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This study is aimed to explore using an artificial neural 

network method to anticipate the confined compressive 

strength and its corresponding strain for the circular concrete 

columns wrapped with FRP sheets. 58 experimental data of 

circular concrete columns tested under concentric loading 

were collected from the literature. The experimental data is 

used to train and test the neural network. A comparative 

study was also carried out between the neural network model 

and the other existing models. It was found that the 

fundamental behavior of confined concrete columns can 

logically be captured by the neural network model. Besides, 

the neural network approach provided better results than the 

analytical and experimental models. The neural network-

based model with R
2
 equal to 0.993 and 0.991 for training 

and testing the compressive strength, respectively, shows 

that the presented model is a practical method to predict the 

confinement behavior of concrete columns wrapped with 

FRP since it provides instantaneous result once it is 

appropriately trained and tested. 
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1. Introduction 

The need for seismic retrofitting of concrete structures has led to applying a new material which 

does not only increase the compressive strength and ductility of concrete members but also 

possesses other beneficial advantages like light-weight, high tensile strength and modulus, 

easiness to apply, corrosion resistance, and durability. Fiber-reinforced polymer (FRP) is shown 

to have these characteristics and has been commonly used for civil infrastructure rehabilitation 

applications [1–3]. Confining concrete columns is one of the most remarkable uses of FRP 

Fibers. It is an effective method proved by many engineering applications and experiments [1–7]. 

Significant research concerning the circular columns retrofitted by FRP has been conducted, and 

their stress-strain response is predicted by the proposed confinement models having varying 

degrees of complexity (sophistication). [3–6,8–14]. 

Early investigations attempted to use FRP confinement analytical models based on models 

previously used for steel sheet [4,9], but it was soon mentioned that this operation yielded 

inaccurate and often non-conservative results [15]. Since then, different models particularly 

suitable for FRP-confined concrete columns, have been proposed [3,5,6,8,10–15]. Many of these 

models are empirical and have been calibrated against their own sets of experimental data, and 

some display gross inadequacies when compared to a complete database of experimental results. 

The failure stress-strain of FRP-confined concrete [4,16,17] is only provided by the most 

available confinement models, whereas the other models estimate the full stress-strain behavior 

as bilinear[5,11–14,18]. Most recently, sophisticated rational iterative procedures have been 

suggested to derive the complete stress-strain response [6]. Accuracy, however, does not 

necessarily follow complexity (sophistication), and with new confinement models being 

presented every year, it is far from clear which one(s) should be used in light of the existing test 

data [19]. 

It is challenging to apply the statistical approach to a complex nonlinear system due to the 

considerable technique and experience required to choose the right regression equation. In an 

attempt to overcome these difficulties, artificial neural networks (ANNs), which provide an 

alternative method [20,21], are applied in this study. An ANN is a computational tool by which 

the architecture and internal operational features of the human brain and neuron systems are 

simulated. 

In civil engineering, the methodology of neural networks has been successfully applied to several 

areas [22–25]. Governing the quantities being modeled by multivariate interrelationships and the 

available “noisy” or incomplete data are the common features of ANNs successful application. 

Besides, in developing the neural network model, unlike regression analysis, it is not essential to 

presume any functional relationship among the different variables. The relationships are 

automatically constructed by ANNs and adjusted based on the used data for training. [24]. Also, 

in the future, by adding new results to the training data, it can modify and update its weights 

automatically and so be able to predict more accurately. 

Recently, several studies have been carried out on the prediction of compressive strength of RC 

members using ANN. Naderpour et al. [26] proposed equations to predict the compressive 
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strength of RC columns strengthened by FRP composites. Cui and Sheikh [27] proposed an 

analytical model for circular normal- and high-strength RC columns confined with FRP. Their 

constitutive model used an analytical rupture strain of an FRP jacket for predicting the complete 

stress-strain curve as well as it accommodated a wide range of concrete strength. Fathi et al. [28] 

presented an ANN formulation approach to predict compressive strength for concrete cylinders 

confined with CFRP. This approach represented the effect of CFRP confinement on the ultimate 

strength of concrete cylinders, which is also provided explicitly in terms of geometrical and 

mechanical parameters. The good agreement of the proposed ANN model in comparison to 

experimental results was quite satisfactory. Behfarnia and Khademi [29] conducted a 

comprehensive study on predicting concrete compressive strength using ANFIS and ANN. They 

founded that the ANN model was an effective model for the estimation of concrete compressive 

strength. Naderpour and Alavi [30] proposed a model to predict the shear contribution of FRP in 

strengthened RC beams using ANFIS. It was concluded that their proposed model provides an 

accurate and reliable tool than the guidelines equations. Hosseini [31] developed an ANN model 

based on a genetic algorithm to predict the capacity of RC beams retrofitted by FRP. The results 

showed that the shear capacity of the considered beams could be predicted by the proposed ANN 

model based on a genetic algorithm. Sharifi et al. [32] used the ANN method to investigate the 

estimation of the compressive strength of rectangular concrete columns confined by FRP. The 

results demonstrated that the proposed model based on ANN gave the best accuracy than the 

other models and conducted a sensitivity analysis based on Garson’s algorithm on indicating the 

value of used variables. Khan et al. [33] developed a stress-strain model to estimate the strength 

and strain enhancement ratio of FRP tube confined concrete cylinders under axial compression 

by implementing ANN. The predictions of the developed models had a good agreement with the 

experimental investigation results of the compiled database. Naderpour et al. [34] presented an 

