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In this article, a novel approach has been employed to identify 

structural damage in the wooden bridge structure by utilizing 

vibration data. This method encompasses the Fourier decomposition 

method that decompose the response of the bridge into a sequence 

of Fourier Intrinsic Band Functions (FIBF). These functions 

comprise the responses of the structure that contain inherent 

information of structure as well as noise from the vibrations. The 

time series modeling is utilized to extract damage-sensitive features. 

The residuals of the time series model of both undamaged and 

damaged structures are extracted for detecting any damage. To 

ascertain the presence of damage, supervised classification machine 

learning algorithms are employed. The algorithms are utilized 

consist of Artificial Neural Network (ANN), K-Nearest Neighbors 

(KNN), support vector machines (SVM), ensemble learning, and 

decision tree. The results indicate that the proposed method of 

feature extraction is highly effective and reliable in detecting 

damages. In addition, the capacity of decision tree and ANN 

algorithms to minimize type 2 error and enhance accuracy is 

demonstrated when evaluating different machine learning 

algorithms. The value of the type II error in the ANN model and the 

decision tree is equal to 13.85% and the accuracy of the model is 

93.02%. 
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1. Introduction 

The process of condition assessment of structural system and damage detection using vibration 

data and vision data is called structural health monitoring (SHM) [1,2]. At the beginning, visual 

inspection methods were used to evaluate the performance and health of structures. With the 

advancement of technology in the production of vibration sensors, data acquisition devices and 

analyzers, the process of monitoring the health of the structure is carried out using vibration 

measured data [3–5]. Damage detection in the SHM process, in general, is investigated in four 

main phase, including early damage detection, location, severity, and predicting the life of the 

structure after the damage occurs [6,7]. In the first phase, the overall condition of the structure is 

evaluated. In other words, based on the results in this method, it is possible to find out the 

occurrence or non-occurrence of damage in the structure. In the second phase, after determining 

the structural damage, an attempt is made to identify its location of damage. Next, the severity of 

the damage is estimated at the different states. Finally, with the information obtained from the 

previous steps, the remaining life of the structure and its performance can be predicted. In the 

health monitoring of the structure, these steps can be done based on two general solutions, 

including methods based on the vibration data (data based) and methods based on a physical 

model of the structure (model based) [8]. In these methods, autoregressive models (AR) have 

been used for modeling and prediction of structures responses [9,10]. The coefficients and 

residuals of these models are considered as damage-sensitive features (features). After the 

characteristics of the structure's response are extracted, the damage is determined by machine 

learning algorithms (ML) or statistical methods [11]. These time series modeling are combined 

with signal processing methods like Empirical Mode Decomposition (EMD) [12,13] method to 

obtain much better features for the decision-making process. Recently, a new decomposition 

method called Fourier Decomposition Method (FDM) [14–16] has been proposed. This method 

decomposes the response into a set of vibrations called intrinsic band Fourier functions (FIBF). 

The first researches in time series modeling is belong to Fugate et al. [17] and Sohn and Farrar 

[18]. In both studies, AR modeling were used to model the acceleration-time responses, and 

finally, the coefficients and residuals of these model were extracted as damage-sensitive features. 

Sun et al. [19] used AR model coefficients to identify damage in a concrete column and damage-

sensitive features. Figueiredo et al. [3] used four different methods, including Akaike information 

criterion (AIC), relative correlation function, root mean square error (RMSE), and singular value 

decomposition (SVD), which are used in the AR model to extract features, to identify damage in 

a three floors model. Stefano et al. [20] proposed a series of damage detection methods using the 

concept of multiple models, the AR parameters, unsupervised machine learning algorithms as 

well as dimensionality reduction methods. Latour et al. [21] fitted two AR models on time series 

data of a three-story bookcase and ASCE laboratory benchmark structure. The extracted 

coefficients of the models were used as a damage-sensitive features for the input of a 

classification artificial neural network (ANN). The non-stationary multicomponent signal 

analysis is used in many fields such as medical signal analysis [22], seismic signal analysis [23], 
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vibration analysis [24,25] and sound processing [26]. Multicomponent signals generated by real 

physical systems include several signals, which are known as signal modes [27] and contain 

significant information of the system. 

