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Using a tuned mass damper (TMD) is one of the passive 

methods of controlling structural vibrations. This energy 

absorption system has a mass, a spring, and a damper 

attaching to the main structure and vibrating with it, reducing 

the dynamic response of the structure by preventing the 

intensification. Therefore, finding optimal parameters is one 

of the main essential issues in the study and design of tuned 

mass dampers. This study investigates the optimization of 

parameters of an adjusted mass damper to reduce the 

displacement and relative response of a multi-story structural 

system equipped with this damper. For this purpose, a 10-

story frame with similar properties on each floor and a 10-

story frame with different properties on each floor were 

modeled under seismic loading in OpenSees software. The 

optimum parameters were extracted by Matlab software, 

using the particle swarm optimization (PSO) algorithm, 

whale optimization algorithm (WOA), and the combination 

of these two algorithms (Hybrid PSO-WOA) and state space 

equations controlled the results. Comparing the results with 

the methods presented by other researchers showed that the 

proposed methods have good performance and are 

recommended as approximate and rapid methods for the 

optimal design of these dampers. 
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1. Introduction 

In recent years, there has been a tendency to control the seismic behavior of structures with 

vibrational absorption tools such as seismic base isolators, viscose dampers, friction dampers, 

and pendulum dampers. A Tuned Mass Damper (TMD) has a mass, a spring, and a damper that 

is added to the main structure and vibrates with the structure. The TMD’s frequency is tuned in 

resonance with the frequency of the main structure, so a large amount of the structural vibrating 

energy is transferred to the TMD. Frahm [1] reported the first study on the TMD to control the 

vibrations of the ship’s lounge, which invented a device for damping resonant vibrations in 1911. 

This device was effective only when the frequency of the TMD was close to the excitation 

frequency. The main weakness in this device’s use is that the TMD’s inherent damping is 

ignored. Ormondroyd [2] updated this old type by adding a viscose damper to the regulated 

TMD and acquired good results. Den Hartog [3] developed several techniques that could be only 

used for single-degree-of-freedom systems to optimize damper parameters, including frequency 

and damping ratios of TMD. In a different method presented by Warburton and Ayorinde [4], if a 

system’s natural frequencies are separated, an SDOF can be used to design the parameters of 

TMD. Warburton [5] presented a newly regulated damper that estimated the effects of harmonic 

loading and random white noise in an SDOF. Villaverde et al. [6] found that the optimal 

performance of TMDs is achieved when the damping ratio of the two primary modes is equal. 

Other methods have been suggested to improve the TMD performance [7–9]. 

In recent decades, metaheuristic algorithms have been used to solve and optimize engineering 

problems. These algorithms are particularly effective for problems in which the definitive 

solution is complex or unavailable. An example of these algorithms is the genetic algorithm 

[10,11], the particle swarm algorithm [12], the harmony search algorithm [13], and the charged 

system search algorithm [14]. Recently, these developed metaheuristic algorithms are used to 

solve many engineering problems. For example, Babaei et al. [15] employed NSGA-II algorithm 

to optimize MR semi-active control systems. Ghiasi et al. [16] utilized the invasive weed 

algorithm to optimize the dimensions of the Koyna weight concrete dam in India, intending to 

achieve optimal concrete consumption. 

The use of metaheuristic algorithms to optimize the parameters of TMD was initially expressed 

by Hadi and Arfiadi [17]. Lee et al. [18] presented a numerical method that ultimately minimized 

system responses in the frequency domain. In another study, harmony search algorithm was used 

as an optimization method by Bekdas et al. [19]. Their study estimated the optimal parameters of 

TMD by assuming the structure under harmonic loading. Araz et al. [20] proposed a 

methodology for the optimization of double TMDs of installed on the top floor of a building 

under seismic loads. Chowdhury et al. [21] used H2 and H∞ optimization techniques for 

optimized system parameters of the negative stiffness inertial amplifier tuned mass dampers 

(NSIA-TMD). Khatibinia et al. [22] found the optimum design of a TMD for a 10-story inelastic 

steel moment-resisting frame (SMRF) using the passive congregation particle swarm and grey 

wolf optimization techniques. Domizio et al. [23] evaluated the performance of the three optimal 
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TMD configurations on three SDOF structures with different fundamental periods subjected to a 

set of far-field records and a set of near-fault ground motions with strong velocity pulses. 

