Prediction of Free Swell Index for the Expansive Soil Using Artificial Neural Networks

Document Type : Regular Article


Department of Civil Engineering, NIT Hamirpur, Himachal Pradesh, India


Prediction of the free swell index of the expansive soil using artificial neural network has been presented in this paper.  Input parameters for the artificial neural network model were plasticity index and shrinkage index, while the output was the free swell index. Artificial neural network algorithm used a back propagation model. Training of the artificial neural network model was conducted on the data collected from literature, and the weights and biases were obtained which described the relation among the input variables and the output free swell index. Further, the sensitivity analysis was performed, and the parameters affecting the free swell index of the expansive soil were identified. The sensitivity analysis results indicated that the plasticity index (63.97 %) followed by shrinkage index (36.03 %) was affecting the free swell index in this order. The study shows that the prediction accuracy of the free swell index of the expansive soil using artificial neural network model was quite good.


Google Scholar


Main Subjects

[1]     IS: 2720 (Part XL), “Determination of free swell index of soils,” Bureau of Indian Standards (BIS), New Delhi. 1997.
[2]     Goh ATC. Empirical design in geotechnics using neural networks. Géotechnique 1995;45:709–14. doi:10.1680/geot.1995.45.4.709.
[3]     Goh ATC. Pile Driving Records Reanalyzed Using Neural Networks. J Geotech Eng 1996;122:492–5. doi:10.1061/(ASCE)0733-9410(1996)122:6(492).
[4]     Lee I-M, Lee J-H. Prediction of pile bearing capacity using artificial neural networks. Comput Geotech 1996;18:189–200. doi:10.1016/0266-352X(95)00027-8.
[5]     Juang CH, Jiang T, Christopher RA. Three-dimensional site characterisation: neural network approach. Géotechnique 2001;51:799–809. doi:10.1680/geot.2001.51.9.799.
[6]     Rahman MS, Wang J, Deng W, Carter JP. A neural network model for the uplift capacity of suction caissons. Comput Geotech 2001;28:269–87. doi:10.1016/S0266-352X(00)00033-1.
[7]     Basma AA, Kallas N. Modeling soil collapse by artificial neural networks. Geotech Geol Eng 2004;22:427–38. doi:10.1023/B:GEGE.0000025044.72718.db.
[8]     Çelik S, Tan Ö. Determination of preconsolidation pressure with artificial neural network. Civ Eng Environ Syst 2005;22:217–31. doi:10.1080/10286600500383923.
[9]     Moosavi M, Yazdanpanah MJ, Doostmohammadi R. Modeling the cyclic swelling pressure of mudrock using artificial neural networks. Eng Geol 2006;87:178–94. doi:10.1016/j.enggeo.2006.07.001.
[10]    Das SK, Basudhar PK. Undrained lateral load capacity of piles in clay using artificial neural network. Comput Geotech 2006;33:454–9. doi:10.1016/j.compgeo.2006.08.006.
[11]    Kayadelen C. Estimation of effective stress parameter of unsaturated soils by using artificial neural networks. Int J Numer Anal Methods Geomech 2008;32:1087–106. doi:10.1002/nag.660.
[12]    Rezaei K, Guest B, Friedrich A, Fayazi F, Nakhaei M, Beitollahi A, et al. Feed forward neural network and interpolation function models to predict the soil and subsurface sediments distribution in Bam, Iran. Acta Geophys 2009;57:271–93. doi:10.2478/s11600-008-0073-3.
[13]    Cho SE. Probabilistic stability analyses of slopes using the ANN-based response surface. Comput Geotech 2009;36:787–97. doi:10.1016/j.compgeo.2009.01.003.
[14]    Ikizler SB, Aytekin M, Vekli M, Kocabaş F. Prediction of swelling pressures of expansive soils using artificial neural networks. Adv Eng Softw 2010;41:647–55. doi:10.1016/j.advengsoft.2009.12.005.
[15]    Park H Il, Lee SR. Evaluation of the compression index of soils using an artificial neural network. Comput Geotech 2011;38:472–81. doi:10.1016/j.compgeo.2011.02.011.