One of the disadvantages of traditional time series methods like EMD is the mixing of modes 

[28,29]. This mixing of modes causes a decomposed vibration to contain two or more main 

frequencies of the original vibration. Zheng et al. [30,31] by using the Fourier decomposition 

adaptive power spectrum method by comparing the frequencies obtained from the spectrum of 

each FIBF, were able to identify the possible failure. Using a similar method, Zhao et al. [32] 

were able to obtain the peaks of the Fourier decomposition spectrum in the rolling bearings of 

the machine. After analyzing the resulting vibrations, they were able to distinguish between 

undamaged and damaged conditions. Zhang et al. [33] used the FDM method to detect the failure 

of a gear wheel in a car gearbox. Yin et al. [34] proposed a damage detection method by 

combining relative entropy energy and mixed FDM. This method can be used to detect damage 

and reduce vibration noise. Yao et al. [35] used the FDM to detect damage in the gearbox of cars 

based on guided sound waves. Betti et al. [36] identified damage in the structure using four 

indices related to the frequency and shape of the structural modes. Feed-forward neural network 

with back propagation (BP) algorithm was used for identification and genetic algorithm was used 

for optimal calculation of neural network structure. Abdeljabr et al. [37] used one-dimensional 

convolutional neural network (1D-CNN) for damage detection. They proposed a vibration-based 

algorithm for structural damage detection based on adaptive one-dimensional convolutional 

neural network. In this article, a new feature extraction method based on signal decomposition 

method and time series modeling is presented. In the phase related to feature extraction, a FIBF 

signal representing the behavior of the structure is selected. Then, by the time series, the 

residuals of the time series model are extracted as damage-sensitive features. In the next step, 

algorithms are trained by undamaged and damaged structures features. These algorithms are 

trained and tested by classifications machine learning methods. Machine learning algorithms 

have been used in many fields of civil engineering. These algorithms have been used in topics 

related to regression and classification [38,39]. Finally, the accuracy of the proposed method is 

determined by various evaluating criteria. 

2. Research significance 

Based on the literature review and the proposed methods in the SHM, so far no data-based 

method has been presented that can detect damage in the structure using FDM and time series 

modeling. For this reason, in this article, by using structural response analysis in damaged and 

undamaged states and FIBFs with time series modeling, a reliable feature extraction is proposed. 

Also, the decision-making part of aforementioned strategy can be done using machine learning 

algorithms such as SVM, KNN, ANN, Ensemble learning and Decision Tree. 
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3. Methods 

Using the Fourier decomposition method (FDM) [14], the responses of the structure are 

decomposed to obtain a series of FIBFs functions which can be effectively utilized for damage 

detection. 

3.1. The Fourier decomposition method 

The Fourier decomposition method is a new method for decomposing nonlinear and non-

stationary signals based on Fourier Theory. In the FDM, each signal x(t) is decomposed into 

orthogonal signals, which are called Fourier intrinsic band functions, FIBFs. An analytical 

presentation of signal, x(t), can be expressed by 

( ) ( ) ( ) ( ) ( ( ))z t x t jy t x t j x t      (1) 

Where y(t) is imaginary part of analytical signal, 1j    and ( )  is the Hilbert transform of 

x(t). also x(t) can be written as below 
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Where  kG t  is FIBFs of signal, x(t). Note that z(t) can expressed in Fourier series: 
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Equation (3) can be rewritten as below 

 0( ) Re ( )x t a z t   (5) 

In above equation, ( )z t  analytic function is written as 

   
1
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  (6) 

Also, for specific analytic FIBFs, ( )z t is written as follow 
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From above equations, we can write general form of equation as 

      
1 1

exp exp
i

i

N

i i k

k N

a t j t c jm t 

 

   (8) 

This equation is for 1, ,i M and for FIBFs from high to low frequency, iN . Initially, FIBF 

functions are extracted from the response of the undamaged structure, and subsequently, a 

suitable model is fitted on the function using time series modeling. After fitting a time series 

model for the undamaged structure, the residuals of the model are acquired. Proceeding further, 

the response of the damaged structure is analyzed using FDM and the appropriate FIBF function 

is selected. The FIBF function of the damaged structure is assessed with the time-series model of 

the undamaged structure, and the residuals are determined. Ultimately, by employing machine 

learning methods, the decision-making process pertaining to damage assessment is carried out. 

In the figure 1 the flowchart of structural damage detection of the Wooden bridge in shown. 