ANFIS model to predict the ultimate strength of FRP-confined circular RC columns. The 

obtained results of the ANFIS model were compared with results from other models. The highest 

accuracy to predict the experimental results was observed in the ANFIS model. As can be seen 

there is no study about the modeling of confined circular concrete columns wrapped by fiber-

reinforced polymer using an artificial neural network. For this purpose, In this study, the 

possibility of using artificial neural networks (ANNs) in predicting the compressive strength of 

confined concrete circular columns and corresponding strain by using valid results from past 

experiments is explored. Because of the comparatively scarce test data now presented on the 

square and rectangular, slender, and eccentrically loaded columns, this paper deals only with 

FRP-wrapped circular columns under concentric axial load. Since the ability of the previous 

confinement models to predict behavior is somewhat dependent on whether the confinement is 

provided by an FRP wrap or tube [35], and so the focus of this study on comparison purposes is 

on the wrapped-columns. 

2. Fundamental concepts of artificial neural network 

An ANN performs as a network by a set of simple processing units called neurons that interact 

with each other through weighted connections. As can be seen in figure 1, The function of a 

neuron is estimated by a processing element. 
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Fig. 1. Model of a neuron [36]. 

The processing units may be arranged logically into two or more layers called input, hidden, and 

output layers, shown in Figure 2. The topology or architecture of an ANN is similar to that of the 

brain and nervous system; each neuron can have many inputs but only one output. However, 

each output branches out to the input of many other processing elements [22]. Receiving input 

from its neighboring units, which provides incoming activations, computing, and output, and also 

sending the output to its neighbors, are the main duties of processing units. A set of weights can 

affect the magnitude of the input being received by the neighboring units and also provide the 

strength of the connections among the processing units. The output processing units produce 

output compared to the target output data, and the weights are properly modified or adjusted 

based on training or learning rule. The output produced by the output processing units is 

compared to the target output data, and the weights are appropriately modified or adjusted based 

on training or learning rule. Finally, by learning the problem, a stable set of weights adaptively 

evolves, which will produce good results. 

 
Fig. 2. The topology of a neural network with one hidden layer [35]. 
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ANN, like structure based on the biological nervous system, represents a surprising number of 

characteristics, e.g., learn from experience, and generalize from previous examples to new 

problems by inferring solutions through problems beyond those they are exposed to due to 

training, process information rapidly [37]. 

Parker and Werbos independently discovered the Back-propagation learning method. Rumelhart 

et al. generalized and developed this method to a workable process. 

In back-propagation, learning is accomplished by propagating a set of input training patterns 

through a network consisting of an input layer, one or more hidden layers, and an output layer. 

Each layer has its corresponding units and weight connections. The calculated outputs at the 

output layer are subtracted from the desired (target) output, and the error is obtained by the 

squared sum of the output difference. This measurement represents the level at which the 

network has learned the input-output data and may be used to determine the gradient of the 

learning procedure [22]. 

Determining the connection weight matrices and the layout of the connections and also the 

application of the learning rule by which the neural network obtains the desired relationship 

embedded in the training data are primarily involved in the learning process. An error criterion is 

usually selected for the network output, and the simulation can be terminated by setting the 

maximum number of cycles [24]. 

The error will approach a minimum value if the network “learns.” After the training phase, the 

ANNs can be tested for other input data where the final values of the weights obtained in the 

training phase are used. No weight modification is involved in the testing phase. Details of the 

BPN algorithm and its variants can be found in the literature [38]. 

Aiming at empirically validating the performance of an ANN model which has been trained by 

presenting it with a set of training patterns, the reliability, and accuracy of the network 

performance is evaluated via a selected error matric based on data (referred to as test data), 

which was not in training. An ANN prediction model can be evaluated and validated by common 

error methods like root mean squared error (RMSE) or the mean absolute error (MAE). 