[16]    Park HI, Kim YT. Prediction of strength of reinforced lightweight soil using an artificial neural network. Eng Comput 2011;28:600–15. doi:10.1108/02644401111141037.
[17]    Park HI. Development of Neural Network Model to Estimate the Permeability Coefficient of Soils. Mar Georesources Geotechnol 2011;29:267–78. doi:10.1080/1064119X.2011.554963.
[18]    Ismeik M, Al-Rawi O. Modeling Soil Specific Surface Area with Artificial Neural Networks. Geotech Test J 2014;37:20130146. doi:10.1520/GTJ20130146.
[19]    Dutta RK, Dutta K, Jeevanandham S. Prediction of Deviator Stress of Sand Reinforced with Waste Plastic Strips Using Neural Network. Int J Geosynth Gr Eng 2015;1:11. doi:10.1007/s40891-015-0013-7.
[20]    Ornek M, Laman M, Demir A, Yildiz A. Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil. Soils Found 2012;52:69–80. doi:10.1016/j.sandf.2012.01.002.
[21]    Kuo YL, Jaksa MB, Lyamin AV, Kaggwa WS. ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil. Comput Geotech 2009;36:503–16. doi:10.1016/j.compgeo.2008.07.002.
[22]    Ornek M. Estimation of ultimate loads of eccentric-inclined loaded strip footings rested on sandy soils. Neural Comput Appl 2014;25:39–54. doi:10.1007/s00521-013-1444-5.
[23]    Nazir R, Momeni E, Marsono K, Maizir H. An Artificial Neural Network Approach for Prediction of Bearing Capacity of Spread Foundations in Sand. J Teknol 2015;72. doi:10.11113/jt.v72.4004.
[24]    Dutta RK, Rani R, Rao T. Prediction of Ultimate Bearing Capacity of Skirted Footing Resting on Sand Using Artificial Neural Networks. Soft Comput Civ Eng 2018:34–46. doi:10.22115/scce.2018.133742.1066.
[25]    Gnananandarao T, Dutta RK, Khatri VN. Artificial Neural Networks Based Bearing Capacity Prediction for Square Footing Resting on Confined Sand n.d.
[26]    Gnananandarao T, Dutta RK, Khatri VN. Application of Artificial Neural Network to Predict the Settlement of Shallow Foundations on Cohesionless Soils, 2019, p. 51–8. doi:10.1007/978-981-13-0368-5_6.
[27]    Dutta RK, Dutta K, Kumar S. S. Prediction of horizontal stress in underground excavations using artificial neural networks. vol. 5. 2016.
[28]    Pooya Nejad F, Jaksa MB. Load-settlement behavior modeling of single piles using artificial neural networks and CPT data. Comput Geotech 2017;89:9–21. doi:10.1016/j.compgeo.2017.04.003.
[29]    Dutta RK, Gupta R. Prediction of unsoaked and soaked California bearing ratio from index properties of soil using artificial neural networks. vol. 5. 2016.
[30]    C R, Meenambal T. Effect of coal ash in the stabilization of expansive soil for the pavement. vol. 8. 2015.
[32]    Oviya R, Manikandan R. An Experimental Investigation On Stabilizing The Soil Using Rice Husk Ash With Lime As Admixture. Int J Inf Futur Res 2016;3:3511–9.
[33]    Rao DK, Rao G, Pranav PRT. A laboratory study on the effect of rice husk ash & lime on the properties of marine clay. Int J Eng Innov Technol 2012;2:345–53.
[34]    Mishra AK, Dutta J, Chingtham R. A study on the behavior of the compacted bentonite in the presence of salt solutions. Int J Geotech Eng 2015;9:354–62. doi:10.1179/1939787914Y.0000000074.
[35]    Sivapullaiah P V., Hari Prasad Reddy P. Potassium Chloride Treatment to Control Alkali Induced Heave in Black Cotton Soil. Geotech Geol Eng 2010;28:27–36. doi:10.1007/s10706-009-9274-z.
[36]    Ravichandran PT, Krishnan KD, Janani V, Annadurai R, Gunturi M. Soil stabilization with phosphogypsum and fly ash–A micro level study. Int J Chem Tech Res 2015;7:622–8.
