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The main contribution of this study is to open a discussion 

regarding the structural optimization associated with the cost 

efficiency and structural reliability sufficiency consideration. To do 

so, several various optimization approaches are investigated to 

deliberate both cost and reliability concerns. Particularly, particle 

swarm optimization is highlighted as a reliable optimization 

approach. Accordingly, an illustrative example is rendered to 

compare the feasibility of the considered optimization approaches. 

The feasibility of the investigated approaches is evaluated using the 

cost and reliability analysis. For the considered example, it was 

observed that the PSO optimization algorithm has multiple 

advantages such as easy realization, fast convergence, and 

promising performance in nonlinear performance optimization. The 

PSO optimization algorithm can be successfully applied in various 

fields of civil engineering. This popularity is due to the 

understandable performance of the PSO as well as its simplicity. In 

this paper, first, the literature on the subject has been described by 

two-dimensional truss analysis using the finite element method and 

optimized using the PSO particle swarm algorithm. A comparison 

of the results with this reference indicates the accuracy of this 

particle swarm algorithm in truss optimization. Indeed, this study 

ignites two main insights in structural optimizations assessment. 

The first illustration is related to how to establish a framework for 

structural system reliability analysis associated with the different 

degrees of indeterminacies. And the second illustration is related to 

making a decision problem concerning the structural optimization 

while both cost and reliability metric are two main parameters for 

the construction point of the view. 
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1. Introduction 

Swarm intelligence (SI) is the collective behavior of decentralized systems consisting of many 

individuals who coordinate their activities using self-organization [1]. The SI systems are 

inspired by biological systems that are usually composed of a population of simple agents 

interacting with each other and globally with their environment. Ant colonies [2], bird flocks 

[3,4], honey bee colonies [5,6], and fish schools [7,8] are examples of natural SI systems. Based 

on the systems, several optimization algorithms such as ant colony, artificial honey bee colony, 

and particle swarm optimization (PSO) algorithms have been developed. PSO is a computational 

method based on a powerful population that is capable of solving the problem using the 

population of candidate solutions. To improve the candidate solution, PSO frequently moves the 

candidates using simple mathematical equations in a search space [9]. Since the introduction by 

Kennedy and Eberhart (1995) [10] and Eberhart and Kennedy (1995) [11], the PSO algorithm 

has been successfully used in various fields of civil engineering. 

The optimization methods and algorithms are divided into two categories: exact algorithms and 

approximate algorithms. Exact algorithms can accurately find the optimal solution, but they do 

not work in hard optimization problems, and the solving time in these problems increases 

exponentially. Approximate algorithms can find good (quasi-optimal) solutions to difficult 

optimization problems in the short solving time. Approximate algorithms are also divided into 

two categories: heuristic and meta-heuristic algorithms. The two major problems with heuristic 

algorithms are (1) falling in local optima, and (2) inability to be applied to different problems. 

The meta-heuristic algorithms have been proposed to solve the problems of heuristic algorithms. 

The meta-heuristic algorithms are one of the approximate optimization algorithms that have the 

mechanism to exit local optima and can be used in a wide range of problems. In recent decades, 

various categories of this type of algorithm have been developed. Over the past few years, PSO 

has been widely used in various aspects of geotechnical engineering such as slope stability 

analysis, pile and foundation engineering, rock and soil mechanics, tunneling, and underground 

space design [12]. 

2. Particle swarm optimization algorithm 

In many optimization problems, especially the big ones, choosing the best solution through the 

global search, though not being impossible, is very difficult. The goal of the optimization 

problem is to reduce the search time. Heuristic methods are good solutions for finding the 

optimal solution, but they do not guarantee to find the optimal solution. Today, however, as the 

problems become bigger, the popularity of heuristic and meta-heuristic methods has considerably 

grown. 

Particle swarm optimization (PSO) is one of the meta-heuristic optimization techniques that 

work based on the population. The original idea for the method was first proposed in 1995 by 

Kennedy and Eberhart [10] which was inspired by the collective behavior of fish and birds for 

finding the food. A group of birds and fish look for food in random space, and there is only one 

piece of food, and none of the birds knows the location of the food and only knows the distance 
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to the food. One of the best strategies is to follow a bird that is closest to the food. This view is 

the main strategy of the algorithm. 