 
Fig. 1. Flowchart of Structural damage detection methodology. 

4. Wooden bridge benchmark 

The wooden bridge structure shown in Figure 2 is excited by a random excitation. Fifteen 

accelerometers measured the response of the structure in different positions. The sampling 

frequency was 256 Hz and the total duration of sampling was 32 seconds. The measurements 

were done during several days and damage was done in the structure by adding point masses on 

the structure. The mass sizes were 23.5, 0.47, 70.5, 132.2 and 193.7 gr. The added mass was very 
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small compared to the total weight of the structure (36 kg) and the maximum mass increase was 

only half percent. Table 1 shows the damage states of this benchmark problem [40]. 

 
Fig. 2. The wooden bridge structure description and sensor locations [40]. 

Table 1 

The wooden bridge damage conditions. 

No Test Day Mass Location Condition Description 

1 18-May - - undamaged - 

2 25-May - - undamaged - 

3 

28-May 

23.5 sensor 1-2 Damaged Scenario -1 

4 47 sensor 1-3 Damaged Scenario -1 

5 70.5 sensor 1-4 Damaged Scenario -1 

6 123.2 sensor 1-5 Damaged Scenario -1 

7 193.7 sensor 1-6 Damaged Scenario -1 

8 - - undamaged - 

9 - - undamaged - 

10 

29-May 

- - undamaged - 

11 23.5 sensor 4 Damaged Scenario -2 

12 47 sensor 5 Damaged Scenario -2 

13 70.5 sensor 6 Damaged Scenario -2 

14 123.2 sensor 7 Damaged Scenario -2 

15 193.7 sensor 8 Damaged Scenario -2 

16 - - undamaged - 

5. Results 

5.1. Signal decomposition using FDM 

The acceleration response of the structure is decomposed into FIBF functions using the FDM. 

After the structural response is decomposed, one of the FIBFs that has the highest correlation 
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with the original acceleration signal is selected. In the following, the entire feature extraction and 

damage detection process is performed on this signal. Figure 3 shows the acceleration response 

of the decomposed undamaged wooden structure. 

  

Fig. 3. The FIBFs for undamaged structure. 

The response of the wooden bridge structure in the undamaged state is divided into 17 FIBFs. 

According to the correlation coefficient in this case, FIBF No. 7 has the highest correlation 

coefficient. In the following, this FIBF is considered in the wooden bridge structure. 

5.2. Time series modeling 

After examining the acceleration response of the structure in its original condition, the 

autocorrelation function (ACF) and partial autocorrelation function (PACF) diagrams of the data 

are generated (Figures 4 and 5). The ACF curve exhibits oscillatory behavior and does not 

converge to zero, while the PACF curve changes exponentially. The most suitable model for the 

time series is the AR model. Hence, by employing the AR model, a time series function can be 

applied to the decomposed response of the wooden bridge structure [41]. 
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Fig. 4. ACF plot of FIBF number 7. 

 
Fig. 5. PACF plot of FIBF number 7. 

After the degree of AR function is determined, a time series function is fitted. After fitting the 

time series model, the normal curve of the residuals and the ACF for the AR model with degree 

68 with the lags of 100 are shown in Figure 7. 
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Fig. 6. The Normal plot for AR (65) residuals. 

 
Fig. 7. The ACF plot for AR (65) residuals. 

As observed, the distribution of the residuals follows a normal pattern, which is a key indicator 

that the AR model is fitting appropriately. In a normal distribution, data points up to three times 

the standard deviation lie on the normal curve without any deviation. The autocorrelation 

function of the fitted time series model falls within the confidence level. Considering that the 

delayed points of the function also fall within the statistical confidence level, it can be concluded 
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that the correct model has been chosen. There are some points that lie outside the range of 

confidence, but they do not pose any problems for the entire modeling process or the degree of 

modeling. 

In order to utilize machine learning models, it is necessary to identify the model hyper-

parameters. Many machine learning models consist of a series of internal parameters, and 

modifying these parameters can significantly impact the algorithm's response and performance. 

