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Accurate forecasting of streamflow for different lead-times is 

useful in the design of almost all hydraulic structures. The 

Support Vector Machines (SVMs) use a hypothetical space 

of linear functions in a kernel-induced higher dimensional 

feature space and are trained with a learning algorithm from 

optimization theory. The support vector regression attempts 

to fit a curve on data points such that the points lie between 

two marginal hyperplanes which will minimize the error. 

The current paper presents least square support vector 

regression (LS-SVR) to predict one day ahead stream flow 

using past values of the rainfall and river flow at three 

stations in India, namely Nighoje and Budhwad in Krishna 

river basin and Mandaleshwar in Narmada river basin. The 

relevant inputs are finalized on the basis of three techniques 

namely autocorrelation, Cross-correlation and trial and error. 

The forecasting model results are reasonable as can be seen 

from a low value of Root Mean Square Error (RMSE), Mean 

Absolute Relative Error (MARE) and high values of 

Coefficient of Efficiency (CE) accompanied by balanced 

scatter plots and hydrographs. 

Keywords: 

Stream flow forecasting; 

Support vector regression; 

Kernel function. 

 

https://doi.org/10.22115/SCCE.2017.96717.1024
https://doi.org/10.22115/scce.2017.96717.1024
http://creativecommons.org/licenses/by/4.0/
http://www.jsoftcivil.com/
mailto:shreenivas.londhe@viit.ac.in
https://doi.org/10.22115/SCCE.2017.96717.1024


 S. N. Londhe, S. Gavraska/ Journal of Soft Computing in Civil Engineering 2-2 (2018) 56-88 57 

1. Introduction 

Water is one the most abundant substance on earth, the principal constituent of all living things, 

and the major force constantly shaping the earth. Water resources play a vital role in the 

economic development. The region’s explosive population growth and resulting new demands on 

limited water resources require efficient management of existing water resources rather than 

building new facilities to meet the challenge. In the water management communities, it is well 

known that to combat water shortage issues, maximizing water management efficiency based on 

streamflow forecasting is crucial [1]. The rainfall-runoff (RR) relationship is amongst the most 

complex hydrologic phenomenon to understand due to the incredible spatial and temporal 

variability of watershed characteristics and precipitation patterns, as well as a number of 

variables involved in the physical processes. Many models have been developed to simulate 

rainfall-runoff processes but still require refinement for their predictions [2]. 

The classification of rainfall-runoff models is generally based on the extent of physical principles 

that are applied in the model structure and the treatment of the model inputs and parameters as a 

function of space and time. According to the physical process description, a rainfall-runoff model 

can be attributed to two categories, deterministic and stochastic. Deterministic models describe 

the rainfall-runoff process using physical laws of mass and energy transfer. Deterministic models 

can be classified according to a lumped or distributed description of the sub-catchment area 

under consideration and description of the hydrological processes as empirical, conceptual or 

more physically based. On this basis deterministic rainfall-runoff models are further classified as: 

(i) data-driven models (black box), (ii) conceptual models (grey box) and (iii) physically based 

models (white box) [3]. If any of the input-output variables or error terms of the model are 

regarded as random variables having a probability distribution, then the model is stochastic. 

Readers are referred to [4] for further details of rainfall-runoff modeling. The Support Vector 

Regression (SVR) used in the present study can be classified as a lumped data-driven model. 

In the present study forecasting streamflow at three different stations namely Mandaleshwar, 

Budhwad and Nighoje in India are done using Least square support vector regression (LS-SVR) 

and previous values of rainfall and stream flow. The inputs for the models are finalized with 

three different input selection methods namely Trial and Error, Average Mutual Information 

(AMI) and Correlation Analysis. Four different data division combinations are tried to get 

optimum result. The support vector regression (SVR) models are calibrated with three different 

kernels namely Radial Basis Function, Linear, and Polynomial. The best model is finalized by 

comparing results by various error measures along with scattering plot and hydrograph. The 

paper is organized as follows: The next two sections introduce support vector machine and 

support vector regression along with literature review of the application of SVR for streamflow 

forecasting. This is followed by information on Study Area and Model formulation. Results and 

discussions come next with concluding remarks at the end. 

2. Study area and data 

The present work deals with forecasting of streamflow one day in advance at three stations 

namely Mandaleshwar in Narmada river basin and Nighoje and Budhwad in Krishna river basin 
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of India using previous values of both rainfall and stream flow. The Narmada, the largest west 

flowing and seventh largest river in India, covers a large area of Madhya Pradesh state besides 

some area of Maharashtra state and Gujarat state before entering into the Gulf of Cambey, the 

Arabian sea. Narmada basin lies between 72˚ 32' E to 82˚ 45' E and 21˚ 20' N to 23˚ 45' N. The 

total catchment area is 98796 Sq. Km. The observations of daily streamflow and rainfall for 11 

years (1987 to 1997) at the first station Mandaleshwar which lies on Narmda river were available 

from Central Water Commission Bhopal division [5]. India receives rainfall almost for 4 months 

all over the country. The Narmada catchment receives the rainfall starting from late June 

continuing till early October. 

Krishna Basin is India's fourth largest river basin, which covers 2, 58, 948 Sq. Km. of Southern 

India. Krishna river originates in the Western Ghats at an elevation of about 1337 m just North of 

Mahabaleshwar in Maharashtra, India about 64 Km from Arabian sea and flows for about 1400 

Km and outfalls into the Bay of Bengal traversing three states Karnataka (1,13,271 Sq. Km), 

Andhra Pradesh (76,252 Sq. Km), Maharashtra (69,425 Sq. Km). The second rainguage and 

discharge measurement station Nighoje is on Bhima tributary and Indrayani stream of Krishna 

river basin in Pune district of Maharashtra state of India. Total 13 years of data (1995 to 2007) 

was used for developing the models. The third rainguage and discharge measurement station 

Budhwad is on Bhima tributary and Kundalika stream of Krishna river basin in Pune district of 

Maharashtra state of India. Total 14 years of data (1994 to 2007) was used for developing the 

models at Budhwad. Both the locations receive rainfall in the monsoon months starting from 

early June continuing till early October. The Data for Nighoje and Budhwad was collected by 

Hydrology Project Nasik [6]. The statistical parameters of the data are as shown in Table 1 and 

Table 2 which indicate that there is a lot of variation in the observed values of rainfall and 

discharge quantities in Narmda and Krishna river catchments.  Figure 1 shows the study area. 

3. Fundamentals of support vector machine 

Support vector machines, commonly used for classification and regression purposes is a method 

of supervised learning. An SVM constructs a separating hyperplane between the classes in the n-

dimensional space of inputs. A special property of SVM is that they minimize the regression 

error and maximize the geometric margin making them maximum margin classifiers. This is one 

of the most advantageous features of SVM compared to Artificial Neural Network (ANN) [7]. 

Readers are referred to [8,9] for details of SVM. 

3.1. Support vector regression 

Support Vector Regression (SVR) is a nonlinear regression method based on Support Vector 

Machines (SVM). The basic idea behind support vector regression is to map the data into a 

higher dimensional feature space using nonlinear mapping and then to solve a linear regression 

problem in the new space. Support Vector regression has gained popularity due to many 

attractive features, one among them being promising empirical performance.The formulation 

embodies the Structural Risk Minimization (SRM) principle, which is superior to the Empirical 

Risk Minimization (ERM) principle, employed by conventional neural networks. The non-linear 

mapping is achieved through the application of Kernel functions. In the present work a support 
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vector machine learning approach known as Least square-support vector machine (LS-SVM), 

which makes use of different kernel functions such as Linear, Polynomial, Gaussian Radial Basis 

Function, Exponential Radial Basis Function, etc is employed. The LSSVM considers equality 

constraints for the classification problem as against the inequality as in standard SVM with a 

formulation in the least squares sense because of which the solution follows directly from 

solving a set of linear equations, rather than quadratic programming. While in classical SVM’s 

many support values are zero (nonzero values correspond to support vectors), at least squares 

SVM’s the support values are proportional to the errors. For details of SVR readers are referred 

to [10] and for details of LS-SVM readers are referred to [11]. 

 
Fig. 1. Study Area. 
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3.2. Kernel function 

Kernel function represents the inner product of one space into another space. The training set is 

linearly separable in the feature space rather than the input space. This is called the “Kernel 

trick”. This is done using Mercer's theorem [8] which states that any unknown, symmetric 

positive definite kernel function K (x,y) can be expressed as a dot product in a high- dimensional 

space. More specifically if the argument to the kernel is in a 'measurable space x' and if the 

kernel is positive semi-definite then, 

 
ji

jiji ccxxk
,

0),(  (1) 

for any finite subset (x1,...xn) of x and subset {c1,...cn} of objects (typically real numbers) there 

exists a function Φ(x) whose range is in an inner product space of possibly higher dimension 

such that 

(x,y) = Φ (x). Φ (y) (2) 

The kernel trick transforms any algorithm that solely depends on the dot product between two 

vectors. Kernel function enables operations to be performed in input space. Hence there is no 

need to evaluate inner products in the feature space. Computations depend on the number of 

training patterns. The large training set is required for a high- dimensional problem. The most 

important benefit of using kernel is that the dimensionality of the feature space does not affect 

the computations. Some commonly used kernels in SVM are Linear, Polynomial, Gaussian 

Radial Basis Function, Exponential Radial Basis Function, Multi-Layer Perceptron, Fourier 

series, B Splines, and Splines. In the present work radial basis function kernel (RBF), linear 

kernel and polynomial kernel are used for calibration of models. For details of the kernel, readers 

are referred to [12]. 

3.3. Linear kernel 

The Linear kernel is the simplest kernel function. It is given by the inner product (x,y). 

 (3) 

Where X1 and X2 are two vectors 

3.4. Polynomial kernel 

The Polynomial kernel is a non-stationary kernel. Polynomial kernels are well suited for 

problems where all the training data is normalized. 

 (4)  

Where, d- degree (order) 

3.5. Gaussian kernel 

The Gaussian kernel is an example of radial basis function kernel. 

 iXX,

d
i 1),(  XX
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 (5) 

The adjustable parameter sigma plays a major role in the performance of the Gaussian kernel and 

should be carefully tuned to the problem at hand. σ controls the width of the Gaussian function. 

If overestimated, the exponential will behave almost linearly, and the higher-dimensional 

projection will start to lose its non-linear prowess. On the other hand, if underestimated, the 

function will lack regularization, and the decision boundary will be highly sensitive to noise in 

training data. For nonlinear regression, the most common kernel method used is probably the 

RBF kernel method. Readers are referred to [12,13] for details about SVR. 

3.6. Applications of support vector regression in streamflow forecasting 

Dibike et al. (2001) employed SVM for land use classification and rainfall-runoff prediction 

using a polynomial and RBF kernel. Results showed better performance than ANN-derived 

models, with the RBF kernel also performing better than the polynomial one [9]. SVMs were 

explored in flood forecasting by [14], with focus on the identification of a suitable model 

structure and its relevant parameters for rainfall-runoff modeling. The paper further explored the 

relationships among various model structures, kernel functions, scaling factor, model parameters 

and composition of input vectors. [15] used SVM for forecasting streamflow at multi-time scales 

in an ungauged river basin in Utah, USA.Method of trial and error was used for selection of 

optimum inputs. An RBF kernel was used for model preparation with the SVM, while a cross-

validation approach was used for estimating the SVM parameters. [16] demonstrated the 

capability of SVMs to predict long-term flow discharges while using a hydrological time series 

with nonlinear features. [17] used SVR for real-time flood stage forecasting. [10] proposed a 

distributed SVR (D-SVR) in which a linear regression (LR) and two-step GA algorithm was used 

alongside Gaussian RBF kernel to find the optimal model parameters. One-day lead stream flow 

of Bakhtiyari River in Iran was predicted using SVM and the local climate and rainfall data [18]. 

The results were compared with those of ANN and ANN integrated with genetic algorithms 

(ANN-GA) models. The authors found that SVM results were at par or sometimes even better 

than ANN and ANN-GA models. [19] developed SVM model to predict the next monthly flow as 

a function of 18 input variables (initially) including monthly rainfall (R), discharge (Q), sun 

radiation (Rad), and temperature {as minimum (Tmin), maximum (Tmax) and average (Tave)} 

with three temporal delays belong to t, t-1, and t-2. Subsequently, principal component analysis 

(PCA), Gamma test (GT), and forward selection (FS) techniques were used to reduce the number 

of input variables to 5 and fed to SVM. 

The daily stream flow and suspended sediment concentration at two stations on the Eel River in 

California were modeled using ANN and LSSVM by [20]. Comparison of results showed that 

the LSSVM model was able to produce better results than the ANN models. [21] explored the 

potential of LS-SVR for daily stream flow forecasting in Narmada river basin up to Sandia 

gauging station and Mahanadi river basin up to Basantpur gauging station in India. They 

)σ2/(exp 22

iXX 
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reported that the peak stream flow values were not captured with reasonable accuracy. All the 

above works showed concern about the selection of Kernel and hyper-parameters. 

Sahraei et al. [22] used least square support vector regression (LSSVR) and Regression Tree 

(RT) for prediction of river flow in Kashkan watershed of Iran. The inputs were precipitation and 

discharge values of one and two previous days with present discharge as output. It was found that 

the LSSVR model had better performance than RT models. 