[37]    Gunturi M, Ravichandran PT, Divya Krishnan K, Annadurai R, Rajkumar KPR. Micro level Analysis of RBI 81 Stabilized Expansive Soil. Int J ChemTech Res 2015;7:666–72.
[38]    Amrutha Mathew D, KY R. Effect on Strength Characteristics of Expansive Soil Using Sisal Fibre and Waste Materials. Int J Environ Sci Res 2016;5:1702–7.
[39]    Soundara B, Robinson RG. Swelling pressure and uplift of piles in expansive soils. 1 th Asian Work. Phys. Model. Geotech. IIT Bombay, India, 2012, p. 219–27.
[40]    Bhuvaneshwari S, Robinson RG, Gandhi SR. Behaviour of Lime Treated Cured Expansive Soil Composites. Indian Geotech J 2014;44:278–93. doi:10.1007/s40098-013-0081-3.
[41]    Mallick S, Mishra M. Geotechnical Characterization of Clinker-Stabilized Fly Ash-Coal Mine Overburden Mixes for Subbase of Mine Haul Road. Coal Combust Gasif Prod 2013;5:51–6.
[42]    Tahasildar J, Erzin Y, Rao BH. Development of relationships between swelling and suction properties of expansive soils. Int J Geotech Eng 2018;12:53–65. doi:10.1080/19386362.2016.1250040.
[43]    Kalyanshetti MG, Thalange SB. Effect of fly ash on the properties of expansive soil. Int J Sci Eng Res 2013;4:37–40.
[44]    Rajoria V, Kaur S. Effect of polymer stabilizer on the geotechnical properties of black cotton soil. Proc. Indian Geotech. Conf., 2015.
[45]    Patidar A, Mahiyar HK. An experimental study on stabilization of Black Cotton Soil using HDPE wastage fibres, stone dust and lime. Int J Adv Sci Tech Res 2014;6.
[46]    Johnson R, Rangaswamy K. Improvement of soil properties as a road base material using nano chemical solution. 50th Indian Geotech. Conf. Pune, Maharashtra, India, 2015.
[47]    Singh SP, Nayak K, Rout S. Assessment of coal ash-bentonite mixture as landfill liner. Proc. Indian Geotech. Conf., 2015.
[48]    Rethaliya RP, Verma AK. Strip footing on sand overlying soft clay with geotextile interface. Indian Geotech J 2009;39:271–87.
[49]    James J, Lakshmi S V, Pandian PK, Aravindan S, Vidhya Lakshmi S, Kasinatha Pandian P, et al. Effect of lime on the index properties of rice husk ash stabilized soil. Int J Appl Eng Res 2014;9:4263–72.
[50]    James J, Lakshmi SV, Pandian PK. Strength and index properties of phosphogypsum stabilized expansive soil. Int J Appl Environ Sci 2014;9:2721–31.
[51]    Mishra J, Yadav RK, Singhai AK. Effect of granite dust on index properties of lime stabilized black cotton soil. Int J Eng Res Sci Technol 2014;3:19–23.
[52]    Vinothkumar R, Arumairaj PD. Green Stabilization of Coimbatore Clay. Int J Eng Innov Technol 2013;2:234–40.
[53]    Pasupuleti VKR, Kolluru SK, Blessingstone T. Effect of fiber on fly-ash stabilized sub grade layer thickness. Int J Eng Technol 2012;4:140–7.
[54]    Dayakar P, Raju KVB. Effect of polypropylene fiber on index properties of problematic soils. Int J Eng Trends Technol 2012;3:1–12.
[55]    Kumar BS, Preethi T V. Behavior of Clayey Soil Stabilized with Rice Husk Ash & Lime. Int J Eng Trends Technol 2014;11:44–8.
[56]    Singh PS, Yadav RK. Effect of marble dust on index Properties of black cotton soil. Int J Engg Res Sci Tech 2014;3:158–63.
[57]    Oormila TR, Preethi T V. Effect of stabilization using flyash and GGBS in soil characteristics. Int J Eng Trends Technol 2014;11:284–9.