3. Behavior and models of confined circular concrete columns with FRP 

A concrete cylinder confined by FRP jacket starts expanding laterally when subjected to axial 

compressive stress. The FRP jacket loaded in tension in the hoop direction can limit and decrease 

the expansion. The FRP jacket provides confining pressure, which is continuously increased, 

whereas the lateral strain of concrete increases due to the linear elastic stress-strain behavior of 

FRP, in contrast to steel-confined concrete in which the confining pressure remains constant even 

when the steel is in the plastic range [7]. Figure 3 describes the stress-strain behavior of the 

confined concrete column. Confinement acts as passive in concrete and only is effective once the 

internal cracking increases the volume. Passive confinement enhances the compressive strength 

of the concrete and increases its ductility [24]. 
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Fig. 3. Applying confinement pressure to the concrete core. 

Various analytical and empirical models have been proposed to estimate the compressive 

strength, f’cc, and corresponding strain, εcc, of confined concrete columns considering various 

parameters [3–6,8–14]. To compare the results obtained from the neural network model, some 

remarkable methods are selected and used in this study are outlined in the following. A detailed 

discussion was carried out in the literature on the accuracy and comparison of the existing 

models [7,19,35]. To ensure uniformity of notation withing the current paper, The notation and 

format of the original equations have been modified in most cases. In the following expressions, 

Pu represents the ultimate confining pressure applied by an FRP wrap. For a circular concrete 

column of diameter D, confined by a circumferential wrap with tensile strength, ffu, and 

thickness, nt, this pressure is computed by assuming the failure of concrete when the wrap 

reaches its failure stress [14]. Thus, an expression giving the lateral confining pressure at the 

ultimate level can be obtained using the equilibrium of forces (Figure 3). 
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Where EL is the confinement modulus or lateral modulus. 

As for the strength enhancement, almost all models relate f’cc/ f’co to the Pu/ f’co ratio, except for 

the Kono model [9], which expresses f’cc/ f’co only as a function of Pu, Samaan et al. [12], 

expressed f’cc/ f’co as a function of Pu and f’co, and Xiao and Wu [13], included the ratio f’
2

co / EL 

as a significant variable. The ductility enhancement, as expressed by the ratio εcc/εco, appears to 

be related not just to the strength properties but also to the stiffness of the confining device. 

Some of the most important models to predict the compressive strength of confined concrete 

used in this study are presented in Table 1. 
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Table 1 

Models of predicting compressive strength of confined concrete. 

Author Equation Ref 

Fardis and Khalili 1 2.05( )cc co l cof f f f     [4] 

Saadatmanesh et al. 
7.94

1.254 2.254 1 2l l
cc co

co co

f f
f f

f f

 
       

  
 [9] 

Miyauchi et al. 1 2.98( )cc co l cof f f f     [5] 

Samaan et al. 
0.71 6( )cc co l cof f f f     [12] 

Toutanji 
0.85

1 2.3( )cc co l cof f f f     [11] 

Saafi et al. 
0.84

1 2.2( )cc co l cof f f f     [3] 

Karbhari and Gao 
0.87

1 2.1( )cc co l cof f f f     [14] 

Lam and Teng 1 2( )cc co l cof f f f     [18] 

 

4. Experimental data 

Comprehensive information about the feature of the behavior of the materials should be included 

in a good training data set. Therefore, the trained neural network will contain sufficient 

information to qualify as a material model. Results of about 187 tests from 18 different 

experiments set documented in the published literature were collected. 

Although considering the effects of quality parameters in neural networks is possible by 

designating numeric variables to them, but in this study, like other existing models, a specific 

type of leg was considered Filament wound, wrap, and tube and fiber type (e.g., AFRP, CFRP, 

and GFRP) are as variables. The ANN model was trained for CFRP wrapped columns. The 

previous researchers just took into account the diameter of the cylinder, D in the prediction 

models, and the height of the cylinder, H was not considered, whereas size effect is a relevant 

issue that needs specific investigations. Therefore, in this study, to exclude size effect, the 

experiment data limited to those which have reported the H/D ratio equal to 2. 

Some authors had reported the experimental results with identical properties that are impossible 

for a neural network to learn those patterns with the same inputs and different outputs. Therefore, 

to prevent falling in this loop, the results of identical specimens were averaged. Eventually, 58 

sets out of 180 gathered sets from 9 published literatures [5,10,39–44] were selected, which are 

presented in Table 2. These ranges are listed in Table 3 (At first, 187 datasets were collected from 

valid references, Then, out of 187 data, 58 homogeneous data were selected, and heterogeneous 

data were deleted). 
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Table 2 

Initial Experimental Data as the input of the ANN model. 

