[1] Cundall PA and Strack ODL. A discrete numerical model for granular assemplies. Geotechnique 29(1), 1979, 47-65.
[2] Pöschel T and Thomas S. Computational Granular Dynamics: Models and Algorithums.: Springer; 2005.
[3] Mathews GF. Developments for the Advancement of the Discrete Element Method. PhD Dissertation. Department of Civil and Environmental Engineering, University of South Carolina, 2015.
[4] Vable M. Importance and use of rigid body mode in boundary element method. Int J Numer Methods Eng 1990;29:453–72. doi:10.1002/nme.1620290302.
[5] Blázquez A, Mantič V, París F, Cañas J. On the removal of rigid body motions in the solution of elastostatic problems by the direct BEM. Int J Numer Methods Eng 1996;39:4021–38. doi:10.1002/(SICI)1097-0207(19961215)39:233.0.CO;2-Q.
[6] Vodička R, Mantič V, París F. Note on the removal of rigid body motions in the solution of elastostatic traction boundary value problems by SGBEM. Eng Anal Bound Elem 2006;30:790–8. doi:10.1016/j.enganabound.2006.04.002.
[7] Vodička R, Mantič V, París F. On the removal of the non-uniqueness in the solution of elastostatic problems by symmetric Galerkin BEM. Int J Numer Methods Eng 2006;66:1884–912. doi:10.1002/nme.1605.
[8] Fredholm I. Sur une classe d’équations fonctionnelles (On a class of functional equations). Acta Math 1903;27:365–90. doi:10.1007/BF02421317.
[9] Asadollahi P, Tonon F. Coupling of BEM with a large displacement and rotation algorithm. Int J Numer Anal Methods Geomech 2011;35:749–60. doi:10.1002/nag.916.
[10] Rump SM. Inversion of extremely Ill-conditioned matrices in floating-point. Jpn J Ind Appl Math 2009;26:249–77. doi:10.1007/BF03186534.
[11] Lutz E, Ye W, Mukherjee S. Elimination of rigid body modes from discretized boundary integral equations. Int J Solids Struct 1998;35:4427–36. doi:10.1016/S0020-7683(97)00261-8.
[12] Sapountzakis EJ, Dikaros IC. Advanced 3D beam element of arbitrary composite cross section including generalized warping effects. Int J Numer Methods Eng 2015;102:44–78. doi:10.1002/nme.4849.
[13] Chen JT, Chen WC, Lin SR, Chen IL. Rigid body mode and spurious mode in the dual boundary element formulation for the Laplace problems. Comput Struct 2003;81:1395–404. doi:10.1016/S0045-7949(03)00013-0.
[14] Xiao Y-X, Zhang P, Shu S. An algebraic multigrid method with interpolation reproducing rigid body modes for semi-definite problems in two-dimensional linear elasticity. J Comput Appl Math 2007;200:637–52. doi:10.1016/j.cam.2006.01.021.
[15] Ko YY, Chen CH. Application of Symmetric Galerkin Boundary Element Method on Elastostatic Neumann Problems. Int. Assoc. Comput. Methods Adv. Geomech., Goa, India: 2008, p. 146–53.
[16] Rizzo FJ. An integral equation approach to boundary value problems of classical elastostatics. Q Appl Math 1967;25:83–95.
[17] Wagdy M, Rashed YF. Boundary element analysis of multi-thickness shear-deformable slabs without sub-regions. Eng Anal Bound Elem 2014;43:86–94. doi:10.1016/j.enganabound.2014.03.011.
[18] Lamé G. Leçons sur la théorie mathématique de l’élasticité des corps solides (Lessons on the mathematical theory of elastic solids). Paris: Gauthier-Villars; 1852.
[19] Brebbia CA, Dominguez J. Boundary Elements: An Introductory Course. WIT Press; 1996.
[20] Cauchy A. Sur un nouveau genre de calcul analogue au calcul infinitesimal (On a new type of calculus analogous to the infinitesimal calculus). Oeuvres Complet d’Augustin Cauchy, Gauthier-Villars, Paris 1826.
[21] Thompson (Lord Kelvin) W. Note on the integration of the equations of equilibrium of an elastic solid. Cambridge Dublin Math J 1848:87–9.
[22] Kronecker L. Vorlesungen über die Theorie der Determinanten: Erste bis Einundzwanzigste Vorlesungen (Lectures on the theory of determinants : First to Twenty-first lectures). B. G. Teubner; 1903.
[23] Banerjee P. The Boundary Element Methods in Engineering. London: McGraw-Hill; 1994.
[24] Mineur H, Berthod-Zaborowski H, Bouzitat J, Mayot M. Techniques de calcul numérique à l’usage des mathématiciens, astronomes, physiciens et ingénieurs (Numerical Computation techniques to use of Mathematicians, Astronomers, Physicists and Engineers). Liège Libr Polytech Béranger, Paris 1952.
[25] Hadamard J. Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques (The Cauchy problem for linear equations and hyperbolic partial differential). Paris: Hermann & Cie.; 1932.
[26] Dassault. Abaqus 6.8 Program 2008.
[27] Slaughter W. The linearized theory of elasticity. Birkhäuser; 2002.