[58]    Muthu Kumar M, Tamilarasan VS. Effect of Eggshell Powder in the Index and Engineering Properties of soil. Int J Eng Trends Technol 2014;11:319–21.
[59]    Muthu Kumar M, Tamilarasan VS. Experimental Study on Expansive Soil with Marble Powder. Int J Eng Trends Technol 2015;22:504–7.
[60]    Singh V, Jain R, Singh V, Jain R. Effect of Cement Kiln Dust (CKD) On Engineering Properties of Black Cotton Soil. Int J Innov Res Sci Technol 2015;1:86–90.
[61]    Bharadwaj S, Trivedi MK. Impact of Micro Silica Fume on Engineering Properties of Expansive Soil. Int J Sci Technol Eng 2016;2:435–40.
[62]    Shaka PM, Shaka SM. Laboratory investigation on Black cotton soils and Red soil stabilized using Enzyme. Int Res J Eng Technol 2016;3:325–30.
[63]    Jha AK, Sivapullaiah PV. Susceptibility of strength development by lime in gypsiferous soil—A micro mechanistic study. Appl Clay Sci 2015;115:39–50. doi:10.1016/j.clay.2015.07.017.
[64]    Tiwari P, Shah M V. Correlation between index properties and electrical resistivity of hydrocarbon contaminated periodic marine clays. IOP Conf Ser Earth Environ Sci 2015;26:012054. doi:10.1088/1755-1315/26/1/012054.
[65]    Mir BA, Sridharan A. Physical and Compaction Behaviour of Clay Soil–Fly Ash Mixtures. Geotech Geol Eng 2013;31:1059–72. doi:10.1007/s10706-013-9632-8.
[66]    Gandhi KS. Stabilization of expansive soil of Surat region using rice husk ash and marble dust. Int J Curr Eng Technol 2013;3:1516–21.
[67]    Nagaraj H, Munnas M, Sridharan A. Swelling behavior of expansive soils. Int J Geotech Eng 2010;4:99–110. doi:10.3328/IJGE.2010.04.01.99-110.
[68]    Subramanyam L., Babu Y. GG, Raju GVRP. Evaluation of efficacy of chemical stabilizers on expansive soil. Int J Curr Eng Technol 2015;5:3888–95.
[69]    Radhika R, Jeyapriya SP, Soundrapandiyan P. Parametric study and numerical analysis of piled raft foundation on soft clay. Int J Res Emerg Sci Technol 2015;2:90–7.
[70]    Ramakrishna AN, Pradeep Kumar AV, Gowda K. Complex CBR (of BC Soil-RHA-Cement Mix) Estimation: Made Easy by ANN Approach [a Soft Computing Technique]. Adv Mater Res 2011;261–263:675–9. doi:10.4028/
[71]    Resmi G, Thampi SG, Chandrakaran S. Impact of lead contamination on the engineering properties of clayey soil. J Geol Soc India 2011;77:42–6. doi:10.1007/s12594-011-0007-6.
[72]    Sharma RS, Phanikumar BR, Rao BV. Engineering Behavior of a Remolded Expansive Clay Blended with Lime, Calcium Chloride, and Rice-Husk Ash. J Mater Civ Eng 2008;20:509–15. doi:10.1061/(ASCE)0899-1561(2008)20:8(509).
[73]    Prakash S, Arumairaj PD. Effects of acid and base contamination on geotechnical properties of clay. Int J Sci Res 2015.
[74]    Rani S, Rao KM. Appropriate Parameters for Prediction of Swelling Pressure of Expansive Clays. Proc. Indian Geotech. Conf., 2009, p. 92–6.
[75]    Rao AS, Sridevi G, Rao MR. Heave Studies on Expansive Clays with Stabilized Granulated Blast Furnace Slag Cushion. Proc. Indian Geotech. Conf., 2009.
[76]    Nasrizar AA, Muttharam M, Illamparuthi K. Role of lime content on soil-lime reaction under thermal curing. Indian Geotech. Conf. GEOtrendz, 2010, p. 595–8.