Reference Code D (mm) 
nt 

(mm) 

Eƒ 

(MPa) 

fƒu 

(MPa) 
f'co(MPa) 

εco 

(%) 

f'cce 

(MPa) 

εcce 

(%) 

f'ccp 

(MPa) 

εccp 

(%) 

Harmon et al.,1992 

HA1 51 0.089 235000 3500 41 0.23 86 1.15 84.281 1.191 

HA2 51 0.179 235000 3500 41 0.23 120.5 1.57 109.060 1.551 

HA3a 51 0.344 235000 3500 41 0.23 158.4 2.5 166.003 2.358 

HA4 51 0.689 235000 3500 41 0.23 241 3.6 239.774 3.546 

HA5 51 0.179 235000 3500 103 0.4 131 1.1 130.165 1.079 

HA6a 51 0.344 235000 3500 103 0.4 193.2 2.05 190.262 1.842 

HA7 51 0.689 235000 3500 103 0.4 303.6 3.45 302.877 3.449 

Picher et al.,1996 PI1 153 0.36 83000 1266 39.7 0.25 55.98 1.07 59.175 1.016 

Watanabe et 

al.,1997 

WA1 100 0.1675 223400 2728.5 30.2 0.25 46.6 1.511 54.517 1.426 

WA2 100 0.5025 223400 2728.5 30.2 0.25 87.2 3.108 90.247 3.193 

WA3 100 0.67 223400 2728.5 30.2 0.25 104.6 4.151 100.573 4.047 

WA4 100 0.14 611600 1562.7 30.2 0.25 41.7 0.575 40.056 0.576 

WA5a 100 0.28 611600 1562.7 30.2 0.25 56 0.876 50.342 0.886 

WA6 100 0.42 611600 1562.7 30.2 0.25 63.3 1.298 63.535 1.298 

Miyauchi et 

al.,1997 

MI1 150 0.11 230500 3481 45.2 0.219 59.4 0.945 66.811 0.789 

MI2a 150 0.22 230500 3481 45.2 0.219 79.4 1.245 82.268 1.071 

MI3 150 0.11 230500 3481 31.2 0.195 52.4 1.213 52.578 1.291 

MI4 150 0.22 230500 3481 31.2 0.195 67.4 1.554 60.585 1.584 

MI5 150 0.33 230500 3481 31.2 0.195 81.7 2.013 68.754 1.917 

MI6 100 0.11 230500 3481 51.9 0.192 75.2 0.956 78.461 0.758 

MI7a 100 0.22 230500 3481 51.9 0.192 104.6 1.275 113.373 1.230 

MI8 100 0.11 230500 3481 33.7 0.19 69.6 1.406 58.712 1.209 

MI9 100 0.22 230500 3481 33.7 0.19 88 1.488 68.772 1.493 

Kono et al.,1998 

KO1,2 100 0.167 235000 3820 34.3 0.17 61.15 0.9475 58.085 1.009 

KO3,4,5 100 0.167 235000 3820 32.3 0.234 59.23 1.07 53.271 1.056 

KO6,7,8 100 0.334 235000 3820 32.3 0.234 66.73 1.75 70.693 1.503 

KO9,10 100 0.501 235000 3820 32.3 0.234 88.5 1.62 85.391 1.928 

KO11,12,13 100 0.167 235000 3820 34.8 0.229 54.7 0.989 59.450 1.001 

KO14,15a 100 0.334 235000 3820 34.8 0.229 82.05 2.06 84.221 1.520 

KO16,17 100 0.501 235000 3820 34.8 0.229 106.7 2.425 105.693 2.023 

Matthys et al., 1999 
MA1 150 0.117 220000 2600 34.9 0.21 46.1 0.9 46.101 0.894 

MA2a 150 0.235 500000 1100 34.9 0.21 45.8 0.6 32.848 0.400 

Shahawy et al.,2000 

SH1 153 0.36 82700 2275 19.4 0.2 33.8 1.59 36.723 1.620 

SH2 153 0.66 82700 2275 19.4 0.2 46.4 2.21 48.110 2.023 

SH3 153 0.9 82700 2275 19.4 0.2 62.6 2.58 62.674 2.594 

SH4a 153 1.08 82700 2275 19.4 0.2 75.7 3.56 73.213 3.047 

SH5 153 1.25 82700 2275 19.4 0.2 80.2 3.42 80.739 3.359 

SH6 153 0.36 82700 2275 49 0.2 59.1 0.62 58.250 0.582 

SH7 153 0.66 82700 2275 49 0.2 76.5 0.97 76.804 0.923 

SH8 153 0.9 82700 2275 49 0.2 98.8 1.26 94.713 1.339 

SH9 153 1.08 82700 2275 49 0.2 112.7 1.9 111.606 1.805 

Micelli et al.,2001 MC5,6,7,8a 100 0.16 227000 3790 37 0.19 59.5 1.015 58.357 0.834 