In this method, each bird has a possible solution in the problem space called a particle. Each 

particle has a fitness value that is calculated by the problem. The particle that is closest to the 

solution has the highest fitness. This algorithm has a continuous nature and has been proven to 

be efficient in numerous applications [13]. 

This algorithm is one of the population-based parallel search algorithms that start with a group of 

random solutions (particles) and then continues to search for finding the optimal solution in the 

problem space by updating the position of the particles. Each particle is denoted in the 

multidimensional mode (depending on the type of problem) by two vectors Xid and Vid, which 

represent the position and velocity in dimension d of particle i, respectively. At each stage of the 

population movement, the position of each particle is updated by two best values. The first value 

is the best experience ever gained by a particle and is represented by p_best. The second value is 

the best experience gained among all the particles and is shown by g_best. In each iteration, after 

finding these two values, the algorithm updates the new velocity and position of the particle-

based on Equations (1) and (2). 

𝑣𝑖𝑑(𝑡 + 1) = 𝑤. 𝑣𝑖𝑑(𝑡) +  𝑐1. 𝑟𝑎𝑛𝑑1(𝑝_𝑏𝑒𝑠𝑡𝑖𝑑 (𝑡) − 𝑥𝑖𝑑(𝑡)) + 𝑐2. 𝑟𝑎𝑛𝑑2 (𝑔 _𝑏𝑒𝑠𝑡𝑖𝑑(𝑡) – 𝑥𝑖𝑑(𝑡)) (1) 

xid(t + 1) =  xid(t) + vid(t + 1) (2) 

In Equation (1), w is the inertia weight factor, which is usually in the range [0-1]. C1 and C2 are 

the learning or acceleration factors, which are selected in the range [0-2], which, in most cases, 

are set to 1.49 or 2. rand1 and rand2 are also two random numbers in the range [0-1]. Also, the 

final value of each particle's velocity to prevent algorithm divergence is limited to one range. 

𝑣𝑖𝑑  ∈ [−𝑣𝑚𝑎𝑥   . 𝑣𝑚𝑎𝑥] is the termination condition of the convergence algorithm to a certain 

extent or to stop after a certain number of iterations. Equation (2) also updates the current 

position vector of the particle according to its new velocity. 

The right side of Equation (1) consists of three parts; the first part is a factor of the current 

velocity of the particle, the second part is used for changing the velocity and rotation of the 

particle towards the best personal experience, and the third part is used for changing the velocity 

and rotation of the particle towards the best group experience. 

The optimization of the particle swarm without the first part of Equation (1) will be a process in 

which the search space is gradually reduced and the local search is formed around the best 

particle. In contrast, the first part of Equation (1) will cause the particles to move in their normal 

direction to reach the wall of the search area and perform some sort of global search. By 

combining the two factors, it was attempted to strike a balance between local and global search. 

To better strike such balance, w was first proposed in [14], which specifies the movement factor 

in the global search. The parameters c1 and c2 also specify the movement factor in local search. 
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Fig. 1. PSO flowchart [15]. 

 
Fig. 2. Movement of a particle in PSO. 
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Fig. 3. Schematic structure of particle in PSO [16]. 

2.1. PSO algorithm in unconstrained problems 

The unconstrained PSO algorithm can be expressed as the figure below. 

 
Fig. 4. Flowchart of particle swarm optimization algorithm in unconstrained problems [13]. 

2.2. PSO algorithm in constrained problems [13] 

In the constrained problems, the particles should satisfy the constraint, which is the case with the 

truss problems. 
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Particle swarm optimization algorithm in constrained problems: 

For each particle { 

       Do { 

              Initialize particle 

                  } While particle is in the feasible apace (i.e. it satisfies all the constraints) 

             } 

            Do { 

                   For each particle { 

                          Calculate fitness value 

                          If the fitness value is better than the best fitness value (pBest) 

                          in history AND the particle is in the feasible space, set current 

                          value as the new pBest 

                   } 

                   Choose the particle with the best fitness value of all the particles as 

                   the gBest 

                    For each particle { 

                            Calculate particle velocity according to equation (a) 

                            Update particle position according to equation (b) 

                    } 

               } While maximum iterations or minimum error criteria is not attained 

3. Truss analysis using finite element method 

Trusses include two-force members, and the external forces are only applied to the nodes. 