This research investigates the optimization of passive mass damper parameters (TMD) to reduce 

dynamic responses of a multi-degree-of-freedom structure with this type of damper under 

seismic loading. The particle swarm optimization (PSO) algorithm, whale optimization algorithm 

(WOA), and the combination of these two algorithms (Hybrid PSO-WOA or HPW) have been 

selected as efficient and effective optimization algorithms for this purpose. 

2. Equation of motion 

Consider an n-floor shear frame with a mass damper mounted on its roof. The equations of 

motion of the structural system can be written as Eq. (1). 

[𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑥} = −[𝑀]𝛤�̈�𝑔 (1) 

That is, �̈�, �̇�, and 𝑥, respectively, the vectors of acceleration, velocity, and displacement of the 

system are multi-degree-of-freedom. 𝛤 is also the impact vector of earth acceleration, a column 

vector, unit, and co-order with the number of degrees of system freedom. The structures’ mass, 

stiffness, and damping matrices are defined according to Eqs. (2), (3), and (4) [24]. 

[𝑀] = 𝑑𝑖𝑎𝑔 [𝑚1, 𝑚2   …   𝑚𝑁 ,𝑚𝑑]  (2) 

[𝐶] =

[
 
 
 
 
 
 
 
(𝑐1 + 𝑐2) −𝑐2
−𝑐2 (𝑐1 + 𝑐2) −𝑐3

−𝑐3 . .

. . .
. . −𝑐𝑛
−𝑐𝑛 (𝑐𝑛 + 𝑐𝑑) −𝑐𝑑

−𝑐𝑑 𝑐𝑑 ]
 
 
 
 
 
 
 

 (3) 

[𝐾] =

[
 
 
 
 
 
 
 
(𝑘1 + 𝑘2) −𝑘2
−𝑘2 (𝑘1 + 𝑘2) −𝑘3

−𝑘3 . .

. . .
. . −𝑘𝑛
−𝑘𝑛 (𝑘𝑛 + 𝑘𝑑) −𝑘𝑑

−𝑘𝑑 𝑘𝑑 ]
 
 
 
 
 
 
 

 (4) 

𝑚𝑖, 𝑘𝑖 and 𝑐𝑖 are the mass, stiffness, and damping coefficients of floor i (𝑖 = 1,2, . . . , 𝑛), 𝑚𝑑, 𝑘𝑑, 

and 𝑐𝑑, respectively, TMD’s mass, damping, and stiffness. There are two methods for 

determining the system response: the time integration method and using state-space equations. 

Equations of motion can be converted into a set of state-space equations according to Eqs. (5) 

and (6): 

{�̇�} = [𝐴]{𝑍} + [𝐵]{𝐹} (5) 
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{𝑌} = [𝐶]{𝑍} + [𝐷]{𝐹} (6) 

The parameters are determined as equations Eqs. (7) to (12): 

{𝑍} = {
{𝑥}(𝑛+1)(1)
{�̈�}(𝑛+1)(1)

}
(2𝑛+2)(1)

 (7) 

[𝐴] = [
[0](𝑛+1)(𝑛+1) 𝐼(𝑛+1)(𝑛+1)

−𝑀−1𝐾 −𝑀−1𝐶
]
(2𝑛+2)(2𝑛+2)

 (8) 

[𝐵] = [
[0](𝑛+1)(𝑛+1)
[𝑀](𝑛+1)(𝑛+1)

]
(2𝑛+2)(𝑛+1)

 (9) 

{𝐹} = −[𝑀]𝛤�̈�𝑔 (10) 

[𝐶] = [𝐼(𝑛+1)(𝑛+1) [0](𝑛+1)(𝑛+1)](𝑛+1)(2𝑛+2) (11) 

[𝐷] = [[0](𝑛+1)(𝑛+1)](𝑛+1)(𝑛+1) (12) 

[0] and [𝐼] are zero and identity matrices, respectively. When values shown in the above 

equations are defined, iterative solutions can be used to determine the system response with 

different loading types, such as seismic excitation. 

3. Particle swarm optimization (PSO) algorithm 

The particle swarm optimization (PSO) algorithm is a metaheuristic algorithm proposed by 

Russell Ebrahatt and James Kennedy in 1995. This algorithm works so that a group of particles 

is randomly distributed in the search space, and their responses are determined. Then, the current 

position information, the best position in which the particle is located (Pbest), and the best 

position discovered in the whole particle (Gbest) are recorded. This data is used to determine and 

modify the new position and velocity of particles (Fig. 1). This step is repeated several times to 

get the best answer. In each step, the algorithm updates each particle’s new velocity and position 

according to Eqs. (13) and (14) after finding the two Pbest and Gbest values from the previous 

step. This procedure will continue until the termination conditions (time limit, maximum number 

of repetitions, and error limits) [12]. 

𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑥𝑖(𝑡)) (13) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (14) 

That 𝑣𝑖(𝑡) and 𝑥𝑖(𝑡) respectively is the velocity and position of the i-particles in the t repetition. 

𝑟1 and 𝑟2 random numbers are between zero and one. 𝑐1 and 𝑐2 constants are called PSO 

algorithm acceleration coefficients, and 𝜔 is the weighted coefficient of inertia, which increasing 

iterations reduces its value from one to zero. The particle optimization algorithm flowchart is 

presented in Fig. 2. 
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Fig. 1. Particle swarm optimization (PSO) algorithm. 

 
Fig. 2. Particle optimization algorithm flowchart. 
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4. Whale optimization algorithm (WOA) 

This algorithm was proposed by Mirjalili and Lewis [25]. The most exciting thing about whales 

is their specific hunting method. This exploratory behavior is known as the bubble-net feeding 

method. Exploration and hunting are accomplished by creating index bubbles along a circle or 

paths. This feeding behavior is performed by placing specific bubbles in spiral shapes, according 

to Fig. 3. 

Whales can identify and surround the hunting site. The WOA algorithm assumes that the best 

candidate solution at the moment is to hunt the target or be close to the desired state. After the 

best search agent is identified, other search agents try to update their location relative to the best 

search agent. The whale swims around the prey along a contractile circle and simultaneously in a 

spiral-shaped path. To model this behavior, at the same time, it is assumed that the whale with a 

50 percent probability chooses between the mechanism of shrinking the siege or the spiral model 

to update the position of the whales during optimization (where the random numerical 𝑝 is 

between 0 and 1) if 𝑝 < 0.5, the mechanism for shrinking the siege is used according to the 

following equations. 

�⃗⃗� = |𝐶 . 𝑋 ∗(𝑡) − 𝑋 (𝑡)| (15) 

𝑋 (𝑡 + 1) = 𝑋 ∗(𝑡) − 𝐴 �⃗⃗�  (16) 

Where 𝐴  and 𝐶  are determined based on the following equations: 

𝐴 = 2𝑎 . 𝑟 − 𝑎  (17) 

C⃗ = 2. r  (18) 

a decrease linearly from 2 to 0 during repetitions, and 𝑟 is a random vector at a distance of 0 to 1 

(Fig. 4). If the value |𝐴 | is larger than one, the Eqs. (19) and (20) will replace with Eqs. (15) and 

(16): 

�⃗⃗� = |𝐶 . 𝑋 𝑟𝑎𝑛𝑑(𝑡) − 𝑋 (𝑡)| (19) 

𝑋 (𝑡 + 1) = 𝑋 𝑟𝑎𝑛𝑑(𝑡) − 𝐴 . �⃗⃗�  (20) 

If 𝑝 ≥ 0.5, the spiral position update method (Fig. 5) is used according to the following 

equations: 

�⃗⃗� ′ = |𝑋 ∗(𝑡) − 𝑋 (𝑡)| (21) 

𝑋 (𝑡 + 1) = �⃗⃗� ′. 𝑒𝑏𝑙. 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋 ∗(𝑡) (22) 
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Fig. 3. Bubble-net feeding behavior of humpback whales [25]. 

 
Fig. 4. Shrinking encircling mechanism [25]. 

 
Fig. 5. Spiral updating position [25]. 
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5. Proposed the Hybrid PSO-WOA (HPW) algorithm 

In this section, a hybrid algorithm based on the combination of the PSO algorithm and the WOA 

algorithm is presented. In the PSO algorithm, the position of particles is updated based on either 

the best solution found for the particle and the best solution found for all particles. On the other 

hand, in the WOA algorithm, only the best solution found for all whales is used to update 

whales’ positions. These two different features together may result in a more accurate method 

that is more efficient than either of the two methods alone. The basis of the proposed method is 

that after performing PSO operators on the particles and updating the best solution of all 

particles, all particles are considered as whales for applying the WOA method. Then, all the 

solutions should be updated according to the WOA algorithm. The best solution for each particle 

and the best solution between all particles are updated again. At the current stage, it is checked 

that whether the convergence conditions are satisfied or not. In the case that convergence is not 

occurred, the current solutions are given as particles to the PSO algorithm, and the mentioned 

process is repeated again. This process is continued until the converge condition is satisfied. The 

schematic flowchart for the proposed method is shown in Fig. 6. 