Rousakis,2001 

RO1,2,3 150 0.169 118340 2024 25.15 0.32 41.48 1.37 39.558 1.335 

RO4,5,6 150 0.338 118340 2024 25.15 0.32 59.21 2.017 54.312 1.896 

RO7,8,9 150 0.507 118340 2024 25.15 0.32 68.15 2.423 67.774 2.470 

RO10,11,12a 150 0.169 118340 2024 47.44 0.31 67.617 0.853 68.977 0.875 

RO13,14 150 0.338 118340 2024 47.44 0.31 82.355 1.335 83.805 1.190 

RO16,17,18 150 0.507 118340 2024 47.44 0.31 95.755 1.683 94.426 1.452 

RO19,20,21 150 0.169 118340 2024 51.84 0.29 78.915 0.67 74.882 0.822 

RO22,23,24 150 0.338 118340 2024 51.84 0.29 90.475 1.02 90.038 1.106 

RO25,26,27a 150 0.507 118340 2024 51.84 0.29 110.463 1.33 101.137 1.338 

RO28,29,30 150 0.845 118340 2024 51.84 0.29 125.76 1.555 117.587 1.772 

RO31,32,33 150 0.169 118340 2024 70.48 0.35 84.847 0.707 86.694 0.595 

RO34,35,36a 150 0.338 118340 2024 70.48 0.35 99.797 0.9 102.534 0.825 

RO37,38,39 150 0.507 118340 2024 70.48 0.35 110.857 1.16 118.436 1.063 

RO40,41,42 150 0.169 118340 2024 82.13 0.31 95.837 0.477 86.890 0.484 

RO43,44,45 150 0.338 118340 2024 82.13 0.31 98.173 0.44 99.865 0.673 

RO46,47,48 150 0.507 118340 2024 82.13 0.31 124.713 0.95 115.013 0.897 
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Table 3 

Statistic Properties of Training and Testing Sets for the ANN model. 

Input and Output Variables 
D 

(mm) 

H 

(mm) 

nt 

(mm) 

Ef 

(MPa) 

ffu 

(MPa) 

f'co 

(MPa) 

f'cc 

(MPa) 

f'cc 

(%) 

All 

Data 

Ave. 123.05 245.93 0.39 198917.9 2707.89 44.26 88.23 1.56 

Min. 51 102 0.089 82700 1100 19.4 33.8 0.44 

Max. 153 305 1.25 611600 3820 103 303.6 4.151 

Standard Deviation 35.44 70.72 0.27 123592.9 809.82 20.68 46.29 0.86 

Training 

Set 

Ave. 124.6 249 0.3983 186846 2706 43.48 86.63 1.57 

Min. 51 102 0.089 82700 1266 19.4 33.8 0.44 

Max. 153 305 1.25 611600 3820 103 303.6 4.151 

Standard Deviation 34.78 69.39 0.2804 111888 775.1 20.56 47.34 0.87 

Test 

Set 

Ave. 117.1 234.1 0.35 245193 2715.14 47.26 94.38 1.52 

Min. 51 102 0.16 82700 1100 19.4 45.8 0.6 

Max. 153 305 1.08 611600 3820 103 193.2 3.56 

Standard 

Deviation 
38.86 77.63 0.25 158095 969.75 21.77 43.43 0.86 

 

5. Application of ANN to FRP confined concrete 

Examining the input variables given in the references above can help to select those parameters 

for a network model. In general, the following six parameters were concluded in almost all 

models for prediction of peak axial stress of FRP confined concrete specimen, f’cc, and 

corresponding strain at peak stress, εcc. The six major variables that are used as input nodes in the 

ANN model are listed as follows: 

D = Diameter of the concrete cylinder 

nt = total thickness of the applied FRP 

Ef = FRP modulus of the elasticity 

ffu = FRP ultimate tensile strength 

f’co = peak stress of an unconfined concrete cylinder 

εco = strain corresponding to peak stress of an unconfined concrete cylinder 

Having the above six input nodes, the two output nodes correspond to maximum axial stress, f’cc, 

and strain, εcc, of FRP confined concrete, respectively. The data for 58 columns from the 

experiments of Miyauchi et al. [5], Kono et al. [10], Harmon and Slattery [39], Watanabe et al. 

[40], Micelli et al. [41], Matthys et al. [42], Shahawy et al. [43], Rousakis [44], were grouped 

randomly into training and test data. Forty-six (46) data patterns were used as training data, and 

the remaining twelve (12) data patterns were regarded as test data. 
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In this study, a scientifically available program widely used by researchers during the last decade 

was applied for the simulations. The program neural works professional II plus “NW II” [45] is a 

multi-paradigm neural network prototyping and development tool which is provided with 

powerful diagnostic instruments, such as the root–mean square error (RMSE), network weights, 

classification rate, and confusion matrices, for monitoring the network instantly to achieve a 

better understanding of the network performance. Once the network is trained and converged, a 

test set is presented to the network sequentially to verify the reliability and accuracy of the 

network performance. Considering the number of training patterns and aiming at reaching the 

desired performance and accuracy of the network, different architecture for the network is 

assumed, trained, and then the best will be selected. The best architecture is the one that gives the 

nearest predictions to both training and test sets [22]. 