Kalteh [23] used Wavelet Genetic Algorithm-Support Vector Regression (wavelet GA-SVR) and 

regular Genetic Algorithm-Support Vector Regression (GA-SVR) models for forecasting 

monthly flow on two rivers in northern Iran. The genetic algorithm was applied for selecting the 

optimal parameters of the support vector regression (SVR) models. It was found that the wavelet 

GA-SVR models were able to provide more accurate forecasting results than the regular GA-

SVR models. The performance of LSSVM was improved by data preprocessing using singular 

spectrum analysis (SSA) and discrete wavelet analysis (DWA) by [24,25] at Kharjeguil and 

Ponel stations from Northern Iran while forecasting monthly streamflow data. Forecasting and 

estimation of monthly streamflow were done by [26] at 2 stations in Turkey using least square 

support vector regression (LSSVR) and adaptive neuro-fuzzy embedded fuzzy c-means 

clustering (ANFIS-FCM). The LSSVR was found to be better than the ANFIS-FCM. 

In the present work, a comparison of three input selection methods and four different data 

combinations with three kernels for one day ahead streamflow forecasting using support Vector 

Regression (SVR) is done. It is the first work of its kind where in three input selection methods 

along with different data combinations and three kernels are employed. 

4. Model formulation 

Daily rainfall and discharge data were available at all the three locations for the months of June 

to October for the years mentioned in preceding section 2. After examining the data, it was found 

that the average discharge and rainfall values for monsoon months of July to October were 

differing considerably (Table 1 and 2). Therefore it was decided to develop separate monthly 

stream flow models for monsoon months as India experiences separate monsoon season and 

rainfall and discharge show considerable variations in each of these months. Two types of 

models, separate monthly and for 4 or 5 months together were prepared (June to September or 

June to October) to judge the model performance in terms of accuracy of prediction. The next 

task was a determination of antecedent discharges and rainfall to be used as inputs for predicting 

discharge one day in advance. This was achieved by three different methods namely trial and 

error, correlation analysis and Average Mutual Information (AMI). 

4.1. Trial and error 

Method of the trial is a simple method which does not assume linearity. In trial and error, 

previous values of independent variables (in this case rainfall and discharge) are added one by 
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one till the best possible results are achieved. In the present work, models are named as ip1, ip2, 

ip3 and so on till ip10. For a monthly model, it is started with one value of current day discharge 

as input to predict the discharge of the next day (ip1). To this value of discharge one value of 

current day, rainfall is added, with discharge on the next day is maintained as output (ip2). For 

further models alternate one lag (previous value) of discharge and one lag of rainfall are added to 

previous inputs. For models named with odd numbers, one previous value of discharge is added 

for every trial and for models named with even numbers one previous value of rainfall is added 

for each trial. Likewise, till ip10 total 5 previous values of discharges and rainfall are used. It 

was found that the model performance does not change with any further addition of previous 

rainfall or discharge values. Model nomenclature and input details in the method of trial and 

error are shown in Table 3. An example of 5 previous values each of rainfall and discharge (ip10) 

to predict runoff one day in advance in the functional form is shown below, 

Qt+1 =  f (Rt-4,Rt-3,Rt-2,Rt-1,Rt, Qt-4,Qt-3,Qt-2,Qt-1,Qt) (6) 

Table 1 

Statistical Analysis of Discharge at Mandaleshwar, Nighoje, and Budhwad. 

Mandaleshwar 

Month Mean (m
3
/s) Standard Deviation (m

3
/s) Kurtosis Skewness 

Minimum 

(m
3
/s) 

Maximum 

(m
3
/s) 

July 2349.25 4267.52 19.24 3.89 43.21 36045 

August 4084.3 4096.82 7.41 2.38 66.17 27093 

Sept 2844.58 3369.69 39.92 5.11 317.2 35450 

Oct 682.58 741.66 20.54 4.09 190.8 5848 

4 Monthly 2486.17 3632.2 21.41 3.85 43.21 36045 

Nighoje 

June 44.45 82.22 25.54 4.34 0.27 678.16 

July 96.67 133.4 23.3 3.8 0.26 1299.62 

August 106.92 169.1 57.01 6.2 1.97 2110.92 

September 36.19 46.46 22.01 3.8 1.18 446.09 

October 14.85 21.68 61.27 6.17 0.36 267.43 

5 Monthly 64.31 117.21 78.88 6.76 0.26 2110.92 

Budhwad 

June 9.5 16.64 11.26 3.18 0.58 97.16 

July 23.11 34.05 9.28 2.75 0.05 220.13 

August 22.19 30.82 14.69 3.35 0.69 259.03 

September 9.25 15.24 28.54 4.54 0.5 146.71 

October 2.77 3.13 8.09 2.64 0.21 18.99 

5 Monthly 14.59 25.57 20.39 3.93 0 259.03 
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Table 2 

Statistical Analysis of Rainfall at Mandaleshwar, Nighoje and Budhwad. 

Mandaleshwar 

Month Mean (mm) Standard Deviation (mm) Kurtosis Skewness 
Minimum 

(mm) 

Maximum 

(mm) 

July 9.14 24.36 20.06 4.25 0 187.6 

August 8.07 16.72 11.25 3.16 0 112 

Sept 4.54 13.27 22.99 4.34 0 112.6 

Oct 0.85 4.67 47.70 6.73 0 43.1 

4 Monthly 5.66 16.67 32.41 5.07 0 187.60 

Nighoje 

June 10.28 17.93 8.23 2.74 0 102.00 

July 6.77 13.22 12.86 3.28 0 94 

August 6.16 14.16 45.37 5.72 0 162.00 

September 4.75 11.14 17.95 3.81 0 92.20 

October 3.34 10.91 63.81 6.65 0 131.60 

5 Monthly 5.81 13.23 28.23 4.46 0 162 

Budhwad 

June 37.50 46.00 4.67 2.02 0 250 

July 35.11 44.96 11.02 2.69 0 365.60 

August 23.08 32.17 15.46 3.35 0 273 

September 9.52 17.25 21.52 3.75 0 160 

October 4.44 10.61 10.95 3.19 0 63.60 

5 Monthly 20.93 34.11 17.04 3.40 0 365.60 

 

Table 3 

Model name and input used in trial and error. 
Model Name Inputs 

ip1 1 Previous Discharge 

ip2 1 previous Discharge and 1 previous rainfall 

ip3 2 previous Discharge and 1 previous rainfall 

ip4 2 previous Discharge and 2 previous rainfall 

ip5 3 previous Discharge and 2 previous rainfall 

ip6 3 previous Discharge and 3 previous rainfall 

ip7 4 previous Discharge and 3 previous rainfall 

ip8 4 previous Discharge and 4 previous rainfall 

ip9 5 previous Discharge and 4 previous rainfall 

ip10 5 previous Discharge and 5 previous rainfall 

4.2. Correlation analysis 

The degree of dependence between the variables can be assessed through the correlation 

analysis. For same variables (discharge as input for discharge) auto-correlation analysis yields 
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the influence of past values on the future values of the time series. For two different variables 

(rainfall and discharge) this is done through cross-correlation analysis which manifests the 

influence of previous values of rainfall on the discharge. In the present work 50% value of 

maximum autocorrelation and cross-correlation is considered for deciding lags and including 

them as inputs. For example from figure 2 to predict discharge Qt+1discharge Qt and discharge of 

Qt-1, as well as rainfall Rt and Rt-1, are selected as inputs. 

 
Fig. 2. Typical Correlogram and AMI for input selection (4 monthly Mandaleshwar model). 

4.3. Average mutual information (AMI) 

The correlation analysis is a measure of linear dependence only. It is a well-known fact that 

rainfall-runoff process is a highly nonlinear complex process. In view of this, another input 

selection method based upon joint probability densities of rainfall and runoff is also tried. The 

Average Mutual Information (AMI) measures the dependence between the two random variables 

(Zamini et al. 2008) [27]. 









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)()(

),(
2log*),(),(

,

,
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Where ai and bj = ith or jth bi-variate sample pair 

n = sample size 

PA(ai), PB (bj) = Uni-variate probability densities 

PA,B (ai , bj ) = Joint probability densities 

AMI mainly measures the information that A and B share. It measures how much knowledge 

about one of these variables reduces our uncertainty about the other variable.    

In case of AMI antecedent values of rainfall and discharge are decided from the highest value of 

AMI and the values which are 50% of highest values [27]. For example to predict discharge Qt+1 

discharge Qt and Qt-1 along with rainfall Rt, Rt-1, Rt-2, Rt-3, Rt-4are selected as inputs from figure 

2. 
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It has been shown that unlike ANNs, SVR can work better with much less training data [28]. In 

view of this, four different combinations of data division are tried. Calibration of the model using 

first 70% data and testing for the last 30 % of data was the first option tried. The second attempt 

was made using first 30 % data for calibration and last 70 % data for testing. In the next attempt, 

calibration was done for the last 70% data and testing for first 30 % data. Finally, last 30% data 

was used for calibration and first 70 % data for testing. 

At Mandaleshwar for separate monthly models with the method of trial and error along with one 

kernel for each model four different data combinations (as mentioned above) were used and 

models were developed from ip1 till ip10. Thus total 40 models were developed for each month. 

A similar pattern was followed for kernel two and kernel three. So for each month total, 120 

models were developed. So for all three kernels together for monthly and 4 monthly models total 

600 models with trial and error were developed. On similar lines with method of AMI and with 

one kernel for each month 4 models were developed. Thus for monthly and 4 monthly total 20 

models with one kernel and 60 models with all three kernels together were developed with AMI. 

The same suite was followed for input selection by correlation analysis with kernel type 1, so for 

each month total, 4 models were developed, which resulted in the formation of total 20 models 

for separate months and 4 monthly models (June to September together). Thus total 60 models 

were developed for three kernels. The total number of models developed is given below based 

upon the above discussion. 

At Mandaleshwar for four months of July, August, September, October total 600 models were 

prepared for a method of trial and error, 60 models for AMI and 60 models for correlation 

analysis. At Nighoje for five months of June, July, August, September and October total 240 

models with trial and error and 24 models with AMI were prepared. At Budhwad total 240 

models with trial and error and 24 models with AMI were prepared. For all stations thus total 

1248 models were prepared. It can be seen from the table of statistical analysis (table 1 and 2) 

that all the selected stations have a large variation in rainfall and discharge values. So to analyze 

SVR performance with different rainfall and discharge combinations these many model 

formulations were done. 

Results were assessed by plotting the scatter plot between observed and predicted stream flow in 

testing and by drawing hydrograph of observed and predicted streamflow. Though the coefficient 

of correlation between the observed and predicted streamflow is generally calculated to judge the 

accuracy of model prediction, it is not considered in the present work owing to its limitations as 

mentioned by [29]. Instead one absolute error measure, Root Mean Squared Error (RMSE), one 

relative error measure Mean Absolute Relative Error (MARE) and one non dimensional error 

measure Coefficient of Efficiency (CE) were used as suggested by [29]. Need for more than one 

model assessment technique has also been emphasized by [30]. For details of error calculation 

readers are referred to [30]. 
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5. Results and discussion 

All the models were tested with unseen data and results were compared by plotting to scatter 

plots, hydrograph as well as three error measures as mentioned in the previous section. Primarily 

RMSE was used to compare results of different models followed by CE and MARE. Results with 

bold letters indicate the best model. Consolidated results are shown in Table 4 to 16 at the end. 

Results of Mandaleshwar are discussed first. It may be noted that the results discussed below are 

the best in a respective category which is compared further to nominate the best model amongst 

all possibilities. 

5.1. Mandaleshwar 

For the month of July, model with one previous discharge and rainfall as inputs by trial and error 

method and calibrated with last 70 % values (ip2) and RBF kernel shows RMSE as 1366.48 m
3
/s 

(model 8), while two previous discharge and one rainfall values as inputs by AMI with RBF 

kernel and calibrated using last 30 % data shows RMSE of 55.88 m
3
/s (model 603) which is very 

low. Model developed with two previous discharges and one previous rainfall as inputs by 

correlation analysis and calibrated using last 70 % data and RBF kernel shows RMSE of 1414.68 

m
3
/s (model 664), which clearly indicates superiority of AMI over trial and error and correlation 

method for the month of July from the point of view of input selection. The model developed 

using a linear kernel with one previous discharge and calibrated with the last 70 % data (trial and 

error method) shows RMSE equal to 1365.12 m
3
/s (model 44). Model with two previous 

discharges and four rainfall values as inputs (AMI method of input selection) and calibrated with 

last 70 % data yields RMSE equal to 2064.74 m
3
/s (model 624). The further model developed 

with two previous discharges and one previous rainfall as inputs byCorrelation analysis shows 

RMSE equal to 1460.6 m
3
/s (model 684). The model developed with polynomial kernel and with 

one previous discharge as input and calibrated with last 70 % data (trial and error) shows RMSE 

equal to 1365.53 m
3
/s (model 84). While model developed with one previous discharge and two 

rainfall values as inputs (AMI) and calibrated with last 70 % data shows RMSE equal to 2064.74 

m
3
/s (model 644). The model developed using two previous discharges and one previous rainfall 

as inputs (correlation analysis) and calibrated with last 70 % data shows RMSE equal to 1459.8 

m
3
/s (model 704). It can be seen that values of error measures for polynomial kernel and linear 

kernel are very similar. This can be attributed to the degree of polynomial being '1' in polynomial 

kernel making it same as the Linear Kernel. When it was tried to calibrate the models with a 

higher order of polynomials the results were poor. It can also be seen that RBF kernel exhibited 

the best performance out of all the three kernels (model 603). As evident from the results, AMI 

seems to be the best among the three input selection methods. Refer table 4 for results of July. 