 
Fig. 6. The flowchart of the proposed hybrid PSO-WOA (HPW) algorithm. 
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6. The optimum parameters of passive tuned mass damper 

In this research, the system’s response is obtained using the transient integration methods in 

OpenSees and controlled by the state-space equation. In this section, both methods are first 

explained, and then the responses of two numerical examples are extracted using them and 

compared with the results of previous studies. 

6.1. The state-space equations 

In this study, TMD’s optimal stiffness and damping parameters are calculated by considering a 

constant mass for TMD. Then, the TMD’s optimal mass is obtained according to the other two 

parameters. The optimization process minimizes the maximum floor drift relative to the ground 

when the structure is excited under an earthquake. This procedure can be done by adding a 

transfer function between changing the upstairs location and the ground acceleration to the 

objective function. Generally, the transfer function is defined as a criterion for evaluating the 

number of input components transferred to the system. By taking the Laplace conversion (with 

zero initial conditions) from the space system, we have the state defined in Eqs.(23) and (24): 

�̇�(𝑡) = 𝐴𝑍(𝑡) + 𝐵𝐹(𝑡)
 𝐿 
→   𝑠𝑍(𝑠) = 𝐴𝑍(𝑠) + 𝐵𝐹(𝑠) (23) 

𝑌(𝑡) = 𝐶𝑍(𝑡) + 𝐷𝐹(𝑡)
 𝐿 
→   𝑌(𝑠) = 𝐶𝑍(𝑠) + 𝐷𝐹(𝑠) (24) 

By solving these equations: 

𝑍(𝑠) = (𝑠𝐼 − 𝐴)−1𝐵𝐹(𝑠) (25) 

The transfer function was defined as an output Laplace transformation adjusted to the Laplace 

transform of the input function (external forces). 

𝑇. 𝐹 =
𝑌(𝑠)

𝐹(𝑠)
= 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 (26) 

Where, 𝑇. 𝐹 is the transfer function between the input and output of the system, which can be 

used for displacement or acceleration, it should be noted that, as can be seen in Eq. (26), the 

transfer function is independent of the type of output component and is considered to be an 

inherent feature of the system. Considering the force entered into the first floor as input and 

displacement of the first floor of the MDOF as an output (in the transmission function in both 

controlled and uncontrolled) and displacement ratio (in both controlled and uncontrolled) as a 

factor for controlling the behavior of the structure, the objective function can be defined as 

follows: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
𝑚𝑎𝑥(𝑇𝐹1 𝑤𝑖𝑡ℎ 𝑇𝑀𝐷)

𝑚𝑎𝑥(𝑇𝐹1 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑇𝑀𝐷)
+

𝑚𝑎𝑥|𝑥1 𝑤𝑖𝑡ℎ 𝑇𝑀𝐷|

𝑚𝑎𝑥|𝑥1 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑇𝑀𝐷|
 (27) 

6.2. The transient integration method in OpenSees 

The structures are initially modeled in the OpenSees software to extract the systems’ responses 

using the transient integration method. For this purpose, a ten-story shear building with one span 
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is considered. In this building, the height of columns and span width were assumed to be 3 

meters. In the first example, a 10-story frame with similar properties on each floor, and in the 

second example, a 10-story shear frame with different properties on each floor are investigated. 

Elastic beam-column element is also used to model the samples. The beam of the floors is 

assumed to be rigid, and using the stiffness presented in previous studies and the relation 

𝐾 = 24𝐸𝐼𝑐/𝐿𝑐3, the columns’ characteristics are entered into the software [26]. Uniaxial 

materials viscous and element two node link are used to consider damping in floors. The 

schematic of the structure used is depicted in Fig. 7. In the transient integration method, the ratio 

of maximum displacements of the top floor of the frame with and without TMD is minimized for 

the optimization objective.  

 
Fig. 7. The n-story shear building with the TMD. 

6.3. Numerical examples 

6.3.1. Example 1 

This example investigates a ten-story frame with a TMD attached to the top floor and under 

seismic loading (El Centro earthquake). The characteristics of this building are shown in Table 1. 