 
Fig. 5. Two-dimensional truss. 
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3.1. Local and global coordinates 

Figure 6 shows a truss member and the equations for transforming two local and global 

coordinates are derived: 

 
Fig. 6. A member of truss and equations for transforming two local and global coordinates. 

Local coordinate system 

𝑞′ = [𝑞1
′  . 𝑞2

′ ]𝑇 (3) 

Global coordinate system 

𝑄 = [𝑄1. 𝑄2. … . 𝑄𝑁]𝑇 (4) 

The relationship between q and q' is as follows: 

𝑞1
′ = 𝑞1 𝑐𝑜𝑠𝜃 + 𝑞2𝑠𝑖𝑛𝜃  (5) 

𝑞2
′ = 𝑞3 𝑐𝑜𝑠𝜃 + 𝑞4𝑠𝑖𝑛𝜃 (6) 

𝑞′ = 𝐿𝑞 (7) 

Transformation matrix 

𝐿 = [
𝑙    𝑚   0   0
0   0    𝑙  𝑚

] (8) 

Calculation of m and l 

𝑙 = 𝑐𝑜𝑠𝜃 =
𝑥2−𝑥1

𝑙𝑒
  (9) 

𝑚 = 𝑐𝑜𝑠𝜑 = 𝑠𝑖𝑛𝜃 =
𝑦2−𝑦1

𝑙𝑒
 (10) 
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𝑙𝑒 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2  (11) 

Element stiffness matrix 

Element stiffness matrix in the local coordinate system 

𝑘′ =
𝐸𝑒𝐴𝑒

𝑙𝑒
[

1     − 1
−1       1  

] (12) 

Element stiffness matrix in the global coordinate system 

The formula to calculate the strain energy in the local coordinates can be expressed as follows: 

Ue =
1

2
q′Tk′q′ (13) 

𝑞′ = 𝐿𝑞 → 𝑈𝑒 =
1

2
 𝑞𝑇[𝐿𝑇𝑘′𝐿]q (14) 

The formula for calculating the strain energy in the global coordinates is as follows: 

Ue =
1

2
qTkq (15) 

Element stiffness matrix in the global coordinate system 

k = LTk′L  (16) 

L = [
l    m   0   0
0   0    l  m

] →  (17) 

𝑘 =
𝐸𝑒𝐴𝑒

𝑙𝑒
[ 

𝑙2       𝑙𝑚      − 𝑙2     − 𝑙𝑚  
𝑙𝑚      𝑚2        − 𝑙𝑚   − 𝑚2  
−𝑙2    −  𝑙𝑚       𝑙2        𝑙𝑚   
−𝑙𝑚   −  𝑚2     𝑙𝑚     𝑚2  

] (18) 

The stiffness matrices of the elements combine to form the stiffness matrix of the structure. 

Stress calculations 

𝜎 = 𝐸𝑒𝜀 = 𝐸𝑒𝐵𝑞′ (19) 

𝜎 =
𝐸𝑒

𝑙𝑒
[−1    1] {

𝑞1
′

𝑞2
′ } = 𝐸𝑒

𝑞2
′ −𝑞1

′

𝑙𝑒
 (20) 

𝑞′ = 𝐿𝑞 → 𝜎 =
𝐸𝑒

𝑙𝑒
[−1    1]𝐿𝑞  (21) 

𝐿 = [
𝑙    𝑚   0   0
0   0    𝑙  𝑚

] → (22) 

𝜎 =
𝐸𝑒

𝑙𝑒
[−𝑙   − 𝑚    𝑙    𝑚 ] (23) 
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4. Numerical example of single-objective truss optimization 

4.1. Particle swarm optimization 

In the example of the optimization of a conventional truss [17], which was analyzed by various 

methods so far, it is optimized by particle swarm optimization (PSO) algorithm method and the 

final result is compared with other methods. For this purpose, the total number of particles is 

considered to be 60, and the constant values of w, c1, and c2 are selected as 0.5, 1.5, and 1.5, 

respectively. The algorithm code is written in the MATLAB software and the structure is 

analyzed using the stiffness matrix (finite element) method. 