For the models developed for the month of August the RMSE values by using method of trial 

and error for input selection with RBF kernel (calibrated with the last 70 % data), Linear kernel 

(calibrated with the last 70 % data) and Polynomial Kernel (calibrated with the last 70 % data) 

are 2571.14 m
3
/s (model 136), 2574.43 m

3
/s (model 172) and 2574.14 m

3
/s (model 212) 
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respectively. Input selection using AMI along with RBF kernel and calibration with last 70 % 

data yields RMSE of 2426.3 m
3
/s (model 608) while Linear kernel and calibration with last 70 % 

data shows RMSE of 2454.1 m
3
/s (model 628), and Polynomial kernel with calibration using the 

last 70 % shows RMSE of  2453.6 m
3
/s (model 648), respectively. The model developed using 

correlation analysis as input selection method shows RMSE equal to 2576.64 m
3
/s (model 668) 

with RBF kernel and last 70 % of data for calibration. Model calibrated with linear kernel and 

last 70 % data for calibration shows RMSE of 2574.4 m
3
/s (model 688), while calibration with 

Polynomial kernel and last 70 % data shows RMSE of 2574.14 m
3
/s (model 708). Thus as 

evident from these results, AMI is again working better amongst the three input selection 

methods along with RBF kernel owing to its lowest RMSE. Results of August are shown in Table 

5. 

For September, the model developed using the method of trial and error for input selection and, 

calibration with first 70 % data and RBF kernel gives RMSE of 994.92 m
3
/s (model 253), while 

Linear kernel with first 70 % data calibration yields RMSE of 1099.04 m
3
/s (model 285). The 

model developed using Polynomial kernel and first 70 % data for calibration shows RMSE equal 

to 1096.91 m
3
/s (model no. 325). The model developed using the method of AMI for input 

selection with RBF kernel shows RMSE of 1215.8 m
3
/s (model  612) for last 70 % calibration of 

data, while Linear kernel shows RMSE as 1323.5 m
3
/s (model 632) for first 70 % calibration of 

data. For model calibrated using Polynomial kernel and calibration with first 70% data shows 

RMSE equal to 1323.6 m
3
/s (model 652). The model developed using input selection method of 

Correlation analysis shows RMSE equal to 1066.72 m
3
/s (model 669) for RBF kernel with first 

70 % data used for calibration. Model calibrated with linear kernel and first 70 % of data shows 

RMSE of 1171 m
3
/s (model 689). Similarly, model calibrated with Polynomial kernel and first 

70 % of data shows RMSE equal to 1162.3 m
3
/s (model 709). Thus for the month of September 

model developed using trial and error method of input selection with RBF kernel is the best 

owing to its lowest RMSE value. Results of September are shown in Table 6. 

For the month of October, a model with the method of trial and error for input selection and 

calibration with RBF kernel and the first 70 % data shows RMSE of 122.89 m
3
/s (model 373), 

while calibration with first 70 % data and Linear kernel shows RMSE of 121.67 m
3
/s (model 

413). For model calibrated with first 70 % data and polynomial kernel RMSE is equal to 121.67 

m
3
/s (model 453). The method of AMI for input selection exhibits RMSE of 194 m

3
/s (model 

613), 125.9 m
3
/s (model 633), 125.8 m

3
/s (model 653) for model calibrated with RBF kernel and 

the first 70 % data, Linear kernel and the first 70 % data and Polynomial kernel with the first 70 

%  respectively. When correlation analysis was used as input selection method with RBF kernel 

and calibration with the first 70 % data RMSE of 134.1 m
3
/s was obtained (model 673). For 

linear kernel and calibration with the first 70 %, RMSE was 123.9 m
3
/s (model 693) while 

calibration with polynomial kernel and the first 70 % data RMSE was 123.9 m
3
/s (model 713). 

Here once again method of trial and error along with RBF kernel is the best combination. Refer 

table 7 for results of October models.  
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Table 4 

July Results of Mandaleshwar with Trial and Error. 

Model 

Name 

Training 

percentage 

Model 

No. 

RBF Kernel Model 

No. 

LINEAR Kernel Model 

No. 

POLYNOMIAL Kernel 

RMSE CE MARE RMSE CE MARE RMSE CE MARE 

ip1 

First 70 1 4627.82 0.38 1.44 41 4845.42 0.32 1.30 81 4845.42 0.32 1.30 

First 30 2 4251.63 0.26 2.20 42 3696.92 0.44 2.09 82 3700.48 0.44 2.10 

Last 30 3 2326.26 0.51 4.11 43 2202.36 0.56 3.40 83 2202.36 0.56 3.40 

Last 70 4 1380.68 0.26 2.10 44 1365.12 0.28 1.94 84 1365.53 0.28 1.95 

ip2 

First 70 5 4615.83 0.38 1.39 45 4823.91 0.32 1.30 85 4800.44 0.32 1.29 

First 30 6 4253.01 0.26 2.12 46 3680.02 0.44 2.07 86 3680.02 0.44 2.07 

Last 30 7 2308.80 0.52 4.02 47 2204.99 0.56 3.32 87 2203.16 0.56 3.35 

Last 70 8 1366.48 0.28 1.92 48 1370.20 0.27 1.97 88 1377.07 0.27 1.98 

ip3 

First 70 9 4541.90 0.40 1.50 49 4812.25 0.33 1.50 89 4833.98 0.32 1.46 

First 30 10 4471.21 0.18 1.98 50 3766.33 0.42 2.03 90 3766.33 0.42 2.03 

Last 30 11 2261.15 0.54 3.88 51 2173.07 0.58 3.63 91 2178.11 0.58 3.65 

Last 70 12 1414.68 0.22 2.02 52 1460.60 0.18 2.18 92 1459.80 0.18 2.19 

ip4 

First 70 13 4551.12 0.40 1.42 53 4804.09 0.33 1.46 93 4804.09 0.33 1.46 

First 30 14 4475.85 0.18 1.93 54 3752.38 0.42 2.03 94 3752.38 0.42 2.03 

Last 30 15 2243.12 0.55 3.71 55 2261.88 0.55 3.99 95 2249.39 0.55 3.91 

Last 70 16 1437.84 0.20 1.85 56 1489.48 0.15 2.31 96 1489.48 0.15 2.31 

ip5 

First 70 17 4578.09 0.35 1.57 57 4870.84 0.27 1.48 97 4871.64 0.27 1.48 

First 30 18 4448.17 0.19 1.98 58 3834.26 0.40 2.03 98 3834.26 0.40 2.03 

Last 30 19 2373.14 0.54 3.79 59 2299.27 0.57 3.47 99 2297.92 0.57 3.49 

Last 70 20 1447.88 0.19 1.95 60 1420.33 0.21 2.03 100 1427.58 0.21 2.05 

ip6 

First 70 21 4553.78 0.36 1.49 61 4821.57 0.28 1.53 101 4821.57 0.28 1.53 

First 30 22 4471.72 0.18 1.93 62 3820.80 0.40 2.02 102 3827.09 0.40 2.03 

Last 30 23 2366.23 0.54 3.62 63 2379.06 0.54 3.87 103 2347.23 0.56 3.77 

Last 70 24 1471.58 0.17 1.80 64 1445.50 0.19 2.19 104 1443.01 0.20 2.20 

ip7 

First 70 25 4626.36 0.34 1.59 65 4926.89 0.26 1.64 105 4926.89 0.26 1.64 

First 30 26 4487.79 0.18 1.98 66 3825.77 0.40 2.07 106 3825.77 0.40 2.07 

Last 30 27 2376.32 0.54 3.75 67 2316.80 0.57 3.58 107 2310.14 0.57 3.58 

Last 70 28 1477.71 0.16 1.89 68 1439.50 0.19 2.13 108 1430.78 0.19 2.12 

ip8 

First 70 29 4618.05 0.34 1.51 69 4899.53 0.27 1.62 109 4899.53 0.27 1.62 

First 30 30 4515.58 0.17 1.92 70 3814.11 0.41 2.06 110 3814.11 0.41 2.06 

Last 30 31 2371.30 0.54 3.56 71 2420.81 0.53 4.06 111 2382.20 0.55 3.99 

Last 70 32 1508.34 0.12 1.73 72 1479.15 0.15 2.32 112 1473.68 0.16 2.32 

ip9 

First 70 33 4641.72 0.34 1.45 73 4929.06 0.26 1.66 113 4929.06 0.26 1.66 

First 30 34 4589.07 0.15 1.97 74 3832.16 0.40 2.03 114 3832.16 0.40 2.03 

Last 30 35 2385.67 0.54 3.77 75 2388.97 0.54 3.48 115 2370.24 0.55 3.49 

Last 70 36 1419.69 0.21 1.86 76 1422.40 0.20 2.08 116 1428.36 0.20 2.11 

ip10 

First 70 37 4665.07 0.34 1.39 77 4902.71 0.27 1.65 117 4902.71 0.27 1.65 

First 30 38 3821.82 0.41 2.02 78 3821.82 0.41 2.02 118 3821.82 0.41 2.02 

Last 30 39 2388.47 0.54 3.57 79 2473.77 0.52 4.02 119 2426.60 0.53 3.91 

Last 70 40 1499.18 0.13 1.69 80 1470.46 0.16 2.30 120 1465.11 0.17 2.30 
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Table 5 
August Results of Mandaleshwar With Trial and Error 

Model 

Name 

Training 

percentage 

Model 

No. 

RBF Kernel Model 

No. 

LINEAR Kernel Model 

No. 

POLYNOMIAL Kernel 

RMSE CE MARE RMSE CE MARE RMSE CE MARE 

ip1 

First 70 121 2829.33 0.41 0.60 161 2863.93 0.39 0.56 201 2863.93 0.39 0.56 

First 30 122 3005.23 0.49 0.45 162 3014.88 0.49 0.44 202 3014.91 0.49 0.44 

Last 30 123 2931.37 0.52 1.05 163 2933.26 0.52 1.14 203 2933.91 0.52 1.14 

Last 70 124 2595.56 0.50 2.27 164 2586.64 0.51 2.12 204 2586.69 0.51 2.12 

ip2 

First 70 125 2858.78 0.39 0.60 165 2868.54 0.39 0.56 205 2868.54 0.39 0.56 

First 30 126 3061.99 0.47 0.43 166 3085.05 0.47 0.42 206 3085.15 0.47 0.42 

Last 30 127 3067.01 0.48 1.33 167 2942.77 0.52 1.17 207 2945.60 0.52 1.18 

Last 70 128 2607.90 0.50 2.26 168 2636.87 0.49 2.09 208 2635.79 0.49 2.11 

ip3 

First 70 129 2842.97 0.40 0.58 169 2971.23 0.35 0.60 209 2966.19 0.35 0.60 

First 30 130 2945.02 0.52 0.45 170 2974.33 0.51 0.44 210 2974.77 0.76 0.44 

Last 30 131 3048.98 0.48 1.17 171 2935.00 0.52 1.06 211 2941.11 0.52 1.07 

Last 70 132 2576.64 0.51 1.93 172 2574.43 0.51 2.15 212 2574.14 0.51 2.16 

ip4 

First 70 133 2721.30 0.71 0.59 173 2705.20 0.46 0.56 213 2705.30 0.46 0.56 

First 30 134 2840.90 0.78 0.40 174 2840.90 0.55 0.40 214 2840.90 0.55 0.40 

Last 30 135 2864.20 0.78 1.17 175 2628.60 0.62 0.94 215 2622.10 0.62 0.93 

Last 70 136 2426.30 0.77 2.11 176 2454.10 0.56 1.93 216 2453.60 0.56 1.95 

ip5 

First 70 137 2855.45 0.40 0.59 177 2962.58 0.38 0.60 217 2957.98 0.36 0.60 

First 30 138 2953.37 0.51 0.45 178 2983.40 0.50 0.44 218 2983.40 0.50 0.44 

Last 30 139 2957.19 0.51 0.93 179 2944.23 0.52 0.93 219 2944.23 0.52 0.93 

Last 70 140 2596.06 0.50 1.37 180 2616.85 0.49 1.80 220 2613.96 0.49 1.82 

ip6 

First 70 141 2959.56 0.36 0.60 181 2921.80 0.37 0.59 221 2947.66 0.36 0.59 

First 30 142 3031.52 0.49 0.43 182 3089.82 0.47 0.43 222 3089.82 0.47 0.43 

Last 30 143 3112.44 0.46 1.08 183 2958.53 0.51 0.97 223 2958.53 0.51 0.97 

Last 70 144 2583.43 0.50 1.66 184 2655.15 0.48 1.81 224 2650.61 0.48 1.82 

ip7 

First 70 145 2834.08 0.41 0.59 185 2948.40 0.37 0.60 225 2945.04 0.37 0.60 

First 30 146 2986.50 0.50 0.46 186 3016.96 0.49 0.45 226 3016.96 0.49 0.45 

Last 30 147 2951.52 0.51 0.92 187 2963.98 0.51 0.98 227 2963.98 0.51 0.98 

Last 70 148 2604.68 0.49 1.59 188 2642.00 0.48 1.85 228 2640.41 0.48 1.86 

ip8 

First 70 149 2909.27 0.38 0.59 189 2949.66 0.37 0.60 229 2949.66 0.37 0.60 

First 30 150 3047.62 0.48 0.44 190 3105.35 0.46 0.44 230 3105.35 0.46 0.44 

Last 30 151 3062.34 0.48 1.06 191 2975.66 0.51 1.01 231 2975.66 0.51 1.01 

Last 70 152 2592.59 0.50 1.63 192 2673.14 0.46 1.86 232 2667.33 0.47 1.87 

ip9 

First 70 153 2816.41 0.42 0.59 193 2964.76 0.36 0.60 233 2960.87 0.36 0.60 

First 30 154 3067.94 0.48 0.47 194 3147.99 0.45 0.47 234 3147.87 0.45 0.47 

Last 30 155 2969.54 0.51 0.86 195 3026.59 0.49 1.00 235 3026.59 0.49 1.00 

Last 70 156 2620.94 0.48 1.54 196 2649.62 0.47 1.80 236 2645.94 0.47 1.81 

ip10 

First 70 157 2893.02 0.38 0.60 197 2967.04 0.36 0.60 237 2967.04 0.36 0.60 

First 30 158 3167.35 0.44 0.46 198 3271.69 0.41 0.46 238 3271.69 0.41 0.46 

Last 30 159 3005.49 0.50 0.84 199 3032.03 0.49 1.03 239 3032.03 0.49 1.03 

Last 70 160 2608.29 0.49 1.53 200 2681.63 0.46 1.81 240 2676.59 0.46 1.82 
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Table 6 

September Results of Mandaleshwar With Trial and Error. 

