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Prediction of the free swell index of the expansive soil using 

artificial neural network has been presented in this paper.  

Input parameters for the artificial neural network model were 

plasticity index and shrinkage index, while the output was 

the free swell index. Artificial neural network algorithm used 

a back propagation model. Training of the artificial neural 

network model was conducted on the data collected from 

literature, and the weights and biases were obtained which 

described the relation among the input variables and the 

output free swell index. Further, the sensitivity analysis was 

performed, and the parameters affecting the free swell index 

of the expansive soil were identified. The sensitivity analysis 

results indicated that the plasticity index (63.97 %) followed 

by shrinkage index (36.03 %) was affecting the free swell 

index in this order. The study shows that the prediction 

accuracy of the free swell index of the expansive soil using 

artificial neural network model was quite good. 
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1. Introduction 

In India, nearly 20 % portion of the soil is expansive in nature which tends to swell or contract in 

the presence or absence of moisture leading to damage to the light structures, roadways, airport 

slabs, pipelines, bridges, piers, earth retaining structures resting on it. Free swell index was 

generally determined through laboratory test that consumes time of about 24 hours as per [1]. 

Therefore, a model is required that can predict the data from past observation by learning rather 
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making assumption and aid in addressing the problem in hand. In recent years artificial neural 

networks converted from a theoretical approach to the widely-used technology with successful 

applications to different problems. In the present study, artificial neural network (ANN) was used 

for predicting the free swell index of the expansive soil. 

2. Background 

Experimental studies were required to determine the free swell index of the expansive soils. 

From the recent two decades, several studies in geotechnical engineering such as prediction of 

the hydraulic conductivity of clay liners [2], pile driving records reanalyzed [3], pile bearing 

capacity [4],  in situ soil properties at any half-space point at a site [5], uplift capacity of suction 

caissons [6], modeling soil collapse [7], pre-consolidation pressure [8], cyclic swelling pressure 

of mudrock [9], Undrained lateral load capacity of piles in clay [10],  effective stress parameter 

of unsaturated soils [11], soil and subsurface sediments distribution in dam [12], stability 

analyses of slopes [13], swelling pressures of expansive soils  [14], compression index of soils 

[15], strength of reinforced lightweight soil [16], permeability coefficient of soils  [17], soil 

specific surface area [18] deviator stress of sand reinforced with waste plastic strips [19], 

ultimate bearing capacity of the regular shaped such as circular [20], strip [21,22][23], spread 

[24] footing resting on sand/clay/rock,  bearing capacity and settlement of foundations in 

different mediums [25–27], Load-settlement behavior modeling of single pile [28], horizontal 

stress in underground excavations and bearing ratio from index properties of soils [29,30] using 

artificial neural network have been reported. However, no study has been reported to predict the 

free swell index of expansive soil in literature. In order to fill this research gap, this paper 

presents a neural network model to predict the free swell index from the data collected from the 

literature. The input parameters in the developed neural network models were a plastic index, 

shrinkage index of the expansive soil and the output was free swell index.  

3. Artificial neural network 

The methodology used for modeling the prediction of the free swell index of the expansive soil 

using a neural network has been presented in this section. The process began with the selection 

of input parameters and the output parameter. The input data used in this investigation were a 

plastic index (Ip), shrinkage index (Is) of the expansive soil and the output was the free swell 

index (FSI). Data required for modeling were collected from the literature [31–132]. This 

collected data were divided in two parts for the training and the testing purpose for developing 

the ANN model. The range of the input and output parameter of the collected data were 

presented in Table 1. Based on the thumb rules reported by [133–135], the architecture of the 

present neural network model was selected as 2-2-1 and was shown in Fig. 1. The various 

performance measures used at assess the accuracy of the developed neural network model were 

the coefficient of correlations (r), coefficient of determination (R
2
), mean squared error (MSE), 

relative mean squared error (RMSE), mean absolute error (MAE) and mean absolute percentage 

error (MAPE). 
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Table 1 

Range of data used for the ANN model. 

Parameters Minimum range Maximum range 

Plasticity index (Ip)  6.25 313.79 

Shrinkage index (Is) 0.3 60 

Free swell index (FSI) 2.3 860 
 

 
Fig. 1. Neural network representing 2-2-1 architecture. 

Trial and error procedure was followed in order to select the optimum no of iterations and the 

graph was plotted between the MSE and the number of iterations as shown in Fig. 2. 

 
Fig. 2. Mean square error versus number of iterations. 

