/6617750.

[16] Nguyen T-H, Vu A-T. Application of Artificial Intelligence for Structural Optimization, 2022, p.

1052–64. https://doi.org/10.1007/978-981-16-3239-6_82.

[17] Kim S-E, Vu Q-V, Papazafeiropoulos G, Kong Z, Truong V-H. Comparison of machine learning

algorithms for regression and classification of ultimate load-carrying capacity of steel frames. Steel

Compos Struct 2020;37:193–209.

[18] Nguyen T-H, Vu A-T. A Comparative Study of Machine Learning Algorithms in Predicting the

Behavior of Truss Structures, 2021, p. 279–89. https://doi.org/10.1007/978-981-15-7527-3_27.

[19] Nguyen T-H, Vu A-T. Evaluating structural safety of trusses using Machine Learning. Frat Ed

Integrità Strutt 2021;15:308–18. https://doi.org/10.3221/IGF-ESIS.58.23.

[20] Ho-Huu V, Nguyen-Thoi T, Vo-Duy T, Nguyen-Trang T. An adaptive elitist differential evolution

for optimization of truss structures with discrete design variables. Comput Struct 2016;165:59–75.

https://doi.org/10.1016/j.compstruc.2015.11.014.

[21] Freund Y, Schapire RE. A Decision-Theoretic Generalization of On-Line Learning and an

Application to Boosting. J Comput Syst Sci 1997;55:119–39.

https://doi.org/10.1006/jcss.1997.1504.

[22] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn:

Machine learning in Python. J Mach Learn Res 2011;12:2825–30.

[23] Gholizadeh S. Optimal design of double layer grids considering nonlinear behaviour by sequential

grey wolf algorithm. Iran Univ Sci Technol 2015;5:511–23.

	Comparison of Machine Learning Classifiers for Reducing Fitness Evaluations of Structural Optimization
	1. Introduction
	2. Reduction of fitness evaluations using machine learning classifiers
	2.1. Statement of a structural optimization problem
	2.2. Technique to reduce fitness evaluations using machine learning classifiers

	3. Review of machine learning classifiers
	3.1. Artificial neural network (ANN)
	3.2. Support vector machine (SVM)
	3.3. k-Nearest neighbor (kNN)
	3.4. Decision tree (DT)
	3.5. Random forest (RF)
	3.6. Adaptive boosting (AdaBoost)

	4. Comparison
	4.1. Numerical example
	4.2. Experimental setup
	4.3. Results
	4.4. Comparison and discussion

	5. Conclusions
	Acknowledgments
	Funding
	Conflicts of Interest
	Authors Contribution Statement
	References