Model 

Name 

Training 

percentage 

Model 

No. 

RBF Kernel Model 

No. 

LINEAR Kernel Model 

No. 

POLYNOMIAL Kernel 

RMSE CE MARE RMSE CE MARE RMSE CE MARE 

ip1 

First 70 241 1173.88 0.50 0.47 281 1156.94 0.50 0.45 321 1169.08 0.50 0.46 

First 30 242 2837.54 0.45 0.41 282 2531.16 0.56 0.34 322 2531.76 0.56 0.34 

Last 30 243 2940.43 0.41 0.45 283 2549.29 0.56 0.37 323 2549.29 0.56 0.37 

Last 70 244 1222.93 0.55 0.57 284 1217.60 0.55 0.57 324 1217.60 0.55 0.57 

ip2 

First 70 245 1028.36 0.62 0.52 285 1099.04 0.56 0.47 325 1096.91 0.56 0.48 

First 30 246 2965.99 0.39 0.41 286 2527.89 0.56 0.34 326 2527.96 0.56 0.34 

Last 30 247 3010.64 0.38 0.46 287 2605.56 0.54 0.39 327 2605.56 0.54 0.39 

Last 70 248 1259.72 0.52 0.62 288 1248.55 0.53 0.59 328 1248.55 0.53 0.59 

ip3 

First 70 249 1178.41 0.50 0.42 289 1312.40 0.38 0.56 329 1312.40 0.38 0.56 

First 30 250 2932.01 0.41 0.42 290 2470.34 0.58 0.35 330 2470.72 0.58 0.35 

Last 30 251 3027.48 0.38 0.49 291 2496.49 0.58 0.40 331 2500.06 0.57 0.41 

Last 70 252 1249.39 0.52 0.50 292 1245.00 0.53 0.61 332 1245.00 0.53 0.61 

ip4 

First 70 253 994.92 0.64 0.47 293 1250.52 0.44 0.59 333 1247.72 0.44 0.59 

First 30 254 3048.51 0.36 0.41 294 2467.13 0.58 0.35 334 2472.11 0.58 0.35 

Last 30 255 3015.46 0.38 0.47 295 2530.42 0.56 0.38 335 2529.42 0.56 0.38 

Last 70 256 1289.06 0.49 0.51 296 1286.68 0.49 0.62 336 1286.49 0.49 0.62 

ip5 

First 70 257 1198.35 0.48 0.40 297 1287.20 0.40 0.50 337 1287.20 0.40 0.50 

First 30 258 3017.98 0.38 0.44 298 2503.55 0.57 0.36 338 2503.55 0.57 0.36 

Last 30 259 3104.51 0.35 0.52 299 2572.59 0.55 0.46 339 2571.81 0.55 0.46 

Last 70 260 1269.49 0.51 0.49 300 1311.62 0.48 0.57 340 1308.17 0.48 0.58 

ip6 

First 70 261 1019.99 0.63 0.45 301 1228.82 0.46 0.53 341 1221.63 0.46 0.52 

First 30 262 3128.91 0.33 0.44 302 2513.76 0.57 0.37 342 2513.76 0.57 0.37 

Last 30 263 3080.48 0.36 0.50 303 2596.75 0.54 0.44 343 2595.60 0.54 0.44 

Last 70 264 1303.95 0.48 0.50 304 1315.70 0.48 0.58 344 1315.70 0.48 0.58 

ip7 

First 70 265 1257.24 0.43 0.52 305 1197.25 0.48 0.39 345 1257.24 0.43 0.52 

First 30 266 3071.14 0.36 0.45 306 2523.39 0.57 0.37 346 2523.39 0.57 0.37 

Last 30 267 3151.80 0.33 0.55 307 2554.27 0.56 0.45 347 2548.69 0.56 0.45 

Last 70 268 1278.03 0.51 0.46 308 1358.82 0.44 0.58 348 1351.52 0.45 0.58 

ip8 

First 70 269 1027.72 0.62 0.44 309 1205.72 0.48 0.54 349 1202.40 0.48 0.55 

First 30 270 3170.38 0.31 0.45 310 2535.73 0.56 0.37 350 2534.86 0.56 0.37 

Last 30 271 3145.96 0.33 0.54 311 2640.95 0.53 0.46 351 2638.32 0.53 0.46 

Last 70 272 1307.34 0.48 0.47 312 1343.88 0.45 0.57 352 1344.89 0.45 0.57 

ip9 

First 70 273 1252.57 0.44 0.39 313 1281.42 0.41 0.49 353 1281.22 0.41 0.49 

First 30 274 3055.09 0.37 0.44 314 2562.64 0.55 0.35 354 2563.04 0.55 0.35 

Last 30 275 3214.01 0.30 0.59 315 2594.82 0.55 0.47 355 2593.54 0.55 0.47 

Last 70 276 1280.90 0.50 0.45 316 1349.12 0.45 0.53 356 1344.03 0.45 0.53 

ip10 

First 70 277 1101.79 0.57 0.44 317 1228.90 0.46 0.51 357 1223.70 0.47 0.52 

First 30 278 3135.14 0.33 0.43 318 2576.29 0.55 0.35 358 2573.57 0.55 0.36 

Last 30 279 3203.20 0.31 0.58 319 2675.08 0.52 0.48 359 2675.08 0.52 0.48 

Last 70 280 1307.10 0.48 0.45 320 1332.63 0.46 0.53 360 1332.63 0.46 0.53 
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Table 7 

October Results of Mandaleshwar With Trial and Error. 

Model 

Name 

Training 

percentage 

Model 

No. 

RBF Kernel Model 

No. 

LINEAR Kernel Model 

No. 

POLYNOMIAL Kernel 

RMSE CE MARE RMSE CE MARE RMSE CE MARE 

ip1 

First 70 361 133.81 0.69 0.22 401 141.41 0.65 0.25 441 141.92 0.65 0.25 

First 30 362 392.67 0.52 0.34 402 382.07 0.55 0.26 442 382.30 0.80 0.26 

Last 30 363 623.82 0.46 0.15 403 605.83 0.49 0.12 443 604.60 0.49 0.12 

Last 70 364 693.17 0.52 0.29 404 708.19 0.50 0.26 444 708.13 0.50 0.26 

ip2 

First 70 365 200.36 0.30 0.38 405 139.69 0.66 0.24 445 139.62 0.66 0.24 

First 30 366 458.67 0.35 0.46 406 390.33 0.53 0.24 446 390.57 0.53 0.24 

Last 30 367 677.79 0.36 0.26 407 600.60 0.50 0.12 447 600.19 0.50 0.12 

Last 70 368 693.45 0.52 0.29 408 707.40 0.50 0.26 448 707.43 0.50 0.26 

ip3 

First 70 369 160.53 0.55 0.31 409 123.77 0.73 0.22 449 123.73 0.73 0.22 

First 30 370 494.14 0.23 0.28 410 400.48 0.50 0.23 450 400.44 0.50 0.23 

Last 30 371 670.00 0.38 0.22 411 587.78 0.52 0.13 451 586.51 0.52 0.13 

Last 70 372 712.89 0.50 0.34 412 695.52 0.53 0.25 452 695.47 0.53 0.25 

ip4 

First 70 373 122.89 0.74 0.21 413 121.67 0.74 0.21 453 121.67 0.74 0.21 

First 30 374 503.86 0.20 0.30 414 406.81 0.48 0.21 454 406.69 0.48 0.21 

Last 30 375 615.05 0.48 0.15 415 590.22 0.52 0.14 455 590.21 0.52 0.14 

Last 70 376 694.43 0.53 0.28 416 695.54 0.53 0.25 456 695.38 0.53 0.25 

ip5 

First 70 377 147.70 0.62 0.22 417 127.94 0.72 0.22 457 127.94 0.72 0.22 

First 30 378 523.38 0.14 0.32 418 407.98 0.48 0.22 458 407.98 0.48 0.22 

Last 30 379 638.65 0.44 0.16 419 594.49 0.51 0.14 459 594.58 0.51 0.14 

Last 70 380 692.47 0.54 0.26 420 700.99 0.52 0.26 460 780.41 0.41 0.62 

ip6 

First 70 381 171.02 0.50 0.34 421 121.77 0.74 0.21 461 121.71 0.74 0.21 

First 30 382 561.76 0.01 0.32 422 414.81 0.46 0.20 462 414.71 0.46 0.20 

Last 30 383 679.99 0.36 0.21 423 590.80 0.52 0.14 463 590.77 0.52 0.14 

Last 70 384 697.31 0.53 0.29 424 699.64 0.53 0.27 464 699.64 0.53 0.27 

ip7 

First 70 385 179.72 0.44 0.28 425 136.77 0.68 0.23 465 136.71 0.68 0.23 

First 30 386 584.54 -0.07 0.33 426 413.02 0.46 0.24 466 413.02 0.46 0.24 

Last 30 387 702.15 0.32 0.18 427 593.53 0.52 0.15 467 604.59 0.50 0.17 

Last 70 388 696.35 0.53 0.28 428 709.87 0.52 0.25 468 708.03 0.52 0.26 

ip8 

First 70 389 175.16 0.47 0.32 429 131.39 0.70 0.22 469 131.36 0.70 0.22 

First 30 390 565.36 -0.01 0.34 430 424.36 0.43 0.22 470 424.36 0.43 0.22 

Last 30 391 678.09 0.37 0.19 431 589.24 0.52 0.15 471 587.91 0.52 0.15 

Last 70 392 694.69 0.54 0.31 432 710.69 0.51 0.25 472 710.37 0.52 0.25 

ip9 

First 70 393 173.87 0.48 0.27 433 139.36 0.67 0.22 473 139.40 0.67 0.22 

First 30 394 565.22 -0.04 0.34 434 407.71 0.46 0.25 474 407.71 0.46 0.25 

Last 30 395 652.48 0.41 0.18 435 602.64 0.50 0.15 475 602.71 0.50 0.15 

Last 70 396 693.26 0.55 0.28 436 705.12 0.53 0.26 476 705.13 0.53 0.25 

ip10 

First 70 397 174.07 0.48 0.27 437 135.25 0.69 0.22 477 135.19 0.69 0.22 

First 30 398 575.88 -0.08 0.35 438 419.30 0.43 0.23 478 419.29 0.43 0.23 

Last 30 399 640.86 0.44 0.17 439 597.56 0.51 0.15 479 597.56 0.72 0.15 

Last 70 400 690.34 0.55 0.28 440 705.07 0.53 0.25 480 704.92 0.53 0.25 
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For combined four monthly model using the method of trial and error for input selection and 

calibrated with RBF kernel and last 70 % data RMSE of 1606.53 m
3
/s was obtained (model 496). 

While linear kernel and calibration with last 70 % data of shows RMSE of 1633.71 m
3
/s (model 

524) and polynomial kernel and calibration with last 70 % data show RMSE of 1609 m
3
/s (model 

576).  Method of AMI for input selection and calibration with RBF kernel and last 70 % data 

exhibited RMSE as 1555 m
3
/s (model 620). For model developed with linear kernel showed 

RMSE equal to 1679.3 m
3
/s (model 640) with last 70 % data used for calibration. The 

polynomial kernel, when used with last 70 % data for calibration, showed RMSE equal to 1679.1 

m
3
/s (model 660). Method of correlation analysis for input selection and RBF kernel yielded 

RMSE of 1606.5 m
3
/s (model 680) when last 70 % of data was used. The combination of linear 

kernel and last 70 % data for calibration showed RMSE of 1691.9 m
3
/s (model 700). Polynomial 

kernel with last 70 % data for calibration exhibited RMSE of 1609 m
3
/s (model 720). Thus the 

results of combined four monthly models indicate that RBF kernel along with trial and error is 

the best in this case. Results of combined four monthly models are shown in Table 8, 9 and 10. 

