Application of Random Forest Regression in the Prediction of Ultimate Bearing Capacity of Strip Footing Resting on Dense Sand Overlying Loose Sand Deposit

Document Type: Research Note


1 Professor, Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India

2 Research scholar, Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India

3 PG Student, Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India



The paper presents the prediction of the ultimate bearing capacity of the strip footing resting on layered soil (dense sand overlying loose sand) using random forest regression (RFR). In this study, 181 data collected from literature were used. 71 % of the total data was randomly selected for training the model and the rest of the data were utilized for the testing purpose. The various input parameters were friction angle of the dense sand layer (f1), friction angle of the loose sand layer (f2), unit weight of the dense sand layer (g1), unit weight of the loose sand layer (g2), ratio of the thickness of the dense sand layer below base of the footing to the width of footing (H/B), ratio of the depth of the footing to the width of the footing (D/B) and (H+D)/B. Ultimate bearing capacity was the output in this study. Performance measures were used in order to make the comparison with the artificial neural network (ANN) and M5P model tree. The result of this study revealed that the performance of the RFR was superior to M5P and ANN. The results of the sensitivity analysis reveals that the unit weight and the friction angle of the loose sand layer were the most important parameters affecting the output ultimate bearing capacity of the strip footing resting on the layered soils.


Main Subjects

[1]     Meyerhof GG. Ultimate Bearing Capacity of Footings on Sand Layer Overlying Clay. Can Geotech J 1974;11:223–9. doi:10.1139/t74-018.

[2]     Purushothamaraj P, Ramiah BK, Rao KNV. Bearing Capacity of Strip Footings in Two Layered Cohesive-friction Soils. Can Geotech J 1974;11:32–45. doi:10.1139/t74-003.

[3]     Hanna AM, Meyerhof GG. Ultimate bearing capacity of foundations on a three-layer soil, with special reference to layered sand. Can Geotech J 1979;16:412–4. doi:10.1139/t79-042.

[4]     Hanna AM. Foundations on strong sand overlying weak sand. J Geotech Geoenvironmental Eng 1981;107:915–27.

[5]     Hanna AM. Bearing capacity of foundations on a weak sand layer overlying a strong deposit. Can Geotech J 1982;19:392–6. doi:10.1139/t82-043.

[6]     Georgiadis M, Michalopoulos AP. Bearing Capacity of Gravity Bases on Layered Soil. J Geotech Eng 1985;111:712–29. doi:10.1061/(ASCE)0733-9410(1985)111:6(712).

[7]     Oda M, Win S. Ultimate Bearing Capacity Tests on Sand with Clay Layer. J Geotech Eng 1990;116:1902–6. doi:10.1061/(ASCE)0733-9410(1990)116:12(1902).

[8]     Michalowski RL, Shi L. Bearing Capacity of Footings over Two-Layer Foundation Soils. J Geotech Eng 1995;121:421–8. doi:10.1061/(ASCE)0733-9410(1995)121:5(421).

[9]     Zhang Q, Luan M. Study on Ultimate Bearing Capacity of Two-Layered Subsoil Under Horizontal and Vertical Loading. Geotech. Eng. Disaster Mitig. Rehabil., Berlin, Heidelberg: Springer Berlin Heidelberg; n.d., p. 1093–100. doi:10.1007/978-3-540-79846-0_144.

[10]    Huang M, Qin H-L. Upper-bound multi-rigid-block solutions for bearing capacity of two-layered soils. Comput Geotech 2009;36:525–9. doi:10.1016/j.compgeo.2008.10.001.

[11]    Hanna AM. Finite element analysis of footings on layered soils. Math Model 1987;9:813–9. doi:10.1016/0270-0255(87)90501-X.

[12]    Yin J-H, Wang Y-J, Selvadurai APS. Influence of Nonassociativity on the Bearing Capacity of a Strip Footing. J Geotech Geoenvironmental Eng 2001;127:985–9. doi:10.1061/(ASCE)1090-0241(2001)127:11(985).

[13]    Zhu M. Bearing capacity of strip footings on two-layer clay soil by finite element method. Proc. ABAQUS Users’ Conf., vol. 777, 2004, p. 787.

[14]    Zhu M, Michalowski RL. Shape Factors for Limit Loads on Square and Rectangular Footings. J Geotech Geoenvironmental Eng 2005;131:223–31. doi:10.1061/(ASCE)1090-0241(2005)131:2(223).

[15]    Szypcio Z, Dołżyk-Szypcio K. The Bearing Capacity of Layered Subsoil. vol. XXVIII. 2006.

[16]    Kumar J, Kouzer KM. Effect of Footing Roughness on Bearing Capacity Factor Nγ. J Geotech Geoenvironmental Eng 2007;133:502–11. doi:10.1061/(ASCE)1090-0241(2007)133:5(502).

[17]    Nazir R, Momeni E, Marsono K, Maizir H. An Artificial Neural Network Approach for Prediction of Bearing Capacity of Spread Foundations in Sand. J Teknol 2015;72. doi:10.11113/jt.v72.4004.

[18]    Kalinli A, Acar MC, Gündüz Z. New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization. Eng Geol 2011;117:29–38. doi:10.1016/j.enggeo.2010.10.002.