[77]    Bhuvaneswari S, Thyagaraj T, Robinson RG, Gandhi SR. Alternative technique to induce faster lime stabilization reaction in deeper expansive strata. Indian Geotech. Conf. GEOtrendz, 2010, p. 609–12.
[78]    Das AP, Thyagaraj T. Collapse behaviour of compacted red soil. Int J Geotech Eng 2018;12:20–7. doi:10.1080/19386362.2016.1243506.
[79]    Ramesh HN, Kumar KVMK and MTP. Strength and consolidation behavior of lime treated red earth soil. Proc. Indian Geotech. Conf., 2011.
[80]    Ramesh HN, Manoj Krishna K V, Mamatha H V. Strength performance of lime and sodium hydroxide treated–coir fibre reinforced soil. Proc. Indian Geotech. Conf, 2011, p. 523–5.
[81]    Thyagaraj T, Zodinsanga S. Laboratory Investigations of In Situ Stabilization of an Expansive Soil by Lime Precipitation Technique. J Mater Civ Eng 2015;27:06014028. doi:10.1061/(ASCE)MT.1943-5533.0001184.
[82]    Thyagaraj T, Thomas SR, Das AP. Physico-Chemical Effects on Shrinkage Behavior of Compacted Expansive Clay. Int J Geomech 2017;17:06016013. doi:10.1061/(ASCE)GM.1943-5622.0000698.
[83]    Tripathy S, Rao KS, Fredlund DG. Water content - void ratio swell-shrink paths of compacted expansive soils. Can Geotech J 2002;39:938–59. doi:10.1139/t02-022.
[84]    Shah DL, Shroff A V. Effects of Effluents of Industrial Waste on Soil Properties. Int. Conf. Case Hist. Geotech. Eng., University of Missouri--Rolla; 1998.
[85]    Behera B, Mishra MK. Effect of lime on the california bearing ratio behavior of fly ash - mine overburden mixes. Int J Struct Constr Eng 2011;5:116–21. doi:10.1007/s10706-011-9479-9.
[86]    Radhakrishnan G, Kumar MA, Raju G. Swelling properties of expansive soils treated with chemicals and fly ash. Am J Eng Res 2014;3:245–50.
[87]    Pujari P, Sudeep M. Stabilization of Expansive Soil Using Cement Kiln Dust. Imp J Interdiscip Res 2016;2:1089–95.
[88]    Manikandan M, Arumairaj PD, Kumar VS. Experimental Study on Permeability Behaviour in Cement Treated Marine Clay. Int J Sci Res 2015;4:176–8. doi:10.15373/22778179.
[89]    Tandel YK, Patel JB. Review of utilisation of copper slag in highway construction. Aust Geomech 2009;44:71.
[90]    Kavya M, Anjana TSR. Effect Of Inorganic Leachate On Geotechnical Properties Of Compacted Soil Liners. Int J Sci Res Eng Stud 2016;3:72–5.
[91]    Dhanya P, Ramya K. Effect Of Inclusion Of Bamboo Fibers On The Geotechnical Properties Of Quarry Dust Treated Kuttanad Soil. Int J Sci Res Eng Stud 2016.
[92]    Yasodian SE, Dutta RK, Mathew L, Anima TM, Seena SB. Effect of microorganism on engineering properties of cohesive soils. Geomech Eng 2012;4:135–50. doi:10.12989/gae.2012.4.2.135.
[93]    Twinkle S, Sayida MK. Effect of polypropylene fiber and lime admixture on engineering properties of expansive soil. Proc. Indian Geotech. Conf., 2011.
[94]    Raji AK, Karthika R, Amruthalekshmi GR, Peter AK, Sajeer MM. Study of rut behaviour of coir reinforced black cotton soil using wheel tracking apparatus. Proc. Indian Geotech. Conf., 2011, p. 573–6.
[95]    Prakash K. Identification of soil clay mineralogy by free swell ratio method. Proc. Indian Geotech. Conf., 2009.
[96]    Shahina CP, Sandeep MN. A comparative study on the effectiveness of sulphate resistant cement and barium chloride in reduction of sulphate induced heave in soil. Proc. Indian Geotech. Conf., 2015.