These parameters are known as hyper-parameters, and they need to be carefully selected in order 

to minimize errors and optimize learning performance. However, setting these parameters can be 

a time-consuming process that often involves trial and error. For instance, in neural network 

models, the internal parameters include the number of hidden layers, the activation function type, 

the layer size, and the lambda parameter. The optimal values for these parameters can be found 

through trial and error or by utilizing optimization algorithms. In this section, machine learning 

models such as SVM, KNN, Ensemble learning, ANN, and decision Tree are employed. Since 

configuring the parameters of these models requires trial and error, the Bayesian optimization 

method is utilized to determine the optimal values. The selected hyper-parameters and their 

corresponding optimal values are presented in Table 2. 

Table 2 

Hyper-parameters optimization ranges and parameters. 
Optimum Values 

or parameters 
Ranges and options Hyper-parameter Model 

One-vs-one One-vs-one, One-vs-All Multiclass level 

SVM 
0.0437 [0.001,1000] box constrain 

Cubic Gaussian, Linear, Quadratic, Cubic Kernel function 

True Yes, No Standardize data 

63 [1, 𝑚𝑎𝑥(2, 𝑟𝑜𝑢𝑛𝑑(𝑛/2)) 
Number of 

neighbors 

KNN City Block 

Euclidean, City Block, Chebyshev, Minkowski (Cubic), 

Mahalanobis, Cosine, Correlation, Spearman, Hamming, 

Jaccard 

Distance method 

Squared inverse Equal, Inverse, Squared Inverse Distance weight 

True Yes, No Standardize data 

Bag AdaBoost, RUSBoost, LogitBoost, GentleBoost, Bag Ensemble method 

Ensemble 

Learning 

26 [10,500] Learners number 

1 [1, 𝑚𝑎𝑥(2, 𝑝)] 
Number of predictor 

to sample 

74 [1, 𝑚𝑎𝑥(2, 𝑛 − 1)] 
Maximum number 

of splits 

1 1, 2, 3 
Number of fully 

connected layers 

ANN 

ReLU ReLU, Tanh, None, Sigmoid Activation functions 

Yes Yes, No Standardize data 

7.1852e-4 [1𝑒 − 5/𝑛, 1𝑒5/𝑛] 
Regularization 

strength (Lambda) 

26 [1,300] First layer size 

2 [1, 𝑚𝑎𝑥(2, 𝑛 − 1) 
Maximum number 

of splits 
Tree Maximum 

deviance 

reduction 

Gini’s diversity, Towing rule, Maximum deviance 

reduction 
Split criterion 
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Figure 8 shows the optimization process and classification error in different models for 100 

iterations. The estimated minimum classification error of the light blue line corresponds to the 

estimate of the minimum classification error calculated by the optimization process considering 

all the sets of hyper-parameter values that have been tried so far, including the current iteration. 

The minimum observed classification error of the dark blue line corresponds to the minimum 

observed classification error calculated so far by the optimization process. For example, in the 

third iteration, the dark blue point corresponds to the minimum classification error observed in 

the first, second, and third iterations. 

In the case of the SVM model, the parameter optimization error of zero value has been reported, 

which means that the hyper-parameters of the model have been selected in the most optimal 

possible state. The duration of optimizing hyper-parameters in the decision tree model is less 

than all models, and the duration of the neural network model is the highest. The number of 

iteration for all models was chosen equal to 100, but the number of parameters to be optimized 

are different in the models. In the decision tree, two hyper-parameters include criteria and the 

number of split, and in the neural network model, five hyper-parameters include the number of 

layers, size of layers, activation function, data standardization, and Lambda coefficient. 

Therefore, the number of hyper-parameters that must be optimized is directly related to the 

required time. Figure 9 shows the confusion matrix for all models in the wooden bridge 

structure. All confusion matrix are presented for test data (damaged data). 

In the trained SVM model, there is no classifications error in the undamaged part of the structure, 

but there is a 14.1 % classification error in the damaged state of the structure. In the KNN model, 

the classification errors for test data is 25%. This shows that this model could not classify the 

damaged structures very well. In this case, about 25% of the data have a Type II error, which is a 

large value. This error occurred in the case of test data, which is why the model may suffer from 

errors that lead to the destruction of the structure and high costs in the decision-making process. 