The models were then judged for their performance at extreme events. For the month of July, the 

best model with AMI (model 603) and RBF predicted discharge of 19467 m
3
/s against an 

observed discharge of 20119 m
3
/s (figure 3) in testing while the maximum value of observed 

discharge in calibration data set was 36045 m
3
/s. For the month of August, the best model with 

AMI (model 608) and RBF predicted discharge of 8464.8 m
3
/s against an observed discharge of 

23313 m
3
/sin testing (figure 4) wherein the observed maximum value (27093 m

3
/s) of discharge 

was in the calibration data. In case of September as well the maximum observed value of 

discharge (35450 m
3
/s) was included in calibration data set. The best model with AMI and RBF 

(model 253) yielded 8561.8 m
3
/s of discharge in testing against 11852 m

3
/s of observed 

discharge (not shown). For the month of October the best model (model 373) using Trial and 

error and RBF gave1094.7 m
3
/s of discharge against 1628 m

3
/s in testing (not shown) when the 

maximum value of discharge in calibration was 5848 m
3
/s. For combined four monthly model 

maximum value of discharge was 36045 m
3
/s which were in the calibration data set. The best 

model with AMI and RBF (model 620) predicted 5486.4 m
3
/s discharge against 23313 m

3
/s of 

observed discharge in testing (figure 5). Thus it can be said results for peak prediction are poor in 

almost all the cases. This can be attributed to less number of extreme events in the data used. To 

verify this, the data was analysed for share of extreme events in the entire data length. It was 

observed that around 1.77 % values of discharge are in the range of  1 m
3
/s to 100 m

3
/s, 43.16 % 

values of discharge are in range of  101 m
3
/s to 1000 m

3
/s, 51.23 % values of discharge in data 

are in between 1000 m
3
/s to 10000 m

3
/s, 3.03 % values of discharge are in the range of 10001 

m
3
/s to 20000 m

3
/s, 0.59 % values of discharge are in the range of  20001 m

3
/s to 30000 m

3
/s, 

0.22 % values of discharge are in the range of 30001 m
3
/s to 40000 m

3
/s. This is similar to other 

data-driven methods like ANN as mentioned by [31] in their work on wave forecasting.  
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Table 8 

4 Monthly Results of Mandaleshwar With Trial and Error. 

Model 

Name 

Training 

percentage 

Model 

No. 

RBF Kernel Model 

No. 

LINEAR Kernel Model 

No. 

POLYNOMIAL Kernel 

RMSE CE MARE RMSE CE MARE RMSE CE MARE 

ip1 

First 70 481 2500.50 0.35 0.63 521 2576.56 0.31 0.75 561 2576.56 0.31 0.75 

First 30 482 2604.59 0.58 0.70 522 2615.26 0.57 0.67 562 2624.05 0.57 0.48 

Last 30 483 2359.51 0.61 0.99 523 2425.05 0.59 1.09 563 2425.05 0.59 1.09 

Last 70 484 1633.36 0.57 0.89 524 1633.71 0.57 1.17 564 1633.71 0.57 1.17 

ip2 

First 70 485 2444.43 0.38 0.63 525 2575.45 0.31 0.75 565 2460.93 0.37 0.43 

First 30 486 2645.26 0.56 0.61 526 2625.78 0.57 0.66 566 2627.17 0.57 0.66 

Last 30 487 2403.55 0.60 1.00 527 2467.37 0.58 1.12 567 2467.92 0.58 1.12 

Last 70 488 1616.28 0.58 1.24 528 1648.72 0.56 1.16 568 1648.72 0.56 1.16 

ip3 

First 70 489 2416.07 0.40 0.64 529 2597.42 0.3 0.86 569 2464.3 0.37 0.5 

First 30 490 2578.12 0.58 0.63 530 2595.6 0.58 0.69 570 2466.89 0.62 0.52 

Last 30 491 2294.97 0.64 0.89 531 2464.74 0.58 1.22 571 2464.5 0.58 1.21 

Last 70 492 1632.45 0.57 1.12 532 1662.79 0.56 1.29 572 1669.19 0.55 0.63 

ip4 

First 70 493 2336.41 0.44 0.56 533 2588.31 0.31 0.87 573 2401.12 0.4 0.46 

First 30 494 2617.14 0.57 0.56 534 2613.26 0.57 0.67 574 2520.43 0.6 0.43 

Last 30 495 2272.93 0.64 0.84 535 2463.13 0.58 1.21 575 2212.16 0.66 0.68 

Last 70 496 1606.53 0.58 0.76 536 1691.93 0.54 0.01 576 1609 0.59 0.003 

ip5 

First 70 497 3255.46 -0.10 0.69 537 2567.22 0.59 0.65 577 2553.41 0.33 0.46 

First 30 498 2531.40 0.60 0.54 538 2619.17 0.29 0.74 578 2565.84 0.59 0.65 

Last 30 499 2339.21 0.62 0.85 539 2453.78 0.58 1.15 579 2453.98 0.58 1.15 

Last 70 500 1644.14 0.56 0.75 540 1664.37 0.56 0.003 580 1663.85 0.56 0.003 

ip6 

First 70 501 3106.59 0.00 0.65 541 2616.57 0.29 0.73 581 2614.24 0.29 0.73 

First 30 502 2543.89 0.60 0.47 542 2585.75 0.58 0.64 582 2583.95 0.58 0.64 

Last 30 503 2287.27 0.64 0.79 543 2452.84 0.58 1.15 583 2453.25 0.58 1.15 

Last 70 504 1608.11 0.58 0.72 544 1681.23 0.55 0.003 584 1682.81 0.55 0.003 

ip7 

First 70 505 2412.74 0.40 0.52 545 2630.32 0.29 0.74 585 2624.18 0.29 0.75 

First 30 506 2550.05 0.59 0.51 546 2560.91 0.59 0.65 586 2561.17 0.59 0.65 

Last 30 507 2393.01 0.60 0.82 547 2496.91 0.57 1.17 587 2497.08 0.57 1.17 

Last 70 508 1642.27 0.57 0.70 548 1660.52 0.56 0 588 1661.21 0.56 0 

ip8 

First 70 509 2345.51 0.43 0.49 549 2579.76 0.58 0.62 589 2623.17 0.29 0.74 

First 30 510 3273.05 0.33 0.61 550 2623.05 0.29 0.75 590 2579.76 0.58 0.62 

Last 30 511 2387.17 0.61 0.79 551 2495.87 0.57 1.17 591 2495.87 0.57 1.17 

Last 70 512 1608.10 0.74 0.67 552 1678.41 0.55 0.002 592 1675.01 0.55 0.002 

ip9 

First 70 513 2413.74 0.40 0.48 553 2634.1 0.29 0.7 593 2558.12 0.59 0.62 

First 30 514 2647.70 0.56 0.53 554 2558.12 0.59 0.62 594 1667.73 0.55 0.99 

Last 30 515 2423.64 0.59 0.80 555 2471.12 0.58 1.08 595 2627.42 0.29 0.71 

Last 70 516 1644.37 0.56 0.67 556 1670.2 0.55 0.003 596 2472.23 0.58 0.004 

ip10 

First 70 517 2359.43 0.43 0.46 557 2626.88 0.29 0.71 597 2626.58 0.29 0.7 

First 30 518 2674.81 0.55 0.47 558 2576.75 0.59 0.6 598 2576.75 0.59 0.6 

Last 30 519 2395.82 0.60 0.76 559 2467.8 0.58 1.08 599 2470.54 0.58 1.08 

Last 70 520 1611.71 0.58 0.64 560 1686.08 0.54 0.004 600 1684.42 0.54 0.004 
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Table 9 

Mandaleshwar Results and Input details with AMI. 

Training 

Percentage 

Model 

No. 

RBF Kernel Model 

No. 

LINEAR Kernel Model 

No. 

POLYNOMIAL Kernel 

RMSE CE MARE RMSE CE MARE RMSE CE MARE 

  July 
R
t
,Q

t-1
,Q

t 

First 70 601 3665.6 0.69 1.06 621 3717.9 0.61 0.93 641 3717.9 0.61 0.93 

First 30 602 3926.7 0.52 1.86 622 3222.1 0.58 1.71 642 3222.1 0.58 1.71 

Last 30 603 55.9 0.99 2.22 623 2786.4 0.26 1.65 643 2755.1 0.27 1.58 

Last 70 604 1929 0.24 1.36 624 2064.7 -0.65 1.41 644 2064.7 -0.65 1.41 

  August        
R
t-2

, R
t-1

,R
t
,Q

t 

First 70 605 2721.3 0.71 0.59 625 2705.2 0.46 0.56 645 2705.3 0.46 0.56 

First 30 606 2840.9 0.78 0.4 626 2840.9 0.55 0.4 646 2840.9 0.55 0.4 

Last 30 607 2864.2 0.78 1.17 627 2628.6 0.62 0.94 647 2622.1 0.62 0.93 

Last 70 608 2426.3 0.77 2.11 628 2454.1 0.56 1.93 648 2453.6 0.56 1.95 

  September      
R
t-2

, R
t-1

,R
t
,Q

t 

First 70 609 1503.9 0.18 0.59 629 1706.1 -0.06 0.59 649 1700.7 -0.05 0.59 

First 30 610 2797 0.46 0.37 630 2294.5 0.64 0.3 650 2290.7 0.64 0.3 

Last 30 611 2874.4 0.44 0.44 631 2397.5 0.61 0.35 651 2397.2 0.61 0.35 

Last 70 612 1215.8 0.55 0.57 632 1323.5 0.46 0.49 652 1323.6 0.46 0.49 

  October 
R
t-4

, R
t-3

,R
t-1

,R
t
,Q

t-2
,Q

t-1
,Q

t 

First 70 613 194 0.35 0.34 633 125.9 0.73 0.21 653 125.8 0.73 0.21 

First 30 614 556.5 0.04 0.36 634 417.3 0.46 0.19 654 417.3 0.46 0.19 

Last 30 615 673.3 0.38 0.17 635 598.5 0.51 0.13 655 598.6 0.51 0.13 

Last 70 616 708.9 0.51 0.3 636 700.7 0.52 0.26 656 700.3 0.53 0.26 

  4 Monthly 
R
t-3

,R
t-2

,R
t-1

,R
t
,Q

t-1
,Q

t 

First 70 617 1637 0.72 0.48 637 1917.6 0.62 0.68 657 1916.5 0.62 0.68 

First 30 618 2155.7 0.71 0.4 638 2233.1 0.69 0.47 658 2232.8 0.69 0.47 

Last 30 619 2082.2 0.7 0.63 639 2194.7 0.67 0.75 659 2195 0.67 0.75 

Last 70 620 1555 0.61 0.74 640 1679.3 0.55 1 660 1679.1 0.55 1.06 

 

 
Fig. 3. Mandaleshwar July last 30% calibration with AMI method of input selection. 
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Table 10 

Mandaleshwar Results and Inputs with Method of Correlation Analysis. 

Training 

Percenatge 

Model 

No. 

RBF Kernel 
Model 

No. 

LINEAR Kernel 
Model 

No. 

POLYNOMIAL Kernel 

RMSE CE MARE RMSE CE MARE RMSE CE MARE 

 

July 
R
t
,Q

t-1
,Q

t 

First 70 661 4541.9 0.4 1.5 681 4812.2 0.33 1.5 701 4834 0.32 1.46 

First 30 662 4471.2 0.18 1.98 682 3766.3 0.42 2.03 702 3766.3 0.42 2.03 

Last 30 663 2261.1 0.54 3.88 683 2173.1 0.58 3.63 703 2178.1 0.58 3.65 

Last 70 664 1414.7 0.22 2.02 684 1460.6 0.18 2.18 704 1459.8 0.18 2.19 

 
August 

   
R
t-2

, R
t-1

,R
t
,Q

t 

First 70 665 2843 0.4 0.58 685 2971.2 0.35 0.6 705 2966.2 0.35 0.6 

First 30 666 2945 0.52 0.45 686 2974.3 0.51 0.44 706 2974.8 0.76 0.44 

Last 30 667 3049 0.48 1.17 687 2935 0.52 1.06 707 2941.1 0.52 1.07 

Last 70 668 2576.6 0.51 1.93 688 2574.4 0.51 2.15 708 2574.1 0.51 2.16 

 
September 

  
R
t-2

, R
t-1

,R
t
,Q

t 

First 70 669 1066.7 0.84 0.46 689 1171 0.51 0.45 709 1162.3 0.51 0.46 

First 30 670 3102.7 0.6 0.42 690 2491.4 0.57 0.35 710 2496.5 0.57 0.35 

Last 30 671 3041.4 0.62 0.5 691 2640 0.53 0.42 711 2639.1 0.53 0.42 

Last 70 672 1277.1 0.79 0.51 692 1229.5 0.54 0.55 712 1229.5 0.54 0.55 

 
October 

R
t-4

, R
t-3

,R
t-1

,R
t
,Q

t-2
,Q

t-1
,Q

t 

First 70 673 134.1 0.94 0.22 693 123.9 0.74 0.22 713 123.9 0.74 0.22 

First 30 674 507.5 0.62 0.33 694 406.1 0.46 0.22 714 406.1 0.46 0.22 

Last 30 675 607.1 0.71 0.15 695 598 0.51 0.13 715 598.1 0.51 0.13 

Last 70 676 701.2 0.71 0.27 696 702.4 0.53 0.26 716 702.2 0.53 0.27 

 
4 Monthly 

R
t-3

,R
t-2

,R
t-1

,R
t
,Q

t-1
,Q

t 

First 70 677 2336.4 0.44 0.56 697 2588.3 0.31 0.87 717 2401.1 0.4 0.46 

First 30 678 2617.1 0.57 0.56 698 2613.3 0.57 0.67 718 2520.4 0.6 0.43 

Last 30 679 2272.9 0.64 0.84 699 2463.1 0.58 1.21 719 2212.2 0.66 0.68 

Last 70 680 1606.5 0.58 0.76 700 1691.9 0.54 0.01 720 1609 0.59 0.0031 
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Fig. 4. Mandaleshwar August first 30% calibration with AMI method of input selection. 