A close examination of Fig. 2 reveals that the optimum no of iterations corresponding to 

minimum MSE was 1400. The open source software AgielNN which contains 18 different 

activation functions was used in this study. The next task was to select the learning rate which 

has been adopted as 0.7 (default value in AgielNN). By trial and error, changing the activation 

function, the performance measures of each of the model present in AgielNN were calculated 

and compared with each other. Among the 18 activation functions, the best three activation 

functions have been obtained and discussed in the upcoming section.  Sensitivity analysis was 

performed using weights and biases obtained from the optimum activation function and the 

relative importance of the independent parameter with respect to the output free swell index has 

been found. Finally, a mathematical model has been developed using the weights and biases 

obtained in the neural network. 
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3.1. Performance measures 

The best three models obtained among the 18 activation functions based on the performance 

measures were shown in Fig. 3. It was reported by [19] that for deciding an optimized activation 

function, performance measures such as coefficient of correlation (r) and coefficient of 

determination (R
2
) were initially used and compared. Fig. 3(a) and Fig. 3(b) shows that the ‘r’ 

and ‘R
2
’ for the sigmoid, sigmoid stepwise and sigmoid symmetric were close to unity both for 

the training and testing data. A careful study of Fig. 3(a) and Fig. 3(b) reveals that the sigmoid 

activation function was showing the r and R
2
 closer to the 1 in comparison to the remaining 

activation functions. 

 
Fig. 3. Performance measure (a) coefficient of correlation (b) coefficient of determination for the training 

and the testing data. 

 
Fig. 4. Performance measures (a) MSE (b) RMSE (c), MAE (d) MAPE. 



 R.K. Dutta et al./ Journal of Soft Computing in Civil Engineering 3-1 (2019) 47-62 51 

The other performance measures (MSE, RMSE, MAE, MAPE) for the selected sigmoid, sigmoid 

stepwise and sigmoid symmetric activation function were represented in the graphical form as 

shown in Figs. 4 (a) to (d). Figs. 4 (a) to (d) reveals that the sigmoid activation function yields 

least error indices (MSE, RMSE, MAE, MAPE) in comparison to the other two activation 

function. Therefore, the sigmoid function was considered as the best optimizing activation 

function keeping in view the coefficient of correlation, the coefficient of determination, MSE, 

RMSE, MAE and MAPE. 

3.2. Sensitivity analysis 

In order to study the influence (relative) of the input parameter on the output free swell index, a 

sensitivity analysis was carried out. For this purpose, the connection weight approach reported 

by [136] has been used, and the governing equation (1) was as given below. 

 
1

h

j jk k
k

RI w w


   (1) 

Where wjk is the connection weight between j
th

 input parameter and k
th

 neuron of the hidden 

layer, wk is the connection weight between k
th

 neuron of hidden layer and the single output 

neuron, RIj is the relative importance of the j
th

 neuron of the input layer, and h is the number of 

neurons in the hidden layer. 

The influence (relative) of the individual input parameter affecting the output free swell index 

using sigmoid activation function based on the 2-2-1 architecture was shown in Fig. 5. 

 
Fig. 5. Influence (relative) of the individual input parameter on the output free swell index. 

Fig. 5 reveals that the plasticity index (Ip) was the most important parameter affecting the free 

swell index of the expansive soil followed by shrinkage index (s) of the expansive soil. 

3.3. Model equation 

For the development of the model equation to predict the free swell index of the expansive soil, 

the obtained hidden weights and the biases between the input and the output parameter were 
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shown in Table 2. The basic output function considered in the neural network model was as 

given below as equation (2). 

 0
1 1

h m

k hk jk j
k j

FSI f b w f b w X
 

    
        

      (2) 

The equation derived for the output free swell index based on the trained weights and biases as 

shown in Table 2 gave the following equations: 

Table 2 

Final weights and biases obtained in the ANN model between the input neuron and hidden neuron as well 

as hidden neuron and the output neuron. 

Weights (w) biases 

Ip Is FSI 2 5 

-7.03 2.87 -3.00 1.46 1.21 

-7.68 -5.01 -5.54 0.50 -- 
 

1.46 7.03 2.87A Ip Is      (3) 

0.50 7.68 5.54B Ip Is      (4) 

3.0 5.54
1.21

(1 ) (1 )A B
E

e e 
  

   (5) 

1

(1 )E
FSI

e


  (6) 

FSI obtained from the above equation will be in the range of [0 to 1] for the sigmoid activation 

function.  The de-normalization of the equation (6) was required in order to obtain the actual free 

swell index as given below. 

max min min0.5(FSI 1)(FSI FSI )actualFSI FSI   
 (7) 

Where FSImax is the maximum predicted free swell index, FSImin is the minimum predicted free 

swell index respectively. The plots were drawn for the training and the testing data of the ANN 

model and were shown in Fig. 6. The R
2
 of Fig. 6 reveals that the artificial neural network model 

was able to predict the free swell index of the expansive soil. 
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Fig. 6. Plot showing the variation of testing and training data set of the ANN model with respect to 

coefficient of determination (R
2
). 