[19]    Ornek M. Estimation of ultimate loads of eccentric-inclined loaded strip footings rested on sandy soils. Neural Comput Appl 2014;25:39–54. doi:10.1007/s00521-013-1444-5.

[20]    Soleimanbeigi A, Hataf N. Predicting ultimate bearing capacity of shallow foundations on reinforced cohesionless soils using artificial neural networks. Geosynth Int 2005;12:321–32.

[21]    Dutta RK, Dutta K, Jeevanandham S. Prediction of Deviator Stress of Sand Reinforced with Waste Plastic Strips Using Neural Network. Int J Geosynth Gr Eng 2015;1:11. doi:10.1007/s40891-015-0013-7.

[22]    Kuo YL, Jaksa MB, Lyamin AV, Kaggwa WS. ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil. Comput Geotech 2009;36:503–16. doi:10.1016/j.compgeo.2008.07.002.

[23]    Puri N, Prasad HD, Jain A. Prediction of Geotechnical Parameters Using Machine Learning Techniques. Procedia Comput Sci 2018;125:509–17. doi:10.1016/j.procs.2017.12.066.

[24]    Dutta RK, Rani R, Rao T. Prediction of Ultimate Bearing Capacity of Skirted Footing Resting on Sand Using Artificial Neural Networks. Soft Comput Civ Eng 2018:34–46. doi:10.22115/scce.2018.133742.1066.

[25]    Gnananandarao T, Dutta RK, Khatri VN. Artificial Neural Networks Based Bearing Capacity Prediction for Square Footing Resting on Confined Sand. Indian Geotech. Conf. 14-16 December, IIT Guwahati, Assam, India, 2017.

[26]    Gnananandarao T, Dutta RK, Khatri VN. Application of Artificial Neural Network to Predict the Settlement of Shallow Foundations on Cohesionless Soils, 2019, p. 51–8. doi:10.1007/978-981-13-0368-5_6.

[27]    Dutta RK, Dutta K, Kumar S. S. Prediction of horizontal stress in underground excavations using artificial neural networks. Int J Civ Eng Appl 2016;6.

[28]    Dutta RK, Gupta R. Prediction of unsoaked and soaked California bearing ratio from index properties of soil using artificial neural networks. Int J Civ Eng Appl 2016;6.

[29]    Pal M, Deswal S. Modeling Pile Capacity Using Support Vector Machines and Generalized Regression Neural Network. J Geotech Geoenvironmental Eng 2008;134:1021–4. doi:10.1061/(ASCE)1090-0241(2008)134:7(1021).

[30]    Samui P. Support vector machine applied to settlement of shallow foundations on cohesionless soils. Comput Geotech 2008;35:419–27. doi:10.1016/j.compgeo.2007.06.014.

[31]    Liu H, Xie D, Wu W. Soil water content forecasting by ANN and SVM hybrid architecture. Environ Monit Assess 2008;143:187–93. doi:10.1007/s10661-007-9967-9.

[32]    Kovačević M, Bajat B, Gajić B. Soil type classification and estimation of soil properties using support vector machines. Geoderma 2010;154:340–7. doi:10.1016/j.geoderma.2009.11.005.

[33]    Ahmad S, Kalra A, Stephen H. Estimating soil moisture using remote sensing data: A machine learning approach. Adv Water Resour 2010;33:69–80. doi:10.1016/j.advwatres.2009.10.008.

[34]    Pal M, Singh NK, Tiwari NK. Pier scour modelling using random forest regression. ISH J Hydraul Eng 2013;19:69–75. doi:10.1080/09715010.2013.772763.

[35]    Singh B, Sihag P, Singh K. Modelling of impact of water quality on infiltration rate of soil by random forest regression. Model Earth Syst Environ 2017;3:999–1004. doi:10.1007/s40808-017-0347-3.

[36]    Abyaneh S, Kennedy J, Maconochie A, Oliphant J. Capacity of Strip Foundations on Sand Overlying Clay Soils Under Planar Combined Loading. 28th Int Ocean Polar Eng Conf 2018:5.

[37]    Pauls Z. Punching shear failure of foundations on strong sand overlying deep weak deposit. MSc Thesis, Building, Civil and Environmental Engineering, Quebec, Concordia, 2009.

[38]    Breiman L. Random Forests--Random Features, Technical Report 567, Statistics Department, University of California, Berkeley. Citeseer; 1999.

[39]    Breiman L. Bagging predictors. Mach Learn 1996;24:123–40. doi:10.1007/BF00058655.

[40]    Quinlan JR. Learning with continuous classes. 5th Aust. Jt. Conf. Artif. Intell., vol. 92, World Scientific; 1992, p. 343–8.

[41]    Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression Trees. 1984. doi:10.1201/9781315139470.

[42]    Pal M, Mather PM. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens Environ 2003;86:554–65. doi:10.1016/S0034-4257(03)00132-9.

[43]    Mishra SK, Tyagi J V., Singh VP. Comparison of infiltration models. Hydrol Process 2003;17:2629–52. doi:10.1002/hyp.1257.