 
Fig. 5. Mandaleshwar 4 Monthly first 70% calibration with AMI method of input selection. 
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months with all three input selection methods. This can be attributed to the lowest average 

rainfall and lowest standard deviation for October. Refer table number 4 to 10 for results at 

Mandaleshwar. Results in bold letters indicate the best model. 

Among the three kernels used, RBF kernel seemed to be the best as evident from the results. The 

reason for RBF to be the best in comparison with other kernel functions could lie in the fact that 

the RBF kernel is more compact and is able to shorten the computational training process and 

improve the generalization performance of LS-SVR [21]. Performance of the linear and 

polynomial kernels is almost the same. Controlling parameter of the polynomial kernel is a 

degree (d), which was varied and models with best results were finalized. In many cases, it was 

found that 'd' had a value equal to '1' which ultimately resulted into a ‘Linear Kernel Function’. 

At Mandaleshwar all three input selection methods were tried. By observing results at 

Mandaleshwar AMI and Method of the trial were found to be the best input selection methods. 

Therefore for remaining two stations namely Nighoje and Budhwad trial and error and AMI 

methods were used for input selection, and RBF kernel was used for calibration of the model. 

Results of Nighoje are discussed in the next paragraph. 

5.2. Nighoje 

Results at Nighoje are shown in Table 11, 12 and 13. For the month of June, model developed 

with trial and error input selection and last 70 % data for calibration showed RMSE equal to 

34.27 m
3
/s (model 724), while model developed using input selection method of AMI and 

calibrated with last 70 % data showed RMSE of 52.29 m
3
/s (model 964), which is high as 

compared to trial and error. The models developed for July calibrated with last 30 % data (model 

779), September with last 70 % data (model 879) and five monthly model calibrated with last 30 

% data (model 951) followed the same suite while October model, when calibrated with last 70% 

data, showed equal performance of both the input selection schemes (model 844 and model 980). 

For the month of August, a model with input selection method of trial and error and calibrated 

with first 30 % data yielded RMSE of 89.05 m
3
/s (model 814), while model calibrated with input 

selection method of AMI and first 30% data gave RMSE of 85.15 m
3
/s (model 970). Thus for 

Nighoje majority of the times, the models developed with input selection method of trial and 

error were the winners possibly due to its nonlinear nature.  

June model had a maximum value of discharge as 678.16 m
3
/s which were included in the 

calibration data set. The best model (model 724) predicted discharge as 94.46 m
3
/s against 198 

m
3
/s in testing (not shown). For July the best model (model 779) predicted 263.49 m

3
/s against 

an observed discharge of 576.92 m
3
/s in testing (not shown). The maximum value of discharge in 

calibration was 1299.62 m
3
/s. For August model maximum value of discharge was 2110.92 m

3
/s 

which were in the calibration data set. The best model (model 970) predicted 481.18 m
3
/s against 

893.05 m
3
/s observed discharge in testing. Scatter plot for the month of August is shown in 

figure 6. For September model maximum value of discharge in calibration data was 446.09 m
3
/s. 

The best model (model 879) yielded 98.06 m
3
/s discharge against an observed discharge of 

260.18 m
3
/s (not shown). In five Monthly combined model (model 951) the maximum observed 
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discharge was 2110.92 m
3
/s which were predicted as 516.22 m

3
/s in testing. The maximum value 

of discharge in calibration was 1299.62 m
3
/s. Figure 7 shows scatter plot for 5 Monthly model. 

For Nighoje results of the models developed for the month October results are better as far as 

general performance is considered as compared to all other months which are similar to 

Mandaleshwar wherein results of October are the best. The peaks were predicted with less 

accuracy as in Mandaleshwar. Statistical analysis of data showed that, 82 % values of discharge 

were in the range of 1 m
3
/s to 100 m

3
/s, 17 % values of discharge were in the range of 101 m

3
/s 

to 1000 m
3
/s, 0.24 % values of discharge were in the range of  1001 m

3
/s to 2000 m

3
/s  with 

0.76% above 2000 m
3
/s. 

 
Fig. 6. Nighoje August first 30% calibration with AMI method of input selection. 

 
Fig. 7. Nighoje 5 Monthly ip8 last 30% calibration with Trial and Error method of input selection.  
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Table 11 
Nighoje Results With Trial and Error. 

Model 

Name 

Training 

percentage 

Model 

No. 

June Model 

No. 

July Model 

No. 

August 

RMSE CE MARE RMSE CE MARE RMSE CE MARE 

ip1 

First 70 721 100.92 0.30 1.72 761 140.19 0.44 1.35 801 127.94 0.46 0.35 

First 30 722 79.52 0.27 1.87 762 96.14 0.52 1.70 802 121.16 0.23 2.74 

Last 30 723 53.86 0.01 14.26 763 70.04 0.46 7.92 803 182.28 -0.31 6.84 

Last 70 724 34.27 0.26 13.33 764 87.33 0.48 7.65 804 212.74 0.11 2.02 

ip2 

First 70 725 99.55 0.32 1.67 765 140.51 0.44 1.15 805 165.33 0.1 0.48 

First 30 726 80.49 0.26 1.88 766 92.51 0.55 1.41 806 125.58 0.17 2.96 

Last 30 727 57.97 -0.14 12.22 767 76.60 0.36 7.83 807 170.31 -0.15 6.27 

Last 70 728 44.71 -0.25 14.40 768 89.97 0.44 9.90 808 201.61 0.2 1.88 

ip3 

First 70 729 104.12 -8.63 0.90 769 148.72 0.37 1.14 809 120.46 0.52 0.36 

First 30 730 82.56 0.22 1.92 770 100.41 0.47 1.48 810 93.84 0.54 1.61 

Last 30 731 52.83 0.04 12.84 771 70.21 0.46 7.27 811 136.83 0.27 2.77 

Last 70 732 35.43 0.43 12.28 772 89.12 0.45 6.15 812 203.41 0.19 0.82 

ip4 

First 70 733 103.05 0.27 1.55 773 148.94 0.37 0.97 813 114.65 0.57 0.31 

First 30 734 83.21 0.21 1.91 774 98.25 0.49 1.28 814 89.05 0.58 0.9916 

Last 30 735 56.76 -0.11 11.34 775 75.13 0.38 7.17 815 112.11 0.51 2.79 

Last 70 736 43.36 -0.16 12.99 776 99.50 0.32 8.55 816 180.69 0.36 1.22 

ip5 

First 70 737 105.14 0.24 1.66 777 150.46 0.36 1.11 817 93.14 0.6 0.63 

First 30 738 83.86 0.20 2.05 778 100.89 0.47 1.45 818 93.68 0.54 1.61 

Last 30 739 52.84 0.06 12.65 779 69.68 0.47 6.38 819 137.56 0.26 2.74 

Last 70 740 35.55 0.22 12.10 780 89.73 0.64 5.46 820 204.14 0.19 0.7 

ip6 

First 70 741 103.39 0.26 1.57 781 150.92 0.35 0.94 821 115.59 0.56 0.33 

First 30 742 84.36 0.19 2.02 782 98.93 0.49 1.22 822 92.9 0.55 0.96 

Last 30 743 55.52 -0.03 11.02 783 74.49 0.39 6.67 823 112.79 0.51 2.7 

Last 70 744 41.78 -0.08 13.10 784 101.04 0.30 7.62 824 181.94 0.35 0.0114 

ip7 

First 70 745 107.19 0.21 1.59 785 149.76 0.36 1.14 825 122.09 0.51 0.36 

First 30 746 86.69 0.13 3.24 786 100.66 0.47 1.36 826 93.88 0.54 1.6 

Last 30 747 56.13 -0.05 15.31 787 69.78 0.47 6.22 827 138.16 0.26 2.82 

Last 70 748 44.78 0.38 13.57 788 90.32 0.44 5.59 828 204.45 0.19 0.011 

ip8 

First 70 749 105.34 0.23 1.49 789 148.92 0.37 0.98 829 115.16 0.56 0.33 

First 30 750 84.98 0.16 3.00 790 97.66 0.50 1.13 830 95.51 0.52 0.9 

Last 30 751 57.25 -0.09 13.12 791 75.07 0.39 6.56 831 113.63 0.5 2.7 

Last 70 752 43.87 0.19 13.76 792 102.48 0.28 7.42 832 193.02 0.38 0.0116 

ip9 

First 70 753 109.23 0.19 1.37 793 148.75 0.37 1.16 833 123.12 0.5 0.36 

First 30 754 88.18 0.10 3.63 794 101.13 0.47 1.38 834 103.47 0.44 1.97 

Last 30 755 59.18 -0.16 15.26 795 70.20 0.47 6.36 835 138.73 0.26 2.79 

Last 70 756 44.59 0.18 10.21 796 90.15 0.64 5.84 836 205.83 0.18 0.0129 

ip10 

First 70 757 107.37 0.22 1.37 797 148.02 0.38 1.01 837 115.13 0.56 0.33 

First 30 758 86.43 0.13 3.36 798 98.70 0.49 1.17 838 96.61 0.51 0.87 

Last 30 759 58.52 -0.14 12.69 799 75.86 0.38 6.57 839 114.29 0.5 2.65 

Last 70 760 44.06 0.20 10.89 800 103.15 0.52 20.81 840 180.3 0.37 0.0135 
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Table 12 

Nighoje Results With Trial and Error. 

Model 

Name 

Training 

percentage 

Model 

No. 

September Model 

No. 

October Model 

No. 

5 Monthly 

RMSE CE MARE RMSE CE MARE RMSE CE MARE 

ip1 

First 70 841 35.64 0.55 0.41 881 10.82 0.999

96 

0.68 921 90.82 0.62 0.76 

First 30 842 38 -27.9 0.66 882 10.53 0.450

65 

0.82 922 22.75 0.69 0.83 

Last 30 843 33.79 0.31 1.94 883 22.42 0.999

99 

2.35 923 3.25 0.08 10.57 

Last 70 844 45.04 0.27 0.01 884 1.17 0.998

75 

0.12 924 106.89 0.37 1.06 

ip2 

First 70 845 54.17 -0.05 0.77 885 10.02 0.999

92 

0.48 925 113.76 0.41 2.21 

First 30 846 41.95 0.07 2.73 886 9.87 0.772

78 

1.07 926 64.09 0.65 1.79 

Last 30 847 33.14 0.34 1.87 887 22.12 0.999

99 

2.31 927 1.47 0.48 2.16 

Last 70 848 44.06 0.3 0.01 888 28.85 0.242

12 

0.09 928 103 0.41 4.15 

ip3 

First 70 849 35.47 0.55 0.37 889 10.71 0.999

96 

0.98 929 91.02 0.62 0.72 

First 30 850 26.38 0.63 1.03 890 10.53 0.451

95 

1.13 930 62.18 0.67 1.42 

Last 30 851 45.76 0.25 0.52 891 20.8 0.999

99 

1.27 931 1.79 0.39 3.19 

Last 70 852 45.14 0.27 0 892 28.56 0.256

16 

0.09 932 108.7 0.35 0.99 

ip4 

First 70 853 33.59 0.6 0.38 893 10.82 0.999

97 

1.05 933 63.52 0.66 1.57 

First 30 854 25.38 0.66 1.008 894 10.53 0.45 1 934 87.73 0.65 0.85 

Last 30 855 32.73 0.36 1.5168 895 22.42 0.999

99 

2.1 935 1.09 0.49 1.2 

Last 70 856 45.08 0.27 0.0011 896 1.17 0.998

75 

0.12 936 103.56 0.41 1.14 

ip5 

First 70 857 36.13 0.53 0.36 897 10.77 0.999

96 

1 937 62.08 0.68 1.34 

First 30 858 29.64 0.54 0.78 898 10.26 0.469

38 

1.23 938 91.66 0.62 0.73 

Last 30 859 22.03 0.53 1.37 899 21.16 0.999

99 

1.25 939 1.67 0.38 2.78 

Last 70 860 26.35 0.48 0.0039 900 29.06 0.236

64 

0.0627 940 109.69 0.34 1.04 

ip6 

First 70 861 36.07 0.54 0.38 901 10.05 0.999

97 

0.9 941 62.85 0.67 1.44 

First 30 862 29.05 0.55 0.77 902 12.6 0.210

52 

0.89 942 86.77 0.66 0.81 

Last 30 863 21.56 0.55 1.32 903 21.3 0.999

99 

1.54 943 1.06 0.5 1.12 

Last 70 864 24.7 0.54 0.0065 904 29.07 0.236

26 

0.08 944 103.32 0.41 1.08 

ip7 

First 70 865 36.1 0.53 0.3589 905 10.78 0.999

96 

0.99 945 62.26 0.67 1.34 

First 30 866 27.88 0.59 0.656 906 11.02 0.387

89 

1.51 946 88.43 0.64 0.92 

Last 30 867 21.24 0.54 1.2466 907 21.31 0.999

99 

1.27 947 1.66 0.38 2.74 

Last 70 868 23.77 0.55 0.004 908 29.14 0.240

52 

0.061 948 110.82 0.33 0.98 

ip8 

First 70 869 35.31 0.56 0.3647 909 10.08 0.999

97 

0.89 949 86.18 0.66 0.82 

First 30 870 27.52 0.6 0.6562 910 9.86 0.512

84 

1.12 950 62.72 0.67 1.32 

Last 30 871 21.13 0.73 1.2079 911 21.4 0.999

99 

1.52 951 0.98 0.49 0.96 

Last 70 872 24.52 0.52 0.0035 912 29.28 0.233

19 

0.0637 952 103.85 0.41 1.04 

ip9 

First 70 873 36.89 0.52 0.3592 913 10.69 0.999

96 

1.0024 953 89.37 0.64 0.94 

First 30 874 28.85 0.56 0.8137 914 10.52 0.443

83 

1.28 954 63.22 0.66 1.36 

Last 30 875 20.87 0.54 1.1735 915 21.22 0.999

99 

1.3 955 1.31 0.38 1.72 

Last 70 876 22.86 0.55 0.0065 916 28.81 0.259

24 

0.0736 956 111.71 0.31 1.25 

ip10 

First 70 877 35.59 0.55 0.36 917 9.96 0.999

97 

0.9 957 63.06 0.66 1.26 

First 30 878 26.75 0.62 0.586 918 9.94 0.503

45 

1.14 958 86.75 0.66 0.84 

Last 30 879 20.71 0.55 1.1439 919 21.21 0.999

99 

1.37 959 1.08 0.48 1.16 

Last 70 880 22.64 0.56 0.0063 920 29.25 0.236

48 

0.0826 960 103.92 0.4 1.15 
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Table 13 

Nighoje Results with AMI. 