[97]    Jayasree PK, Balan K, Peter L, Nisha KK. Volume Change Behavior of Expansive Soil Stabilized with Coir Waste. J Mater Civ Eng 2015;27:04014195. doi:10.1061/(ASCE)MT.1943-5533.0001153.
[98]    Eujine GN, Somervell LT, Chandrkaran S, Sankar N. Enzyme stabilization of high liquid limit clay. Electron J Geotech Eng 2014;19.
[99]    James J, Lakshmi SV, Pandian PK, Vanitha S. Engineering performance of lime stabilized soil admixed with natural materials. Int J Appl Environ Sci 2014;9:973–6077.
[100]  Jha AK, Sivapullaiah P V. Mineralogical and Microstructural Induced Compressibility Behavior of Lime Stabilized Expansive Soil. Kathmandu, Nepal Int. Symp. Geohazards Sci. Eng. Manag., 2014, p. 502–13.
[101]  Kameshwar Rao T, Sharma AK, Meshram T. Laboratory investigation of use of Synthetic Fibers to minimize swell in expansive subgrades. Proc. Indian Geotech. Conf., vol. 2, 2009, p. 157–61.
[102]  Harsh G, Patel A, Himanshu B, Tiwari P. Effect of Rate of Crude Oil Contamination on Index Properties and Engineering Properties of Clays and Sands. Indian J Sci Technol 2016;9. doi:10.17485/ijst/2016/v9i30/99193.
[103]  Rao KVNM, Prasad DS V., AnjanKumar M, Raju GVRP. The influence of calcium chloride on the reinforced marine clay for foundation soil beds. Int J Appl Res 2015;1:247 – 252.
[104]  Heeralal M, Murty VR, Praveen G V, Shankar S. Influence of calcium chloride and sodium silicate on index and engineering properties of bentonite. Proc. Int. Conf. Chem. Environ. Sci. Eng. Pattaya, 2012, p. 52–7.
[105]  Sukumar B, Sudhakar S. Studies on stabilization of expansive soil using cement and fly ash. Int J Adv Eng Res 2015;10.
[106]  Shukla RP. Problems and treatment of black cotton soil. Proc. Indian Geotech. Conf., 2015.
[107]  Reddy CNVS, Reddy KC. Reinforced Flexible Pavement Design over Expansive Clay Subgrade. Indian Geotech J 2011;41:86–94.
[108]  Sharma AK, Sivapullaiah P V. Soil stabilization with waste materials based binder, North South Technologies Pvt. Ltd; 2011.
[109]  Mir BA. Some studies on the effect of fly ash and lime on physical and mechanical properties of expansive clay. Int J Civ Eng 2015;13:203–12.
[110]  Laguri L, Singh R, Roy D. Characterization of fine grained soils and its mitigations. Proc. Indian Geotech. Conf., 2011, p. 438–40.
[111]  Lakshmi SM, Subramanian S, Lalithambikhai MP, Vela AM, Ashni M. Evaluation of Soaked and Unsoaked Cbr Values of Soil Based on the Compaction Characteristics. Malaysian J Civ Eng 2016;28.
[112]  Nadgouda KA, Hegde RA. The effect of lime stabilization on properties of black cotton soil. Indian Geotech. Conf., 2010, p. 511–4.
[113]  Manikandan M, Arumairaj PD, Kumar VS. Experimental study on permeability behavior in cement treated marine clay. Int J Sci Res 2015;4:176–8.
[114]  Bag R, Rabbani A. Effect of temperature on swelling pressure and compressibility characteristics of soil. Appl Clay Sci 2017;136:1–7. doi:10.1016/j.clay.2016.10.043.
[115]  Chaduvula U, Viswanadham BVS, Kodikara J. Desiccation Cracking Behavior of Geofiber-Reinforced Expansive Clay. Geo-Chicago 2016, Reston, VA: American Society of Civil Engineers; 2016, p. 368–77. doi:10.1061/9780784480144.036.
[116]  Chaitanya G, Prasada Raju GVR, Ramu K. Evaluation studies of expansive soil treated with electrolytes. Int J Eng Sci Technol 2011;3:8298–306.