In this study, the network configuration was obtained once the performance of various 

configurations for a fixed number of cycles was monitored. Then, learning parameters were 

changed, and learning processes were reported. To yield the best results, two hidden layers with 

five neurons in the first hidden layer, and three neurons in the second hidden layer were selected. 

Transfer functions were “tangent hyperbolic” and linear for the hidden and output layers, 

respectively. Moreover, to avoid over-training, the convergence criteria for stopping the training 

network were: 

 Root Mean Square Error (RMSE) of 0.01 for normalized data; 

 Maximum cycles of 50000 

Whereas the error tolerance was not achieved, the simulation stopped when the maximum 

number of cycles was reached. In the NW II program, by choosing “Extended Delta-Bar-Delta” 

(Ext DBD) as the learning rule, the program sets the following parameters Momentum, Learning 

Coefficient Ratio, and f’ offset automatically. 

Since tangent hyperbolic transfer function is asymptotic to values -1 and 1, the derivative at or 

close to values -1 and 1 will approach zero, producing a minimal signal error, which leads to 

slow learning. The input and output data were scaled into the interval [-0.9, 0.9] and the interval 

[-0.8, 0.8], respectively, to avoid the slow rate of learning near the endpoints, particularly of the 

output range. 

When the network is trained, it is presented by the test data to assess the accuracy of the model. 

Tables 4 and 5 show the comparison of the performance of the proposed models for RMSE and 

R
2
, both for training and test data. It can be seen that the BPN model has the best results. To 

obtain the maximum strength of confined concrete by the BPN, the values of RMS error are 

5.558 MPa for the training set and 6.191 MPa for the testing set; while for the corresponding 

strain of confined concrete, the values of RMS error are 0.127 and 0.246 for the training set and 

testing set respectively, which are the lowest values among the prediction models. Moreover, the 

R
2
 can be used as an index to indicate how well the considered independent variables (D, nt, ffu 

,Ef, f’co, and εco) justify the measured dependent variables (f’cc and εcc) and, subsequently, the 

accuracy of the trained network. All values of R
2
 were found to be greater than 0.983 for the 
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training set and testing set, which represents a significant correlation between the independent 

variables and the measured dependent variables. 

Table 4 

Summary of the Errors of BPN Model for strength. 

f'cc Max E. Min E. MAE RMS R
2
 COV STDV AVG 

Training 

Set 
19.227 0.00125 3.968 5.558 0.993 0.076 0.078 1.021 

Testing 

Set 
12.952 1.142 5.001 6.191 0.991 0.121 0.125 1.036 

Table 5 

Summary of the Errors of BPN Model for strain. 

f'cc Max E. Min E. MAE RMS R
2
 COV STDV AVG 

Training 

Set 
0.40100 0.00050 0.09500 0.127 0.989 0.105 0.107 1.021 

Testing 

Set 
0.539 0.0089 0.176 0.246 0.983 0.139 0.158 1.138 

 

6. ANN model simulation 

A neural network model uses the training examples to learn and construct relationships between 

the input and output parameters. Due to the scarce and limited training data, it is expected that 

the trained model may not be able to capture the complicated interrelationships among physical 

parameters completely. Therefore, it is necessary to validate the performance of the ANN model 

in simulating the behavior of physical processes. This can be accomplished through testing the 

model with hypothetical data by changing the values of some input parameters. In the parametric 

study, two types of columns were used; the M column which has the properties like the Miauchi 

[5] specimens used in his experiment (i.e. D=150 mm, nt= 0.11,0.22,0.33 mm, Ef=230500 MPa, 

ffu=3481 MPa, f’co=31.2,33.7,51.9 MPa, and εco=0.195%) and S column which is identical to 

Shahawy [35] specimens (i.e. D=153 mm, nt= 0.36,0.66,0.9,1.08,1.25 mm, Ef=82700 MPa, 

ffu=2275 MPa, f’co=19.4,49 MPa, and εco=0.2%). In the M column, the thickness of the wrapped 

FRP, nt, that is one of the most important parameters in confinement, is varied from 0.1 mm to 1 

mm for unconfined concrete stresses, f’co, equal to 30, 40, and 50 MPa with keeping constant the 

other parameters. Similarly, in the S column, considering constant values for the variables above, 

like in the M column, the thickness is varied from 0.35 mm to 1.25 mm for unconfined concrete 

stresses equal to 17, 34, and 51 MPa. For the M column, as it was expected and shown in Figure 

4 and Figure 5, the network revealed an increasing linear trend in the interval 0.1 to 0.3 for the 

thickness, which are the ranges of learning patterns but nonlinear for those patterns out of 

training set ranges. In contrast, for the S column, which the range of varying thicknesses is the 

same as the range that the model was trained for, the trend of predictions is ever-increasing, and 

the model does not need to predict values out of its training ranges. Hence, it is observed that the 