 
Fig. 7. 10-bar truss from [17]. 

Table 1 

Parameters related to Fig. 7. 

Parameter Value Unit 

E 104  𝑘𝑠𝑖 
𝜌 0.1 𝑙𝑏𝑚 𝑖𝑛3⁄  

𝜎𝑎𝑙𝑙𝑜𝑤 25000 psi 

𝑑𝑚𝑎𝑥 2 in 

L 360 in 

P 100 kip 
 

Consider the 10-bar truss in Figure 1 which was studied to compare and verify the algorithm. 

The purpose of the problem is to minimize the weight of the structure f(x): 

𝑓(𝑥) = ∑ (𝜌 𝐴𝑖  𝐿𝑖  )
10
𝑛=1   (24) 

x is the solution to the problem, Ai is the cross-sectional area of bar i, Li is the length of bar i, and 

ρ is the weight density: 

𝜌 = 0.10 𝐼𝑏
𝑖𝑛3 ⁄ (2770 

𝑘𝑔
𝑚3⁄ ) (25) 
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The elastic modulus 𝐸 = 1 × 104  𝑘𝑠𝑖  (6.89 × 104 𝑀𝑝𝑎) and downward external force 

100 𝑘𝑖𝑝𝑠 (445.374 𝐾𝑁) are applied to nodes 2 and 4. 

The truss constraints are: 

𝜎𝑖 ≤ 𝜎𝑎𝑙𝑙    𝑖 = 1: 10 (26) 

𝑢𝑖 ≤ 𝑢𝑎 (27) 

where σi is the stress in bar i and σall is the maximum allowable stress for all bars, ui is the 

displacement of each node (horizontal and vertical), and ua is the maximum allowable 

displacement for all nodes. 

𝑢𝑎 = 2 𝑖𝑛 (50.8 𝑚𝑚) (28) 

 𝜎𝑎𝑙𝑙 = ±25 𝐾𝑠𝑖  (172.25 𝑀𝑝𝑎) (29) 

This problem is optimized using the PSO algorithm, and the results are summarized in Table 2; 

To compare with the results of Table 3, the problem is optimized twice (the cross-sectional area 

of the bars is considered in two different ranges): 

Table 2 
Results from the optimization of 10-bar truss size using PSO algorithm method, first run. 

𝟎. 𝟏 ≤ 𝑨𝒊 (𝒊𝒏𝟐) ≤ 𝟑𝟑. 𝟓, Iteration: 50 

A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 Weight (lb) Method 

0.1 21.03 20.85 7.28 0.1 0.1 16.80 26.16 0.1 31.18 5187.4 
PSO 

(obtained Results) 

 

Table 3 
Results from the optimization of 10-bar truss size using PSO algorithm method, second run. 

𝟏. 𝟔𝟐 ≤ 𝑨𝒊 (𝒊𝒏𝟐) ≤ 𝟑𝟑. 𝟓, Iteration: 50 

A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 Weight (lb) Method 

1.62 21.52 22.56 8.37 1.62 1.62 17.08 25.89 1.62 32.2 5636.2 
PSO 

(obtained Results) 

 

Table 4 
Results from the optimization of 10-bar truss size from [17]. 