In the ensemble model, in the case of test data, the accuracy value decreased to 82.8% and the 

classification error value increased to 17.2%. In the ANN model, in the state of test data, the 

accuracy value is 85.9% and its error is 14.1%. The errors in the neural network model is similar 

to the SVM model, which has the same performance. Regarding the decision tree model, in the 

testing data, the Type II error is similar to SVM and ANN models, which is lower than other 

models. 
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SVM KNN 

  

Ensemble Learning ANN 

 

Decision Tree 

Fig. 8. Minimum classifications error for machine learning methods. 
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SVM KNN 

 

 
Ensemble ANN 

 
Decision Tree 

Fig. 9. Confusion matrix for machine learning methods for wooden bridge. 
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6. Discussion 

The parameters of sensitivity (TPR), specificity, accuracy, precision (PPV), F score criterion and 

the area under the curve are defined based on equations 9 to 14 [42]. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
 (10) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (11) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 (12) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑡𝑦×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑡𝑦+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (13) 

𝐴𝑈𝐶 = 𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑅𝑂𝐶 𝑐𝑢𝑟𝑣𝑒 (14) 

The criteria of sensitivity, specificity, accuracy, precision, F score criterion and AUC for all 

wooden bridge structure models were calculated and listed in Tables 3. 

Table 3 

Evaluations criterion for machine learning methods. 

Validation Sensitivity Specificity FPR Precision Accuracy FSC AUC 

SVM 1.0000 0.8594 0.1406 0.8767 0.9297 0.9343 0.9773 

KNN 1.0000 0.7500 0.2500 0.8000 0.8750 0.8889 0.9858 

Ensemble 1.0000 0.8281 0.1719 0.8533 0.9141 0.9209 0.9718 

ANN 1.0000 0.8615 0.1385 0.8767 0.9302 0.9343 0.9692 

Tree 1.0000 0.8615 0.1385 0.8767 0.9302 0.9343 0.9297 

 

From the table 2, it can be seen that the sensitivity of all models is the same, which of course 

shows that the structures without damage are correctly classified in the experimental model. This 

shows that one should not use only one evaluation criterion to evaluate the models and consider 

other performance criteria as well. Neural network and decision tree models have similar 

performance in terms of properties, false positive rate, accuracy, precision and F score criterion 

have performed better than other models. At this stage, the worst performance is related to the 

KNN model. In Figure 10, these criteria are shown as radar curves. 
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Fig. 10. The radar curves for evaluation criteria for different models. 
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It can be seen in the sensitivity curve that all the points are unity and it shows that the structures 

without damage (TP) are well classified. In this example, sensitivity is not a suitable criterion for 

comparing the results, and other criteria are used. A proportion of the damaged class (TN) that 

are correctly classified determines the specifity. In this case, the neural network and decision tree 

models worked well and the KNN model did not have an acceptable performance. The false 

positive rate (FPR), which indicates the misclassification of damaged structures in the 

undamaged class, is also minimal in neural network and decision tree models. These models 

have less Type II error than other models. For example, the KNN model has a Type II error of 

25%, which indicates that a quarter of the data has been misclassified. Regarding the accuracy 

parameter, it can be seen that in all models, except for KNN, the model was able to perform the 

classification well. The F score criterion, which has both sensitivity and specificity parameters, 

has similar and good performance in neural network, decision tree, and SVM models compared 

to other models. 

7. Conclusions 

In this article, a new feature extraction method was introduced using Fourier decomposition and 

time series modeling. This method can provide damage-sensitive features for structural health 

monitoring. Supervised machine learning models were used in the decision-making stage. These 

models include ANN, decision tree, SVM, KNN and ensemble method. Based on the analysis, 

the following results were obtained: 

 By utilizing FDM, the signal of the structure, inclusive of noise, decomposed into FIBF 

functions, hence separating these noises from the vibration of the structure. 

 With applying time series modeling with degree 68, distribution of the residuals was 

random and followed the normal distribution. Additionally, ACF of the residuals was 

within the limits of statistical threshold. 

 The utilization of the Bayes algorithm is efficacious in optimizing hyper-parameters of 

machine learning algorithms. 

 The classification accuracy of all machine learning algorithms was satisfying. However, in 

the case of the KNN model, the type II error was 25%, indicating that this model has a 

considerable amount of error. 

 The neural network and decision tree models have more properties than other models, with 

the false positive error being the lowest in these models. 

 The neural network and decision tree models had the highest the F-score criterion, whereas 

the nearest neighbor model had the highest value for the AUC. 

 According to the analysis, unsupervised learning method such as clustering can be used in 

future research. Also, this method can be used in the online structural health monitoring 

process for early damage detection in the structure. 
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