ANN model is able to predict the values in its learning patterns regions but poorly in the values 

out of it. 
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Fig. 4. Predictions of the ANN Model for Mcolumn 

  
Fig. 5. Predictions of the ANN Model for S column 

7. Discussion and comparison of prediction models 

The training and testing data for calculating the predicted maximum strength, f’ccp, and 

corresponding strain, εccp, of confined concrete columns are used to compare the neural network 

results with other well-known existing models. Since different models may involve different 

parameters, the comparison is made by plotting experimental values versus predicted values, 

with a 45-degree line corresponding to perfect agreement between predictions and experimental 

results (i.e., εcce/εccp =1 and f’cce/ f’ccp=1). As shown in Figure 6 for f’cce versus f’ccp and Figure 7 

for εcce versus εccp, points falling in the upper part of the graph show conservative predictions, 

while points falling down the line are obtained from theoretical values being higher than the 

experimental ones. Figure 6 and Figure 7 clearly show that the least scattered data around the 

diagonal line confirms that the neural network-based model is an excellent predictor for the 

values of f’cc and εcc, respectively (Because the predictions (points) are closer to the laboratory 

values (45-degree line) compared to other models(. 
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Fig. 6. Comparison of the models in predicting f’cc 

   

   
Fig. 7. Comparison of the models in predicting εcc. 
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Also, the Figs. 6 and 7 shows that Xiao and wu model has the highest deviation in predicting 

compressive strength among other models while in term of strain this model and Samaan model 

has the highest deviation. These figures also show that the models are more accurate in 

predicting compressive strength compared to strain. 

While the correlation between the values of experimental and predicted from previous models is 

more scattered. The values of RMSE (Root Mean Square Error) and R
2 

(Absolute Fraction of 

Variance) of the training and testing results for the prediction models are also listed in Table 6 

based on the following equations for comparison purposes. 

 

 

2

cc(exp ) cc( )

1
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cc(exp ) cc(exp )
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2 1
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It can be observed that the smallest RMSE and the largest R
2 

(closest to 1) for both the training 

and testing sets are derived by the BPN model. The large deviation for the analytical models 

shows that the analytical models performed well for their test data but poorly on other data. 

Moreover, the prediction models have been compared using the average value (AVG), standard 

deviation (STD), and coefficient of variation (COV) of the ratio of f’cce/ f’ccp and εcce/εccp. Table 6 

indicates that for the ratios of f’cce/ f’ccp, the neural network model possesses the least COV value 

of 7.6% (with AVG= 1.021 and STD= 0.098) and 12.1% (with AVG= 1.036 and STD= 0.125) for 

the training and testing sets, respectively. Similarly, for the ratios of εcce/εccp, the ANN model 

possesses the least COV value of 10.4% (with AVG= 1.021 and STD= 0.107) for the training set 

and 13.9% (with AVG= 1.138 and STD= 0.158) for testing set. It is seen that the predictions of 

the ANN model, even for test data, are relatively better than the results of analytical models. The 

performance of the ANN model is improved by an increase in the number and distribution of the 

training database. 

The maximum error is related to the Kono model and equal to 356.6 for training data, while the 

minimum error is related to BPN, Miayuchi, and Kono models and equal to 0 for training data. 

The lowest 
2R  is for Karbahari & Gao model and related to strain prediction. 

8. Conclusions 

This study showed the application of the neural network method for predicting the complex 

nonlinear behavior of concrete columns confined with FRP wraps. It is not possible to propose 

an ANN model that is used for columns with a broad range of values as input parameters due to 

the data limitation. 
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Table 6 
Statistic results for the prediction models. 

Statistic 

Maximum 

Error 

Minimum 

Error 

Mean 

Absolute 

Error 

Root Mean 

Square 

Error 

(RMSE) 

2R  

Coefficient 

of 

Variance 

Standard 

Deviation 
Average 

Train 

Set 

Test 

Set 

Train 

Set 

Test 

Set 

Train 

Set 

Test 

Set 

Train 

Set 

Test 

Set 

Train 

Set 

Test 

Set 

Train 

Set 

Test 

Set 

Train 

Set 

Test 

Set 

Train 

Set 

Test 

Set 

Fardis 

f'cc(Richart) 187.7 103.4 0.249 1.481 35.38 31.93 54.29 47.1 0.934 0.925 0.239 0.22 0.185 0.177 0.773 0.806 

f'cc (Newman) 153.5 104.7 1.026 2.371 32.34 30.18 44.1 42.06 0.952 0.948 0.196 0.171 0.15 0.135 0.761 0.79 

εcc 3.851 3.33 0.127 0.368 1.301 1.247 1.522 1.499 0.162 -0.042 0.524 0.642 3.145 3.74 6.001 5.831 

Saadatmanesh 
f'cc 85.65 83.29 0.033 0.235 19.98 18.86 26.5 28.36 0.904 0.935 0.182 0.138 0.152 0.118 0.838 0.86 