4. Multiple linear regression model 

Non-linear multiple regression analysis (MRA) was carried out on the total data set using Datafit 

9.0 (trial version) software and the equation obtained from this analysis was shown below as 

equation (8), and the performance measures obtained for this equation were tabulated in Table 3. 

     
2

293.76 236.31 log 47.95 log 9.88 logrFSI Ip Ip Is        (8) 

Table 3 

Comparison between performance measures of ANN model and regression model. 

 
 Prediction model 

Performance 

measures 

Artificial neural networks Multiple regression analysis 

Training Testing Training Testing 

r 0.95 0.97 0.89 0.92 

R
2
 0.81 0.89 0.54 0.53 

MSE 4028.73 1384.49 7851.23 4030.52 

RMSE 63.47 37.21 88.61 63.49 

MAE 35.09 24.08 55.60 41.94 

MAPE 36.02 29.98 98.38 145.78 
 

Table 3 shows that the r and R
2
 of the regression model were less in comparison to one obtained 

using neural network model. From the above analysis, it has been found that the ANN model’s 

prediction accuracy was superior to the one obtained using regression modeling. The predicted 

versus the targeted free swell index of the expansive soil using MRA was shown in Fig. 7. The 

coefficient of determination (R
2
) of Fig. 7 reveals that the model equation obtained from the 
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multiple regression analysis was not able to predict the free swell index of the expansive soils to 

a fair degree of accuracy. 

 
Fig. 7. Plot showing the variation of training and testing data set of the multiple regression analysis model 

with respect to the coefficient of determination (R
2
). 

5. Comparison 

The developed model equation using weights and biases of the ANN was compared with the free 

swell index model obtained through MRA, and the results were shown in Fig. 8. The higher 

coefficient of determination obtained for the ANN model as shown in Fig. 8 reveals its 

superiority over the multiple regression model. This was attributed to the fact that the regression 

modeling may not compete well with the non-linear data whereas artificial neural network, on 

the other hand, was suitable for prediction for the non-linear data. Further, the sigmoid 

activation function suits the best for the raw experimental data.  

 
Fig. 8. Plot showing the comparison of MRA and ANN model in the prediction of bearing capacity. 



 R.K. Dutta et al./ Journal of Soft Computing in Civil Engineering 3-1 (2019) 47-62 55 

6. Conclusion 

Predicting the FSI of the expansive soil was a complex phenomenon. Use of experimental 

methods for determining the free swell index may turn out to be highly time-consuming. An 

attempt has been made using ANN in predicting the FSI of the expansive soil.  The model 

equation has been obtained which gave acceptable results and compared with the multiple 

regression model. The study brings forward the following conclusion.  

1. Neural network architecture with 2-2-1 topology has produced fairly accurate results to 

predict the FSI of the expansive soil.  

2. Among the 18 activation functions, the sigmoid activation function gave the best results. 

3. Proposed neural network architecture with sigmoid activation function was able to predict 

closer to the actual FSI of the expansive soil. 

4. Sensitivity analysis results indicated that the plasticity index (63.97 %) followed by 

shrinkage index (36.03 %) was affecting the FSI in this order. 

5. The mathematical model equation was proposed for the prediction of the FSI of the 

expansive soil.  

6. The multiple regression analysis was not able to predict the free swell index of the expansive 

soil to a fair degree of accuracy. 

7. Prediction of the FSI using ANN model was more accurate in comparison to the regression 

model. 

Notations 

Ip Plasticity index 

Is Shrinkage index 

FSI Free swell index 

MRA Multiple regression analysis  

ANN Artificial Neural network 

bhk Bias at the k
th 

neuron of the hidden layer 

bo Bias at the output layer 

f Optimum activation function 

MAE Mean absolute error 

MAPE Mean absolute percentage error 

MSE Mean square error 

RMSE Root mean square error 

FSIactual Actual free swell index 

FSImax Maximum free swell index 

FSImin Minimum free swell index 

FSIr Regression model free swell index 

r Correlation coefficient 

R
2
 Coefficient of determination 

RIj Relative importance of the j
th

neuron of input layer 
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Wjk Connection weight between j
th 

input variable and k
th

neuron of 

Wk Connection weight between k
th

neuron of hidden layer and the single 

Xj Normalized input variable j in the range [0, 1] 
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