[117]  Sridevi G, Sreerama Rao A, Sen S, Sahoo S. Effect of lime-stabilized fly ash and RHA on geotechnical properties of expansive soils. Proc. Indian Geotech. Conf., 2015.
[118]  Ramesh HN, Sagar SR. Effect of drying on the strength properties of terrazyme treated expansive and non-expansive soils. 50th Indian Geotech. Conf. 17th–19th December, 2015.
[119]  Bhavsar SN, Patel AJ. Analysis of Swelling & Shrinkage Properties of Expansive Soil using Brick Dust as a Stabilizer. Int J Emerg Technol Adv Eng 2014;4:303–8.
[120]  Muthukkumaran K, Joseph J. Utilization of Industrial Waste Products in the Stabilization of Montmorillonite-Rich Expansive Soil. Soil Behav. Geomech., Reston, VA: American Society of Civil Engineers; 2014, p. 224–33. doi:10.1061/9780784413388.023.
[121]  Mahajan SM, Parbat DK. Effects of Fly ash on Engineering Properties of BC Soil. Int J Eng Sci Res 2015;1.
[122]  Mir BA. Challenges Associated with Expansive Soils and Remedial Measures. 2015.
[123]  Rajagopal K, Chandramouli S, Parayil A, Iniyan K. Studies on geosynthetic-reinforced road pavement structures. Int J Geotech Eng 2014;8:287–98. doi:10.1179/1939787914Y.0000000042.
[124]  Sahoo J, Pradhan P, Rao K. Behavior of stabilized soil cushions under cyclic wetting and drying. Int J Geotech Eng 2008;2:89–102. doi:10.3328/IJGE.2008.02.02.89-102.
[125]  Srinivasaraghavan R, Rajasekaran G. Electro-osmotic stabilization of marine clay with chemical piles. Ocean Eng 1994;21:207–19. doi:10.1016/0029-8018(94)90039-6.
[126]  Shukla RP, Parihar NS. Stabilization of Black Cotton Soil Using Micro-fine Slag. J Inst Eng Ser A 2016;97:299–306. doi:10.1007/s40030-016-0171-1.
[127]  Yogeshkumari M, Arumairaj DPD. A study on the effect of stabilization of expansive soil at liquid limit using coal ash. Int J Emerg Technol Comput Appl Sci 2014;8.
[128]  Mudgal A. Effect of Lime and Stone Dust in The Geotechnical Properties of Black Cotton Soil. Int J Geomate 2014. doi:10.21660/2014.14.140402.
[129]  Sivapullaiah P V., Jha AK. Gypsum Induced Strength Behaviour of Fly Ash-Lime Stabilized Expansive Soil. Geotech Geol Eng 2014;32:1261–73. doi:10.1007/s10706-014-9799-7.
[130]  Dutta J, Mishra AK. A study on the influence of inorganic salts on the behaviour of compacted bentonites. Appl Clay Sci 2015;116–117:85–92. doi:10.1016/j.clay.2015.08.018.
[131]  Malik V, Priyadarshee A. Compaction and swelling behavior of black cotton soil mixed with different non-cementitious materials. Int J Geotech Eng 2018;12:413–9. doi:10.1080/19386362.2017.1288355.
[132]  Vindula SK, Chavali RVP, P. HPR. Role of fly ash in control of alkali induced swelling in kaolinitic soils: a micro-level investigation. Int J Geotech Eng 2018;12:46–52. doi:10.1080/19386362.2016.1247023.
[133]  Boger Z, Guterman H. Knowledge extraction from artificial neural network models. 1997 IEEE Int. Conf. Syst. Man, Cybern. Comput. Cybern. Simul., vol. 4, IEEE; n.d., p. 3030–5. doi:10.1109/ICSMC.1997.633051.
[134]  Linoff GS, Berry MJA. Data Mining Techniques. Wiley, New York; 1997.
[135]  Blum A. Neural netw in C++. Wiley, New York; 1992.
[136]  Olden JD, Jackson DA. Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecol Modell 2002;154:135–50. doi:10.1016/S0304-3800(02)00064-9.