Model No. Training Percentage Month/Input RMSE CE MARE 

961 First 70 
June 

Rt-1, Rt, 

Qt 

94.25 0.37 1.54 

962 First 30 77.87 0.29 2.03 

963 Last 30 53.99 -0.01 11.27 

964 Last 70 52.29 -0.69 1.18 

965 First 70 
July 

Rt-1, Rt, 

Qt-1, Qt 

148.94 0.37 0.97 

966 First 30 98.25 0.49 1.28 

967 Last 30 75.13 0.38 7.17 

968 Last 70 99.5 0.32 8.55 

969 First 70 
August 

Rt-1, Rt, 

Qt 

112.84 0.58 0.31 

970 First 30 85.15 0.62 1.15 

971 Last 30 110.57 0.51 2.36 

972 Last 70 164.88 0.47 0.01 

973 First 70 September 

Rt-4,Rt-3, 

Rt-2,Rt-1, 

Rt,Qt-1,Qt 

31.3 0.65 0.36 

974 First 30 31.55 0.48 1.42 

975 Last 30 29.4 0.49 1.35 

976 Last 70 40.72 0.41 0.001 

977 First 70 
October 

Rt-1, Rt, 

Qt-1,Qt 

10.82 0.99996 0.68 

978 First 30 10.53 0.45 0.82 

979 Last 30 22.42 0.99999 2.35 

980 Last 70 1.17 0.99875 0.12 

981 First 70 5 Monthly 

Rt-2, Rt-1 

,Rt, Qt-1, 

Qt 

69.11 0.78 0.46 

982 First 30 51.09 0.78 1.06 

983 Last 30 68.79 0.5 3.1 

984 Last 70 79.76 0.65 0.8 

 

5.3. Budhwad 

Consolidated results of Budhwad are shown in Table 14, 15 and 16. For the month of June model 

with input selection method of trial and error and calibrated with last 30 % data exhibited RMSE 

of 12.52 m
3
/s (model 995), while calibration with last 30 % data and input selection by AMI 

showed RMSE as 9.36 m
3
/s (model 1227). For the month of July model calibrated with last 30 % 

data along with method of trial and error for input selection showed RMSE of 17.4 m
3
/s (model 

1039) while AMI and calibration with last 30 % data RMSE showed RMSE of 17.76 m
3
/s 

(model 1231), which are almost similar. For models developed for the month of August with 

method of trial and error for input selection and calibration with last 30 % data showed RMSE of 

17.44 m
3
/s (model 1067), while AMI and calibration with last 30 % data showed RMSE of 14.45 

m
3
/s (model 1235). September month model results showedAMI as clear winner since RMSE 

with trial and error method of input selection and calibration with last 30 % data was 7.8 m
3
/s 

(model 1119) and calibration with AMI and last 30 % data RMSE was 0.87 m
3
/s (model 1240). 

For the month of October model with input selection method of trial and error and calibration 

with first 70 % data gave RMSE of 0.92 m
3
/s (model 1145), while AMI and calibration with last 

70 % data gave RMSE of  0.87 m
3
/s (model 1240). For 5 monthly combined model results 

showed that AMI is the winner. However, there was the very small difference between the results 

of models developed with trial and error and AMI methods. Trial and error exhibited RMSE of 

12.77 m
3
/s (model 1195) and AMI 12.19 m

3
/s (model 1247). It can be seen that for the majority 

of the times AMI was the winner at Budhwad.  
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Table 14 

Budhwad Results with Trial and Error. 

Model 

Name 

Training 

percentage 

Model 

No. 

June Model 

No. 

July Model 

No. 

August 

RMSE CE MARE RMSE CE MARE RMSE CE MARE 

ip1 

First 70 985 19.95 0.17 1.99 1025 25.21 0.64 0.99 1065 27.62 0.5 0.89 

First 30 986 13.66 0.28 2.57 1026 18.03 0.68 1.87 1066 19.41 0.55 1.57 

Last 30 987 13.45 -0.16 5.66 1027 17.99 0.63 1.76 1067 17.44 0.54 1.71 

Last 70 988 14.66 0.3 0.18 1028 25.25 0.58 0.04 1068 23.87 0.51 0.02 

ip2 

First 70 989 23.37 -0.14 1.37 1029 24.69 0.65 0.91 1069 33.43 0.26 1.85 

First 30 990 15.9 0.03 3.7 1030 19.37 0.63 2.98 1070 27.17 0.13 4.33 

Last 30 991 15.85 -0.61 7.1 1031 17.69 0.65 1.88 1071 25.52 0.03 4.33 

Last 70 992 17.08 0.05 0.22 1032 23.97 0.62 0.04 1072 30.1 0.22 0.05 

ip3 

First 70 993 23.62 -0.17 1.36 1033 23.03 0.7 0.6 1073 27.22 0.51 0.83 

First 30 994 16.13 0.01 3.8 1034 17.41 0.7 1.74 1074 19.87 0.53 1.54 

Last 30 995 12.52 0.00

4 

4.38 1035 17.72 0.65 1.89 1075 18.19 0.51 2.1 

Last 70 996 15.95 0.17 0.3 1036 24.54 0.61 0.05 1076 24.53 0.48 0.03 

ip4 

First 70 997 23.34 -0.14 1.37 1037 24.55 0.66 0.83 1077 24.51 0.6 1.02 

First 30 998 15.37 0.1 3.52 1038 19.41 0.63 2.71 1078 19.49 0.55 2.51 

Last 30 999 12.65 -0.02 4.35 1039 17.4 0.66 1.75 1079 20.15 0.39 2.52 

Last 70 1000 16.41 0.12 0.33 1040 23.93 0.63 0.05 1080 26.55 0.39 0.03 

ip5 

First 70 1001 23.67 -0.17 1.33 1041 22.87 0.7 0.63 1081 27.94 0.49 0.81 

First 30 1002 15.73 0.07 3.68 1042 17.55 0.7 1.8 1082 19.65 0.54 1.28 

Last 30 1003 13.54 -0.15 5.41 1043 18.03 0.64 1.93 1083 18.2 0.51 2.07 

Last 70 1004 16.09 0.17 0.26 1044 24.79 0.6 0.06 1084 24.68 0.48 0.04 

ip6 

First 70 1005 21.72 0.01 1.38 1045 24.56 0.66 0.83 1085 24.56 0.6 0.99 

First 30 1006 16.13 0.02 3.79 1046 18.98 0.65 1.92 1086 18.85 0.58 2.2 

Last 30 1007 12.81 -0.03 4.53 1047 17.84 0.64 1.96 1087 18.38 0.5 1.26 

Last 70 1008 16.19 0.15 0.28 1048 24.03 0.63 0.06 1088 26.37 0.41 0.03 

ip7 

First 70 1009 21.18 0.09 1.33 1049 24.01 0.68 0.7 1089 28.25 0.47 0.82 

First 30 1010 15.4 0.12 3.69 1050 18.29 0.67 2.17 1090 20.41 0.51 1.25 

Last 30 1011 14.63 -0.33 6.35 1051 18.13 0.63 1.86 1091 18.31 0.5 2.03 

Last 70 1012 17.64 0.06 0.65 1052 25.27 0.59 0.06 1092 24.98 0.47 0.05 

ip8 

First 70 1013 22.02 0 1.25 1053 24.99 0.65 0.86 1093 25.32 0.58 0.9 

First 30 1014 16.17 0.02 3.83 1054 17.78 0.69 2.03 1094 19.07 0.57 2.13 

Last 30 1015 13.96 -0.22 5.79 1055 17.93 0.64 1.89 1095 18.63 0.48 1.54 

Last 70 1016 17.11 0.09 0.65 1056 24.46 0.61 0.06 1096 26.45 0.4 0.04 

ip9 

First 70 1017 24.02 -0.19 1.25 1057 24.28 0.67 0.77 1097 28.45 0.47 0.85 

First 30 1018 15.67 0.11 3.76 1058 19.19 0.64 2.37 1098 20.9 0.49 1.23 

Last 30 1019 14.46 -0.28 6.17 1059 18.08 0.64 1.79 1099 18.33 0.5 2.02 

Last 70 1020 17.13 0.09 1.02 1060 24.53 0.62 0.07 1100 25.11 0.46 0.07 

ip10 

First 70 1021 23.74 -0.16 1.27 1061 25 0.65 0.87 1101 25.27 0.58 0.99 

First 30 1022 14.8 0.18 3.49 1062 18.76 0.66 2.15 1102 19.19 0.57 2.09 

Last 30 1023 14.22 -0.25 6.02 1063 17.94 0.64 1.84 1103 18.67 0.48 1.55 

Last 70 1024 16.76 0.11 1.03 1064 23.71 0.64 0.06 1104 27.04 0.37 0.07 
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Table 15 

Budhwad Results with Trial and Error. 

Model 

Name 

Training 

percentage 

Model 

No. 

September Model 

No. 

October Model 

No. 

5 Monthly 

RMSE CE MARE RMSE CE MARE RMSE CE MARE 

ip1 

First 70 1105 13.54 0.52 0.56 1145 0.92 0.78 0.32 1185 18.61 0.64 0.76 

First 30 1106 9.85 0.54 0.67 1146 2.04 0.49 0.39 1186 13.83 0.65 1.28 

Last 30 1107 8.28 0.57 0.78 1147 2.09 0.64 0.7 1187 12.77 0.68 1.79 

Last 70 1108 10.34 0.59 0.01 1148 3.56 - 2.72 1188 16.89 0.68 0.09 

ip2 

First 70 1109 13.76 0.5 0.75 1149 1.05 0.72 0.36 1189 21.2 0.54 2.12 

First 30 1110 10.29 0.5 0.49 1150 2.09 0.46 0.41 1190 18.21 0.39 6.03 

Last 30 1111 8.04 0.6 0.62 1151 3.4 0.05 2.84 1191 14.38 0.6 1.15 

Last 70 1112 10.33 0.59 0.0038 1152 3.56 - 2.72 1192 18.61 0.62 0.08 

ip3 

First 70 1113 13.88 0.5 0.76 1153 1.02 0.74 0.37 1193 18.01 0.67 0.7 

First 30 1114 9.84 0.54 0.8 1154 2.14 0.43 0.44 1194 13.51 0.66 1.16 

Last 30 1115 8.14 0.50

2 

1.01 1155 2.2 0.6 0.7 1195 12.77 0.68 1.51 

Last 70 1116 9.18 0.58 0.01 1156 1.93 0.7 0.57 1196 16.57 0.7 0.1 

ip4 

First 70 1117 13.84 0.5 0.86 1157 1.12 0.68 0.4 1197 18.52 0.65 0.89 

First 30 1118 10.35 0.51 0.59 1158 2.22 0.39 0.47 1198 14.04 0.64 2.11 

Last 30 1119 7.86 0.53 0.62 1159 2.24 0.59 0.74 1199 14.75 0.59 1.05 

Last 70 1120 8.6 0.63 0.01 1160 2.1 0.64 0.61 1200 18.55 0.62 0.1 

ip5 

First 70 1121 13.94 0.49 0.88 1161 1.01 0.74 0.37 1201 18.2 0.66 0.73 

First 30 1122 9.64 0.57 0.75 1162 1.9 0.53 0.37 1202 13.54 0.66 1.11 

Last 30 1123 8.28 0.47 0.97 1163 2.26 0.59 0.7 1203 12.92 0.68 2.01 

Last 70 1124 9.39 0.54 0.01 1164 2.24 0.64 0.79 1204 17.02 0.68 0.13 

ip6 

First 70 1125 14.11 0.48 0.94 1165 1.1 0.69 0.39 1205 18.41 0.65 0.82 

First 30 1126 10.25 0.51 0.99 1166 2.15 0.4 0.44 1206 13.94 0.64 1.68 

Last 30 1127 8.28 0.47 0.69 1167 2.28 0.58 0.73 1207 14.76 0.59 1.07 

Last 70 1128 8.94 0.59 0.01 1168 2.3 0.62 0.46 1208 18.56 0.62 0.13 

ip7 

First 70 1129 13.96 0.49 0.86 1169 1.48 0.45 0.47 1209 18.29 0.66 0.87 

First 30 1130 9.76 0.56 0.78 1170 2.39 0.26 0.64 1210 13.73 0.65 1.17 

Last 30 1131 8.47 0.43 0.93 1171 2.19 0.61 0.63 1211 13.03 0.67 2.03 

Last 70 1132 9.99 0.46 0.01 1172 2.32 0.7 0.91 1212 17.31 0.67 0.31 

ip8 

First 70 1133 13.69 0.51 0.81 1173 1.13 0.68 0.39 1213 18.44 0.65 0.85 

First 30 1134 10.31 0.5 1.01 1174 2.2 0.36 0.47 1214 13.99 0.64 1.64 

Last 30 1135 8.36 0.44 0.76 1175 2.3 0.57 0.77 1215 14.82 0.58 1.04 

Last 70 1136 9.83 0.49 0.01 1176 2.35 0.62 0.44 1216 19.21 0.59 0.38 

ip9 

First 70 1137 13.95 0.49 0.86 1177 0.95 0.76 0.35 1217 18.41 0.65 0.87 

First 30 1138 9.79 0.55 0.78 1178 1.94 0.5 0.38 1218 13.8 0.65 1.18 

Last 30 1139 8.6 0.4 0.95 1179 2.26 0.59 0.77 1219 13.1 0.67 2.14 

Last 70 1140 9.93 0.46 0.01 1180 2.15 0.69 0.51 1220 17.54 0.66 0.57 

ip10 

First 70 1141 13.62 0.52 0.81 1181 1.04 0.72 0.38 1221 18.48 0.65 0.9 

First 30 1142 10.28 0.51 1.01 1182 2.42 0.23 0.61 1222 14.18 0.63 1.81 

Last 30 1143 8.46 0.42 0.8 1183 2.3 0.58 0.84 1223 14.62 0.59 1.46 

Last 70 1144 9.71 0.48 0.01 1184 2.39 0.61 0.58 1224 18.8 0.61 0.55 
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Table 16 

Budhwad results with AMI. 

