Application of Soft Computing Techniques in Predicting the Ultimate Bearing Capacity of Strip Footing Subjected to Eccentric Inclined Load and Resting on Sand

Document Type: Regular Article

Authors

1 Professor, Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India

2 Research Scholar, Department of Civil Engineering, National Institute of Technology, Hamirpur, Himachal Pradesh, India

3 Department of Civil Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India

10.22115/scce.2019.144535.1088

Keywords

Main Subjects


[1]     Patra C, Behara R, Sivakugan N, Das B. Ultimate bearing capacity of shallow strip foundation under eccentrically inclined load, Part II. Int J Geotech Eng 2012;6:507–14. doi:10.3328/IJGE.2012.06.04.507-514.

[2]     Dutta RK, Dutta K, Jeevanandham S. Prediction of Deviator Stress of Sand Reinforced with Waste Plastic Strips Using Neural Network. Int J Geosynth Gr Eng 2015;1:11. doi:10.1007/s40891-015-0013-7.

[3]     Taiebat H, Carter J. Bearing capacity of strip and circular foundations on undrained clay subjected to eccentric loads. vol. 52. 2002. doi:10.1680/geot.52.1.61.40828.

[4]     Loukidis D, Chakraborty T, Salgado R. Bearing capacity of strip footings on purely frictional soil under eccentric and inclined loads. Can Geotech J 2008;45:768–87. doi:10.1139/T08-015.

[5]     Meyerhof GG. Some Recent Research on the Bearing Capacity of Foundations. Can Geotech J 1963;1:16–26. doi:10.1139/t63-003.

[6]     Prakash S, Saran S. Bearing capacity of eccentrically loaded footings. J Soil Mech Found Div 1971.

[7]     Meyerhof GG, Hanna AM. Ultimate bearing capacity of foundations on layered soils under inclined load. Can Geotech J 1978;15:565–72. doi:10.1139/t78-060.

[8]     Zheng G, Zhao J, Zhou H, Zhang T. Ultimate bearing capacity of strip footings on sand overlying clay under inclined loading. Comput Geotech 2019;106:266–73. doi:10.1016/j.compgeo.2018.11.003.

[9]     Abyaneh S, Kennedy J, Maconochie A, Oliphant J. Capacity of Strip Foundations on Sand Overlying Clay Soils Under Planar Combined Loading. 28th Int Ocean Polar Eng Conf 2018:5.

[10]    Patra C, Behara R, Sivakugan N, Das B. Ultimate bearing capacity of shallow strip foundation under eccentrically inclined load, Part I. Int J Geotech Eng 2012;6:343–52. doi:10.3328/IJGE.2012.06.03.343-352.

[11]    Behera RN, Patra CR, Sivakugan N, Das BM. Prediction of ultimate bearing capacity of eccentrically inclined loaded strip footing by ANN: Part II. Int J Geotech Eng 2013;7:165–72. doi:10.1179/1938636213Z.00000000019.

[12]    Nazir R, Momeni E, Marsono K, Maizir H. An Artificial Neural Network Approach for Prediction of Bearing Capacity of Spread Foundations in Sand. J Teknol 2015;72. doi:10.11113/jt.v72.4004.

[13]    Kalinli A, Acar MC, Gündüz Z. New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization. Eng Geol 2011;117:29–38. doi:10.1016/j.enggeo.2010.10.002.

[14]    Kuo YL, Jaksa MB, Lyamin AV, Kaggwa WS. ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil. Comput Geotech 2009;36:503–16. doi:10.1016/j.compgeo.2008.07.002.

[15]    Dutta RK, Rani R, Rao T. Prediction of Ultimate Bearing Capacity of Skirted Footing Resting on Sand Using Artificial Neural Networks. Soft Comput Civ Eng 2018:34–46. doi:10.22115/scce.2018.133742.1066.

[16]    Gnananandarao T, Dutta RK, Khatri VN. Artificial Neural Networks Based Bearing Capacity Prediction for Square Footing Resting on Confined Sand n.d.

[17]    Gnananandarao T, Dutta RK, Khatri VN. Application of Artificial Neural Network to Predict the Settlement of Shallow Foundations on Cohesionless Soils, 2019, p. 51–8. doi:10.1007/978-981-13-0368-5_6.

[18]    Dutta RK, Dutta K, Kumar S. S. Prediction of horizontal stress in underground excavations using artificial neural networks. vol. 5. 2016.

[19]    Dutta RK, Gupta R. Prediction of unsoaked and soaked California bearing ratio from index properties of soil using artificial neural networks. vol. 5. 2016.

[20]    Pal M, Singh NK, Tiwari NK. Pier scour modelling using random forest regression. ISH J Hydraul Eng 2013;19:69–75. doi:10.1080/09715010.2013.772763.

[21]    Singh B, Sihag P, Singh K. Modelling of impact of water quality on infiltration rate of soil by random forest regression. Model Earth Syst Environ 2017;3:999–1004. doi:10.1007/s40808-017-0347-3.

[22]    Perloff WH, Baron W. Soil mechanics: principles and applications. Ronald Press Co.; 1976.

[23]    Vapnik V. The nature of statistical learning theory. Springer science & business media; 2013.

[24]    Smola AJ. Regression estimation with support vector learning machines 1996.

[25]    Quinlan JR. Learning with continuous classes.” In: Adams A, Sterling L (eds). Proc. 5th Aust. Jt. Conf. Artif. Intell. World Sci. Singapore, 1992, p. 343–8.

[26]    Breiman L. RANDOM FORESTS--RANDOM FEATURES. Citeseer; 1999.

[27]    Breiman L. Bagging predictors. Mach Learn 1996;24:123–40.

[28]    Breiman L, Freidman JH, Olshen RA, Stone CJ. Classification and regression trees. Wadsworth, Monterey, CA. Classif Regres Trees Wadsworth, Monterey, CA 1984.

[29]    Feller W. An introduction to probability theory and its applications. vol. 2. John Wiley & Sons; 2008.

[30]    Hansen JB. A revised and extended formula for bearing capacity 1970.

[31]    Vesic AS. Analysis of ultimate loads of shallow foundations. J Soil Mech Found Div 1973;99:45–73.