εcc 1.749 1.719 0.018 0.136 0.58 0.593 0.698 0.727 0.851 0.83 0.285 0.243 0.214 0.181 0.752 0.742 

Miayuchi 
f'cc 81.82 50.52 0.118 0.275 18.45 16.19 26.78 22.58 0.95 0.944 0.201 0.175 0.183 0.165 0.91 0.944 

εcc 1.865 1.269 0 0.034 0.567 0.452 0.693 0.559 0.861 0.873 0.252 0.287 0.19 0.227 0.757 0.793 

Kono 
f'cc 356.6 188 0.56 3.172 22.61 23.75 56.11 55.17 0.919 0.9 0.225 0.203 0.239 0.213 1.064 1.05 

εcc 7.542 3.639 0 0.014 0.722 0.647 1.323 1.181 0.629 0.564 0.447 0.344 0.548 0.381 1.227 1.108 

Samaan 
f'cc 55.66 28.27 0.117 1.067 12.23 9.149 16.46 12.35 0.947 0.96 0.162 0.129 0.158 0.131 0.975 1.015 

εcc 3.066 2.053 0.21 0.096 1.456 1.065 1.57 1.257 0.168 0.697 0.638 0.421 0.386 0.265 0.605 0.628 

Tutanji 
f'cc 134.7 95.58 2.261 0.152 28.76 26.53 39.19 37.59 0.954 0.951 0.189 0.162 0.148 0.131 0.781 0.81 

εcc 9.523 7.892 0.028 0.124 2.029 1.842 2.878 2.82 0.825 0.981 0.425 0.431 0.229 0.26 0.539 0.603 

Saafi 
f'cc 39.99 27.49 0.096 0.091 10.79 10.15 13.12 12.85 0.961 0.96 0.156 0.118 0.154 0.12 0.988 1.017 

εcc 10.02 8.346 0.012 0.14 2.137 1.941 3.016 2.97 0.818 0.98 0.434 0.462 0.228 0.276 0.525 0.596 

Xiao & Wu 
f'cc 173.1 69.98 0.987 4.724 32.77 28.7 45.73 36 0.824 0.766 0.599 0.397 0.668 0.422 1.116 1.062 

εcc 8.413 6.885 0.002 0.058 1.903 1.724 2.717 2.608 0.829 0.971 0.367 0.324 0.203 0.19 0.551 0.585 

Karbahari 

& Gao 

f'cc 34.16 24.46 0.047 1.112 10.28 10.55 12.66 12.7 0.962 0.96 0.156 0.119 0.16 0.125 1.02 1.051 

εcc 3.889 3.343 0.129 0.389 1.313 1.261 1.536 1.511 0.041 -0.047 0.556 0.65 3.53 4.018 6.351 6.179 

Lam 

&Teng 

f'cc 26.67 29.21 0.504 3.483 11.34 11.93 13.36 13.77 0.961 0.958 0.171 0.136 0.181 0.149 1.054 1.088 

εcc(CFRP) 4.818 1.933 0.005 0.041 0.817 0.709 1.209 0.966 0.885 0.969 0.326 0.223 0.246 0.167 0.756 0.746 

Lam &Teng 

(Design 

Model) 

f'cc 30.36 31.26 0.74 1.76 11.39 11.87 13.5 14.76 0.962 0.959 0.167 0.13 0.181 0.146 1.087 1.12 

εcc(CFRP) 2.108 0.551 0.002 0.013 0.384 0.209 0.526 0.28 0.883 0.965 0.311 0.211 0.321 0.214 1.032 1.015 

BPN 

Network 

f'cc 19.23 12.95 0.001 1.142 3.968 5.001 5.558 6.191 0.993 0.991 0.076 0.121 0.078 0.126 1.021 1.036 

εcc 0.401 0.539 0 0.009 0.095 0.176 0.128 0.246 0.989 0.984 0.105 0.139 0.107 0.158 1.021 1.138 

 

The ANN model seemed to be admissible in simulating the behavior of FRP-confined circular 

concrete columns, although limited in applicability. Reasonable predictions of the ANN model 

were derived for values inside the training region. The ability and advantage of using ANNs to 

model physical operations are presented in this study. Unlike theoretical models, which rely on 

the assessment of a mathematical equation or solution, the ANN solution process is not 

formulated clearly. Instead, the relationships are automatically constructed and adapted 
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according to the presented training data. By comparing the outputs of the models to experimental 

results, it was concluded that the presented ANN model had the best performance in term of 

predicting the experimental results due to the closest value of R
2
 to 1, equal to 0.993 and 0.991 

for training and testing of compressive strength and 0.989 and 0.984 for training and testing of 

strain, respectively. In light of neural techniques to other areas of structural engineering can open 

new directions for further research. 
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