Model No. Training Percentage Month/Input RMSE CE MARE 

1225 First 70 
June 

Rt-1, Rt, 

Qt 

22.65 -0.07 1.36 

1226 First 30 15.6 0.06 3.6 

1227 Last 30 9.36 0.48 1.74 

1228 Last 70 12.64 0.47 0.19 

1229 First 70 July 
R
t-2

, R
t-1

,
 

Rt, Qt-1, 

Qt 

24.19 0.67 0.65 

1230 First 30 19.27 0.65 0.85 

1231 Last 30 17.76 0.65 1.77 

1232 Last 70 24.82 0.6 0.05 

1233 First 70 
August 

Rt-1, Rt, 

Qt 

19.55 0.75 0.81 

1234 First 30 18.26 0.61 1.61 

1235 Last 30 14.45 0.7 0.6 

1236 Last 70 19.29 0.68 0.01 

1237 First 70 September 

Rt-4,Rt-3, 

Rt-2,Rt-1, 

Rt,Qt-1,Qt 

13.38 0.53 1.0859 

1238 First 30 9.99 0.53 1.2069 

1239 Last 30 6.69 0.66 0.7407 

1240 Last 70 0.87 0.93 0.01 

1241 First 70 
October 

Rt-1, Rt, 

Qt-1,Qt 

2.27 0.31 0.4338 

1242 First 30 2.52 0.28 0.603 

1243 Last 30 2.13 0.59 0.8936 

1244 Last 70 1.59 0.79 0.28 

1245 First 70 5 Monthly 

Rt-2, Rt-1 

,Rt, Qt-1, 

Qt 

15.5 0.75 0.54 

1246 First 30 12.83 0.71 0.96 

1247 Last 30 12.19 0.72 1.21 

1248 Last 70 14.82 0.76 0.11 

 

For June the best model (model 1227) predicted discharge of 41.12 m
3
/s against the maximum 

observed value of 97.16 m
3
/s which was in testing (figure 8). The best model for July (model 

1039) predicted 96.15 m
3
/s against 199 m

3
/s (not shown). The maximum value of discharge in 

calibration was220.13 m
3
/s. For August the best model (model 1067) predicted discharge of 

99.83 m
3
/s against 259.03 m

3
/s observed discharge which was in testing (not shown). For 

September model, the maximum value of discharge in calibration was 146.71 m
3
/s. The best 

model (model 1119) predicted 43.55 m
3
/s discharge against 112 m

3
/s. Figure 9 shows hydrograph 

for the month of September. For 5 Monthly combined model, the best model (model 1247) 

predicted discharge of 99.88 m
3
/s against 259.03 m

3
/s(not shown) which was in testing data set. 

For Budhwad October results are better as compared to all other months which is similar to 

Mandaleshwar and Nighoje wherein results of October were the best. The peak prediction was 

again poor as observed in earlier models. Statistical analysis of data shows that, 87 % values of 

discharge in data were in the range of 1.1 m
3
/s to 100 m

3
/s, 10.38 % m

3
/s values of discharge 

were in the range of 0 to 1 m
3
/s, and 1.96 % values of discharge were in the range of 101 m

3
/s to 

300 m
3
/s with 0.66% above 300 m

3
/s. 

For all the three stations CE value was negative for some models. It is observed that when there 

is large variation between observed and predicted value, then the CE value is negative. If such 

values are omitted from model, then CE values are found to increase indicating better prediction 

capacity. 
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Fig. 9. Budhwad September last 70% calibration with AMI method of input selection. 

6. Conclusion 

In the present study stream flow forecasting for one day in advance was carried out at three 

locations namely Mandalaeshwar, Nighoje and Budhawad in India using three input selection 

methods namely Trial and Error, Correlation analysis, Average Mutual Information and the data-

driven technique of support vector regression (SVR). Total 1248 models were developed with 

different combinations of input selection methods, data division and Kernels in SVR. All the 

models performed reasonably well in testing with a few exceptions. It can be said that AMI is a 

better method for input selection compared to trial and error and correlation analysis as evident 

from better Root Mean Square Error values at Mandaleshwar and Budhwad. At Nighoje method 

of trial and error seems to be the winner. Thus among the three input selection methods Trial and 

Error and Average Mutual Information seems to be superior as compared to correlation analysis 
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in dealing with nonlinear problems like the one presented here. Comparison of RBF kernel, 

Linear Kernel, and Polynomial kernel showed that RBF kernel is the best as far as accuracy of 

prediction is concerned. Different data division combinations did not gave an exact insight for a 

most favorable combination of data division. This still remains an eluding problem. In all the 

models the October models at each location were the best at that particular location perhaps due 

to less variation in data. The major drawback of the models is poor prediction at peaks. This may 

be due to large variation in data and large difference in high and low values. 

References 

[1] Shalamu A. Monthly and seasonal streamflow forecasting in the Rio Grande Basin. Ph.D. thesis, 

New Mixico State University, 2009. 

[2] Bhatnagar A. Hydrologic Time Series Analysis using Support Vector Regression, M. Tech Thesis-

2009, Indian Inst Technol Bombay 2009. 

[3] Solomatine DP, Wagener T. Hydrological modeling 2011. 

[4] Shrestha RR, Nestmann F. Physically Based and Data-Driven Models and Propagation of Input 

Uncertainties in River Flood Prediction. J Hydrol Eng 2009;14:1309–19. 

doi:10.1061/(ASCE)HE.1943-5584.0000123. 

[5] http://www.cwc.gov.in/main/HP n.d. 

[6] www.mahap.org n.d. 

[7] Mahjoobi J, Adeli Mosabbeb E. Prediction of significant wave height using regressive support 

vector machines. Ocean Eng 2009;36:339–47. doi:10.1016/j.oceaneng.2009.01.001. 

[8] Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural Networks 1999;10:988–

99. doi:10.1109/72.788640. 

[9] Dibike YB, Velickov S, Solomatine D, Abbott MB. Model Induction with Support Vector 

Machines: Introduction and Applications. J Comput Civ Eng 2001;15:208–16. 

doi:10.1061/(ASCE)0887-3801(2001)15:3(208). 

[10] Wu CL, Chau KW, Li YS. River stage prediction based on a distributed support vector regression. 

J Hydrol 2008;358:96–111. doi:10.1016/j.jhydrol.2008.05.028. 

[11] Suykens JAK, Vandewalle J. Least Squares Support Vector Machine Classifiers. Neural Process 

Lett 1999;9:293–300. doi:10.1023/A:1018628609742. 

[12] Rajasekaran S, Gayathri S, Lee T-L. Support vector regression methodology for storm surge 

predictions. Ocean Eng 2008;35:1578–87. doi:10.1016/j.oceaneng.2008.08.004. 

[13] Dibike YB, Velickov S, Solomatine D. Support vector machines: Review and applications in civil 

engineering. Proc. 2nd Jt. Work. Appl. AI Civ. Eng., Citeseer; 2000, p. 215–8. 

[14] Bray M, Han D. Identification of support vector machines for runoff modelling. J Hydroinformatics 

2004;6:265 LP-280. 

[15] Asefa T, Kemblowski M, McKee M, Khalil A. Multi-time scale stream flow predictions: The 

support vector machines approach. J Hydrol 2006;318:7–16. doi:10.1016/j.jhydrol.2005.06.001. 

[16] LIN J-Y, CHENG C-T, CHAU K-W. Using support vector machines for long-term discharge 

prediction. Hydrol Sci J 2006;51:599–612. doi:10.1623/hysj.51.4.599. 



88 S. N. Londhe, S. Gavraska/ Journal of Soft Computing in Civil Engineering 2-2 (2018) 56-88 

[17] Yu P-S, Chen S-T, Chang I-F. Support vector regression for real-time flood stage forecasting. J 

Hydrol 2006;328:704–16. doi:10.1016/j.jhydrol.2006.01.021. 

[18] Behzad M, Asghari K, Eazi M, Palhang M. Generalization performance of support vector machines 

and neural networks in runoff modeling. Expert Syst Appl 2009;36:7624–9. 

doi:10.1016/j.eswa.2008.09.053. 

[19] Noori R, Karbassi AR, Moghaddamnia A, Han D, Zokaei-Ashtiani MH, Farokhnia A, et al. 

Assessment of input variables determination on the SVM model performance using PCA, Gamma 

test, and forward selection techniques for monthly stream flow prediction. J Hydrol 2011;401:177–

89. doi:10.1016/j.jhydrol.2011.02.021. 

[20] Kisi O. Modeling discharge-suspended sediment relationship using least square support vector 

machine. J Hydrol 2012;456–457:110–20. doi:10.1016/j.jhydrol.2012.06.019. 

[21] Bhagwat PP, Maity R. Hydroclimatic streamflow prediction using Least Square-Support Vector 

Regression. ISH J Hydraul Eng 2013;19:320–8. doi:10.1080/09715010.2013.819705. 

[22] Sahraei S, Andalani SZ, Zakermoshfegh M, Sisakht BN, Talebbeydokhti N, Moradkhani H. Daily 

discharge forecasting using least square support vector regression and regression tree. Sci Iran 

Trans A, Civ Eng 2015;22:410. 

[23] Kalteh AM. Wavelet Genetic Algorithm-Support Vector Regression (Wavelet GA-SVR) for 

Monthly Flow Forecasting. Water Resour Manag 2015;29:1283–93. doi:10.1007/s11269-014-

0873-y. 

[24] Kalteh AM. Monthly river flow forecasting using artificial neural network and support vector 

regression models coupled with wavelet transform. Comput Geosci 2013;54:1–8. 

doi:10.1016/j.cageo.2012.11.015. 

[25] Kalteh AM. Improving Forecasting Accuracy of Streamflow Time Series Using Least Squares 

Support Vector Machine Coupled with Data-Preprocessing Techniques. Water Resour Manag 

2016;30:747–66. doi:10.1007/s11269-015-1188-3. 

[26] Kisi O. Streamflow Forecasting and Estimation Using Least Square Support Vector Regression and 

Adaptive Neuro-Fuzzy Embedded Fuzzy c-means Clustering. Water Resour Manag 2015;29:5109–

27. doi:10.1007/s11269-015-1107-7. 

[27] Zamani A, Solomatine D, Azimian A, Heemink A. Learning from data for wind–wave forecasting. 

Ocean Eng 2008;35:953–62. doi:10.1016/j.oceaneng.2008.03.007. 

[28] Londhe S., N., Dixit P.,R. CSB. Forecasting Ocean Waves using Support Vector Regression. Proc. 

of 18thIAHR-APD2012- 2012, Jeju, South Korea, n.d., p. 38–41. 

[29] Legates DR, McCabe GJ. Evaluating the use of “goodness-of-fit” Measures in hydrologic and 

hydroclimatic model validation. Water Resour Res 1999;35:233–41. doi:10.1029/1998WR900018. 

[30] Dawson CW, Wilby RL. Hydrological modelling using artificial neural networks. Prog Phys Geogr 

2001;25:80–108. doi:10.1177/030913330102500104. 

[31] Londhe SN, Panchang V. One-Day Wave Forecasts Based on Artificial Neural Networks. J Atmos 

Ocean Technol 2006;23:1593–603. doi:10.1175/JTECH1932.1. 

 


	Corresponding author: shreenivas.londhe@viit.ac.in
	1. Introduction
	2. Study area and data
	3. Fundamentals of support vector machine
	3.1. Support vector regression
	3.2. Kernel function
	3.3. Linear kernel
	3.4. Polynomial kernel
	3.5. Gaussian kernel
	3.6. Applications of support vector regression in streamflow forecasting

	4. Model formulation
	4.1. Trial and error
	4.2. Correlation analysis
	4.3. Average mutual information (AMI)

	5. Results and discussion
	5.1. Mandaleshwar
	5.2. Nighoje
	5.3. Budhwad

	6. Conclusion
	References