TMD mass is taken at 108 tons. TMD stiffness and damping values are defined as optimization 

algorithm variables. The lower and upper bounds of stiffness are 0 and 5000 kN/m. Also, the 

lower and upper bounds of the damping coefficients are 0 and 1000 kN.s/m. 

The results of the genetic algorithm (GA) [17], the method presented by Lee et al. [18], the 

search of the charged system (CSS) [26], and the three methods presented in this study are 

demonstrated in Table 2. According to this table, the WOA and HPW algorithms have predicted 

the lowest value among the optimal values for cd and kd. The optimal value for cd and kd in the 

PSO algorithm is 173.86 and 122.91% higher than the values obtained from the WOA algorithm, 

respectively. The optimal values of WOA and HPW algorithms are also close to each other. 
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Table 1 

Properties of the building for Example 1. 

Story Mass (ton) Stiffness (kN/m) Damping (kN.s/m) 

1 360 650000 6200 

2 360 650000 6200 

3 360 650000 6200 

4 360 650000 6200 

5 360 650000 6200 

6 360 650000 6200 

7 360 650000 6200 

8 360 650000 6200 

9 360 650000 6200 

10 360 650000 6200 

 

Table 2 

Stiffness and damping coefficient of the TMD for Example 1. 

TMD parameters 
Optimum values 

Ref. [17] Ref. [18] Ref. [26] PSO WOA HPW 

cd (kN.s/m) 151.50 271.79 88.70 117.50 67.58 70.08 

kd (kN/m) 3750 4127 4208 4136 3365 3336 

 

The maximum absolute displacement of each floor relative to the ground (in both controlled and 

uncontrolled) is summarized in Table 3. The percentage of displacement reduction is shown in 

Table 4. To better understand the results of Table 4, these results are presented again in Fig. 8. 

The results show that by using a TMD attached to the top floor in a ten-story shear frame, the 

maximum absolute displacement is reduced. The amount of reduction predicted for absolute 

displacement by PSO, WOA, and HPW algorithms are equal to 37.21, 38.54%, and 38.85, 

respectively. The changes in the objective function versus the number of iterations for the first 

example come in three optimization algorithms in Fig. 9(a) to 9(c). As can be observed, the PSO, 

WOA, and HPW algorithms have converged to the optimum solution before 40, 90, and 70 

iterations, respectively. 

The time history displacement of the structure from the first to the tenth floor is depicted in Fig. 

10(a) to 10(j). When the optimum values of TMD stiffness and damping coefficient are 

determined, the system performance can now be improved by changing the mass of TMD, which 

was initially selected at 108 tons. For this purpose, the system response should be investigated by 

applying changes in the range of 90 to 116 tons (with the same desired stiffness values and 

damping coefficient as previously determined). The results of these changes for the PSO method 

are shown in Table 5. According to Table 5, increasing the TMD mass from 90 to 100 will lead 

to a decrease in the maximum displacement. For example, the PSO algorithm has predicted that 

the mass increase from 90 to 100 tons and the maximum displacement on the top floor has 

decreased by 8.8%, but increasing the mass from 100 to 116 tons has led to an increase in the 

maximum displacement. 
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Table 3 

Maximum absolute displacement of each floor relative to the ground (m). 

Story Without TMD 
With TMD 

Ref. [17] Ref. [18] Ref. [26] PSO WOA HPW 

1 0.031 0.019 0.020 0.018 0.0191 0.0185 0.0181 

2 0.060 0.037 0.039 0.036 0.0375 0.0361 0.0355 

3 0.087 0.058 0.057 0.052 0.0547 0.0524 0.0519 

4 0.112 0.068 0.073 0.068 0.0682 0.0673 0.0668 

5 0.133 0.082 0.087 0.082 0.0826 0.0812 0.0808 

6 0.151 0.094 0.099 0.095 0.0946 0.0933 0.0934 

7 0.166 0.104 0.108 0.105 0.1044 0.1033 0.1035 

8 0.177 0.113 0.117 0.113 0.1139 0.1110 0.1112 

9 0.184 0.119 0.123 0.119 0.1191 0.1164 0.1167 

10 0.188 0.122 0.126 0.122 0.1222 0.1191 0.1192 

 

Table 4 

Percentage of displacement reduction (%). 

