Profiled Composite Slab Strength Determination Method

Document Type : Regular Article


1 Senior Lecturer, Department of Civil & Water Resources Engineering, University of Maiduguri, Maiduguri, Nigeria

2 Senior Lecturer, Department of Civil Engineering, University Putra Malaysia, Serdang, Malaysia

3 Associate Professor, Department of Civil Engineering, University Putra Malaysia, Malaysia


The purpose of this article is to develop a new numerical approach for determining the strength capacity of a profiled composite slab (PCS) devoid of the current challenges of expensive and complex laboratory procedure required for establishing its longitudinal shear capacity. The new Failure Test Load (FTL) methodology is from a reliability-based evaluation of PCS load capacity design with longitudinal shear estimation under slope-intercept (m-k) method. The limit-state capacity development is through consideration of the experimental FTL value as the maximum material strength, and design load equivalent estimation using the shear capacity computation. This facilitates the complex strength verification of PDCS in a more simplified form that is capable of predicting FTL value, which will aid in determining the longitudinal shear of the profiled deck composite slab with ease. The developed strength determination effectively performs well in mimicking the probabilistic deck performance and composite slab strength determination. The strength test performance between the developed scheme and the experiment-based test results indicates high similarity, demonstrating the viability of the proposed strength determination methodology.


Google Scholar


Main Subjects

[1]     Karim IA, Mohammed K, Aziz NFAA, Hua LT. Comparative Safety Performance Evaluation of Profiled Deck Composite Slab from the Use of Slope-Intercept and Partial Shear Methods. World Acad Sci Eng Technol Int J Civil, Environ Struct Constr Archit Eng 2015;9:1047–53.
[2]     MarĨiukaitis G, Jonaitis B, Valivonis J. Analysis of deflections of composite slabs with profiled sheeting up to the ultimate moment. J Constr Steel Res 2006;62:820–30. doi:10.1016/j.jcsr.2005.11.022.
[3]     Cifuentes H, Medina F. Experimental study on shear bond behavior of composite slabs according to Eurocode 4. J Constr Steel Res 2013;82:99–110. doi:10.1016/j.jcsr.2012.12.009.
[4]     Mohammed BS. Structural behavior and m–k value of composite slab utilizing concrete containing crumb rubber. Constr Build Mater 2010;24:1214–21. doi:10.1016/j.conbuildmat.2009.12.018.
[5]     Abdullah R, Samuel Easterling W. New evaluation and modeling procedure for horizontal shear bond in composite slabs. J Constr Steel Res 2009;65:891–9. doi:10.1016/j.jcsr.2008.10.009.
[6]     Abdullah R, Hong Kueh AB, Ibrahim IS, Easterling WS. CHARACTERIZATION OF SHEAR BOND STRESS FOR DESIGN OF COMPOSITE SLABS USING AN IMPROVED PARTIAL SHEAR CONNECTION METHOD. J Civ Eng Manag 2015;21:720–32. doi:10.3846/13923730.2014.893919.
[7]     An L. Load bearing capacity and behaviour of composite slabs with profiled steel sheet 1993.
[8]     Crisinel M, Marimon F. A new simplified method for the design of composite slabs. J Constr Steel Res 2004;60:481–91. doi:10.1016/S0143-974X(03)00125-1.
[9]     Degtyarev V V. Reliability-Based Evaluation of U.S. Design Provisions for Composite Steel Deck in Construction Stage. J Struct Eng 2012;138:308–17. doi:10.1061/(ASCE)ST.1943-541X.0000437.
[10]    Johnson RP. Models for the Longitudinal Shear Resistance of Composite Slabs, and the Use of Non-Standard Test Data. Compos Constr Steel Concr V, Reston, VA: American Society of Civil Engineers; 2006, p. 157–65. doi:10.1061/40826(186)16.
[11]    Johnson RP. Composite structures of steel and concrete: beams, slabs, columns, and frames for buildings. John Wiley & Sons; 2008.
[12]    BEng SH, Park S. EN 1994-Eurocode 4: Design of composite steel and concrete structures n.d.
[13]    Gholamhoseini A, Gilbert RI, Bradford MA, Chang ZT. Longitudinal shear stress and bond–slip relationships in composite concrete slabs. Eng Struct 2014;69:37–48. doi:10.1016/j.engstruct.2014.03.008.
[14]    Marimuthu V, Seetharaman S, Arul Jayachandran S, Chellappan A, Bandyopadhyay TK, Dutta D. Experimental studies on composite deck slabs to determine the shear-bond characteristic values of the embossed profiled sheet. J Constr Steel Res 2007;63:791–803. doi:10.1016/j.jcsr.2006.07.009.
[15]    Holmes N, Dunne K, O’Donnell J. Longitudinal shear resistance of composite slabs containing crumb rubber in concrete toppings. Constr Build Mater 2014;55:365–78. doi:10.1016/j.conbuildmat.2014.01.046.
[16]    Hedaoo N, Gupta L, Ronghe G. Design of composite slabs with profiled steel decking: a comparison between experimental and analytical studies. Int J Adv Struct Eng 2012;4:1. doi:10.1186/2008-6695-3-1.
[17]    EC4 E in D of composite steel and concrete structures. Part1.1: General rules and rules for building (PrEN 1994-1-1:2003) 2003.
[18]    Okasha NM, Aichouni M. Proposed Structural Reliability-Based Approach for the Classification of Concrete Quality. J Mater Civ Eng 2015;27:04014169. doi:10.1061/(ASCE)MT.1943-5533.0001131.
[19]    Robert EM. Structural reliability analysis and prediction. Baffins Lane, Chichester, West Sussex, Engl Wiley 1999.
[20]    Adrzej SN, Anna MR, Ewa KS. Revised statistical resistance model for reinforced concrete structural component. ACI 2012;284:1–16.
[21]    Ellingwood B, Galambos T V. Probability-based criteria for structural design. Struct Saf 1982;1:15–26. doi:10.1016/0167-4730(82)90012-1.
[22]    Chen S. Load carrying capacity of composite slabs with various end constraints. J Constr Steel Res 2003;59:385–403. doi:10.1016/S0143-974X(02)00034-2.
[23]    Abdinasir Y, Abdullah R, Mustaffa M. Modelling of shear bond with cohesive element and slenderness study of composite slabs. Proc Jt Conf 8th Asia Pacific Struct Eng Constr Conf 1st Int Conf Civ Eng Conf (ICCER), APSEC-ICCER 2012, 2012, p. 2–4.
[24]    Honfi D, Mårtensson A, Thelandersson S. Reliability of beams according to Eurocodes in serviceability limit state. Eng Struct 2012;35:48–54. doi:10.1016/j.engstruct.2011.11.003.
[25]    Schumacher A, Lääne A, Crisinel M. Development of a New Design Approach for Composite Slabs. Compos Constr Steel Concr IV, Reston, VA: American Society of Civil Engineers; 2002, p. 322–33. doi:10.1061/40616(281)28.
[26]    Rana MM, Uy B, Mirza O. Experimental and numerical study of end anchorage in composite slabs. J Constr Steel Res 2015;115:372–86. doi:10.1016/j.jcsr.2015.08.039.
[27]    Ong KCG, Mansurt MA. Shear-bond capacity of composite slabs made with profiled sheeting. Int J Cem Compos Light Concr 1986;8:231–7. doi:10.1016/0262-5075(86)90050-3.