A10 

(𝒊𝒏𝟐) 

A9 

(𝒊𝒏𝟐) 

A8 

(𝒊𝒏𝟐) 

A7 

(𝒊𝒏𝟐) 

A6 

(𝒊𝒏𝟐) 

A5 

(𝒊𝒏𝟐) 

A4 

(𝒊𝒏𝟐) 

A3 

(𝒊𝒏𝟐) 

A2 

(𝒊𝒏𝟐) 

A1 

(𝒊𝒏𝟐) 

Weight 

(lb) 

Method 

1.14 20.74 20.32 15.40 0.10 0.10 19.39 25.11 0.10 25.70 5472.00 OPTDYN 

2.51 20.98 19.73 16.67 1.75 0.10 15.83 24.87 1.89 25.20 5563.00 CONMIN 

2.62 19.90 19.90 14.20 1.80 1.62 15.50 22.00 1.62 33.50 5620.08 GENETIC 

2.62 19.90 19.90 14.20 1.62 1.62 15.50 22.00 1.62 33.50 5613.84 Rajeev 

4.42 18.76 19.17 19.34 3.43 0.10 12.77 26.42 3.07 25.84 5719.00 M-3 

4.38 18.77 19.18 19.37 3.77 0.10 12.75 26.45 2.88 25.83 5725.00 M-5 

5.26 19.27 19.26 17.46 4.17 0.10 14.45 24.78 4.17 24.78 5727.00 GRP-UI 

3.26 13.97 20.90 21.71 3.71 0.10 11.66 31.62 2.37 30.69 5932.00 SUMT 

13.51 18.40 18.42 18.91 10.98 0.10 14.95 22.08 10.98 21.57 6249.00 LINRM 
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The comparison of the obtained results with [17] confirms the PSO algorithm used in this 

research for the truss optimization. 

4.2. Structural reliability analysis 

In this section, the reliability level of the truss system is determined to evaluate the difference 

between the available optimization approaches. The reliability analysis process is established 

based on the provided framework by Ghasemi and Nowak [18,19]. To do so, two types of the 

limit state functions based on the ultimate limit state function (ULSF). 

ULSF: 𝑔𝑢 = 𝜎𝑦 −
𝑃

𝐴
 (30) 

where 𝑔𝑢 and 𝑔𝑠 stand as the ultimate and service limit state functions, respectively. P is the 

element’s load; A represents the optimum value of the element’s cross-section. Tables 5 shows 

the reliability indices of each truss element, corresponding to the considered optimization 

approaches. It is worth mentioning that the reliability index is simply taken from FORM methods 

as shown in the following equation [20]. 

𝛽𝑒 =
𝑅𝑛.𝜆𝑅−𝑄𝑛𝜆𝑄

√𝜎𝑅
2+𝜎𝑄

2
 (31) 

where 𝑅𝑛 and 𝑄𝑛 are the nominal value of the structural resistance (nominal value of 𝜎𝑦for 

USLF and nominal value of 𝛼𝐿for SLSF) and nominal value of loads.  𝜆𝑅and 𝜆𝑄denote the bias 

factor (mean over nominal value) of resistance and load. Also, 𝜎𝑅and 𝜎𝑄are the standard 

deviation of the resistance and load. The statistical parameter of both resistance and load can be 

taken from Ghasemi and Lee [21]. 

Table 5 
Reliability indices of each element corresponding to the given optimization approaches concerning ULSF. 

Method Weight (lb) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

OPTDYN 5472.00 8.48 -9.10 5.12 8.62 -9.6 -9.10 2.68 10 8.15 -2.44 

CONMIN 5563.00 8.45 -3.18 5.08 9.57 -8.39 -3.65 3.18 10 9.55 -3.56 

GENETIC 5620.08 8.85 3.34 4.45 8.14 -3.42 3.96 2.15 10 7.94 4.13 

Rajeev 5613.84 8.85 3.46 4.45 8.12 -3.47 3.46 2.15 10 7.92 4.24 

M-3 5719.00 8.49 -0.47 5.37 9.68 -7.30 0.31 4.06 10 9.69 -0.34 

M-5 5725.00 8.49 -0.92 5.37 9.68 -7.30 0.98 4.07 10 9.69 -0.41 

GRP-UI 5727.00 8.42 1.53 5.06 9.77 -6.71 1.53 3.46 10 9.75 0.74 

SUMT 5932.00 8.75 -2.08 6.14 9.58 -7.77 1.04 4.69 10 9.50 -2.27 

LINRM 6249.00 8.17 6.44 4.47 9.91 -2.13 6.44 3.93 10 9.89 5.89 

PSO 5636.20 8.80 4.64 5.27 8.19 -3.85 4.64 -1.53 10 7.95 2.59 
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As can be seen in Figure 7 and based on the load distribution analysis, elements A1, A4, A8 and 