Story Ref. [17] Ref. [18] Ref. [26] PSO WOA HPW 

1 38.71 35.48 40.32 38.70 40.32 41.61 

2 38.33 35.00 39.67 38.33 39.83 40.83 

3 33.33 34.48 39.65 36.89 39.77 40.34 

4 39.29 34.82 39.11 39.28 39.91 40.36 

5 38.35 34.59 37.97 37.59 38.95 39.25 

6 37.75 34.44 37.09 37.08 38.21 38.15 

7 37.35 34.94 36.39 37.34 37.77 37.65 

8 36.16 33.90 35.69 35.59 37.29 37.18 

9 35.33 33.15 35.00 35.32 36.74 36.58 

10 35.11 32.98 34.84 35.10 36.65 36.60 

Mean 36.97 34.38 35.57 37.21 38.54 38.85 

 

 
Fig. 8. Percentage of displacement reduction. 
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(a) (b) (c) 

Fig. 9. Variation of objective function versus the number of iterations. a) PSO, b) WOA, and c) HPW. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

 

 

 

(j) 
Fig. 10. Time history displacement during the El Centro excitation. a) first floor, b) second floor, c) third 

floor, d) 4
th
 floor, e) 5

th
 floor, f) 6

th
 floor, g) 7

th
 floor, h) 8

th
 floor, i) 9

th
 floor, j) top floor. 
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Table 5 

Comparison of maximum displacement (in meters) of each story to the ground under El Centro 
earthquake with different amounts of TMD mass (PSO algorithm). 

Story 
TMD mass (ton) 

90 96 100 104 108 112 116 

1 0.018 0.017 0.016 0.017 0.019 0.019 0.020 

2 0.036 0.034 0.033 0.035 0.037 0.039 0.041 

3 0.051 0.048 0.047 0.050 0.055 0.056 0.058 

4 0.066 0.063 0.062 0.065 0.068 0.073 0.076 

5 0.076 0.073 0.072 0.075 0.083 0.085 0.089 

6 0.089 0.086 0.085 0.088 0.095 0.100 0.104 

7 0.100 0.097 0.095 0.099 0.104 0.111 0.116 

8 0.110 0.116 0.104 0.117 0.114 0.122 0.125 

9 0.114 0.110 0.108 0.11 0.119 0.125 0.130 

10 0.125 0.116 0.114 0.115 0.122 0.130 0.135 

 

The effect of ground motion (GM) record change on the three algorithms’ performance was also 

evaluated in this example. For this purpose, six GM records from the far-field records provided 

in FEMA P695 methodology [27] were selected according to Table 6. These GM records were 

scaled based on the first-mode period (𝑆𝑎(𝑇1) scaling method), considering the El Centro 

earthquake as the target spectral acceleration. 

Table 6 

FEMA P695 far-field ground motion record set [27] 

𝑃𝐺𝑉𝑚𝑎𝑥 

(𝑐𝑚/𝑠) 
𝑃𝐺𝐴𝑚𝑎𝑥 

(𝑔) 
Site class 

(NEHRP) 
Station Magnitude Year Event name 

ID 

No. 

63 0.52 D Beverly hills 6.7 1994 Northridge 1 

62 0.82 D Bolu 7.1 1999 Duzce, Turkey 2 

42 0.34 C Hector 7.1 1999 Hector Mine 3 

37 0.51 C Nishi-Akashi 6.9 1995 Kobe, Japan 4 

52 0.24 D Yermo Fire Station 7.3 1992 Landers 5 

54 0.51 C Abbar 7.4 1990 Manjil, Iran 6 

 

The maximum absolute displacement of each floor relative to the ground (in both controlled and 

uncontrolled) under these three GM records is summarized in Table 7. Also, the percentage of 

displacement reduction is shown in Table 8. For clearer comprehension of the results, a bar chart 

was drawn according to the percentage of displacement reduction provided for each record in 

Fig.11(a). Additionally, the mean response distribution for the percentage of displacement 

reduction due to record-to-record (RTR) variability per three algorithms is shown in Fig. 11(b) 

using lognormal probability distribution functions (PDFs). 



86 M. Mashayekhi et al./ Journal of Soft Computing in Civil Engineering 7-4 (2023) 72-92 

 

T
a
b

le
 7

 

M
ax

im
u
m

 a
b

so
lu

te
 d

is
p

la
ce

m
en

t 
o

f 
ea

ch
 f

lo
o
r 

re
la

ti
v
e 

to
 t

h
e 

g
ro

u
n
d

 f
o
r 

d
if

fe
re

n
t 

fa
r-

fi
el

d
 G

M
 r

ec
o
rd

s 
(m

).
 