A9 do not contributed to carry the applied loads. Also, since the truss has a two degree of 

indeterminists, we let two of the elements to exceed the allowable stress at a joint in such a way 

that elimination of those element cannot lead to the system instability.  A5 to fail due to the high 

amount of applied tension. Therefore, in this illustrative example, elimination of two elements 

out of A5, A7, and A10 is permissible. Accordingly, GENETIC, Rajeev, GRP-UI, LINRM, and 

PSO are the only options which are resulting from a acceptable reliability indices greater than 

zero. Accordingly, a minimal reliability index of A2, A3, and A6 will be a dominant reliability 

index of a considered method. 

Table 6 

System reliability indices comparison. 

Method Weight (lb) 𝜷 

GENETIC 5620.08 3.34 

Rajeev 5613.84 3.46 

GRP-UI 5727.00 1.53 

LINRM 6249.00 4.47 

PSO 5636.20 4.64 

 

As tabulated in Table 6. the highest reliability index is related to the PSO method. Although the 

second reliable approach is LINRM, the assigned cross-sections with correspondence to this 

method is the heaviest and the expensive option. 

5. Result and discussion 

In computational science, molecule swarm optimization (PSO) could be a computational method 

that optimizes an issue by iteratively attempting to make strides a candidate arrangement with 

respect to a given degree of quality. It understands an issue by having a populace of candidate 

arrangements, here named particles, and moving these particles around within the search-space 

concurring to basic numerical formulae over the particle's position and speed. Each particle's 

movement is affected by its local best-known position but is additionally guided toward the 

leading known positions within the search-space, which are overhauled as a way better positions 

are found by other particles. This is often anticipated to move the swarm toward the finest 

arrangements. 

PSO may be a metaheuristic because it makes few or no suspicions approximately the issue 

being optimized and can look very large spaces of candidate arrangements. Be that as it may, 

metaheuristics such as PSO don't ensure an ideal arrangement is ever found. Moreover, PSO 

does not utilize the slope of the issue being optimized, which implies PSO does not require that 

the optimization issue be differentiable as is required by classic optimization strategies such as 

slope plunge and quasi-newton strategies. 
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PSO has to been connected to multi-objective issues, in which the objective work comparison 

takes Pareto dominance into consideration when moving the PSO particles and non-dominated 

arrangements are put away to inexact the Pareto front. Multi-swarm optimization could be a 

variation of particle swarm optimization (PSO) based on the utilize of numerous sub-swarms 

rather than one (standard) swarm. The common approach in multi-swarm optimization is that 

each sub-swarm centers on a particular locale whereas a particular enhancement strategy chooses 

where and when to dispatch the sub-swarms. The multi-swarm system is particularly fitted for 

the optimization of multi-modal issues, where numerous (local) optima exist. 

6. Conclusions 

In this paper, a two-dimensional truss was analyzed with the finite element method and 

optimized using the PSO algorithm and then, the optimization results were compared with those 

of [17]. The analysis of comparisons suggests that the PSO algorithm leads to better results in 

terms of the higher convergence rate. Comparing the results with this reference shows confirms 

the PSO algorithm in this paper for truss optimization. It seems that the PSO algorithm (bird 

algorithm) is a good choice for the optimization of trusses and has an acceptably high rate of 

convergence. This method is dependent on the values of ω, c1, and c2, and the values suggested in 

this paper can be used as the initial data. The number of particles (birds) is also important in this 

algorithm, but it is less important than the above factors and can be considered from 40 to 70. 

By the way, this problem opens two main question in structural optimizations. The first question 

is to how establish a framework to determine the reliability index of a system associated with the 

different degree of indeterminacies? And the second question is how to make a decision of 

optimization approach selection with consideration of both cost and reliability? The 

methodologies of addressing the responses to the above-mentioned questions are expected to be 

conducted in future studies. This, this paper attempts to shed more light to address the concern of 

the system reliability with various possible redundancy and target reliability selection associated 

with cost and reliability. 
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