G
M

 

re
co

rd
s 

C
as

e
 

S
to

ry
 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0
 

N
o

rt
h
ri

d
g
e
 

W
it

h
o

u
t 

T
M

D
 

0
.0

3
1
8

4
 

0
.0

6
2
5

2
 

0
.0

9
1
5

0
 

0
.1

1
8

2
4
 

0
.1

4
2
2

1
 

0
.1

6
2
9

4
 

0
.1

8
0
0

2
 

0
.1

9
3
1

7
 

0
.2

0
2
1

2
 

0
.2

0
6
6

5
 

P
S

O
 

0
.0

2
1
0

1
 

0
.0

4
1
2

5
 

0
.0

6
0
4

1
 

0
.0

7
8
1

7
 

0
.0

9
4
2

4
 

0
.1

0
8
3

6
 

0
.1

2
0
2

7
 

0
.1

2
9
7

7
 

0
.1

3
6
6

9
 

0
.1

4
0
9

0
 

W
O

A
 

0
.0

1
6
4

3
 

0
.0

3
2
2

3
 

0
.0

4
7
0

3
 

0
.0

6
0
5

0
 

0
.0

7
2
3

6
 

0
.0

8
2
7

3
 

0
.0

9
1
6

0
 

0
.0

9
8
5

6
 

0
.1

0
3
5

1
 

0
.1

0
6
3

9
 

H
P

W
 

0
.0

1
6
3

3
 

0
.0

3
2
0

3
 

0
.0

4
6
7

5
 

0
.0

6
0
1

5
 

0
.0

7
1
9

6
 

0
.0

8
1
9

7
 

0
.0

8
9
9

5
 

0
.0

9
5
7

6
 

0
.0

9
9
5

1
 

0
.1

0
2
2

4
 

D
u
zc

e,
 

T
u
rk

e
y
 

W
it

h
o

u
t 

T
M

D
 

0
.0

6
4
9

0
 

0
.1

2
7
5

7
 

0
.1

8
6
6

1
 

0
.2

4
0
8

7
 

0
.2

8
9
3

7
 

0
.3

3
1
2

8
 

0
.3

6
5
9

7
 

0
.3

9
2
7

1
 

0
.4

1
0
8

9
 

0
.4

2
0
0

8
 

P
S

O
 

0
.0

4
9
5

2
 

0
.0

9
7
8

6
 

0
.1

4
4
0

4
 

0
.1

8
7
2

8
 

0
.2

2
6
6

9
 

0
.2

6
1
5

7
 

0
.2

9
1
3

2
 

0
.3

1
5
5

3
 

0
.3

3
3
8

2
 

0
.3

4
5
8

1
 

W
O

A
 

0
.0

4
9
7

8
 

0
.0

9
8
6

0
 

0
.1

4
5
3

9
 

0
.1

8
8
9

3
 

0
.2

2
8
4

0
 

0
.2

6
3
2

2
 

0
.2

9
3
0

6
 

0
.3

1
5
5

5
 

0
.3

2
9
8

1
 

0
.3

3
5
3

3
 

H
P

W
 

0
.0

4
9
3

3
 

0
.0

9
7
7

1
 

0
.1

4
4
1
1
 

0
.1

8
7
2

6
 

0
.2

2
6
4

4
 

0
.2

6
0
7

9
 

0
.2

9
0
3

6
 

0
.3

1
2
6

5
 

0
.3

2
6
7

9
 

0
.3

3
2
2

8
 

H
ec

to
r 

M
in

e
 

W
it

h
o

u
t 

T
M

D
 

0
.0

3
6
4

3
 

0
.0

7
1
5

9
 

0
.1

0
4
8

6
 

0
.1

3
5
6

3
 

0
.1

6
3
3

0
 

0
.1

8
7
4

0
 

0
.2

0
7
4

6
 

0
.2

2
2
9

6
 

0
.2

3
3
5

1
 

0
.2

3
8
8

6
 

P
S

O
 

0
.0

1
4
8

4
 

0
.0

2
9
3

7
 

0
.0

4
3
4

7
 

0
.0

5
6
6

9
 

0
.0

6
8
7

2
 

0
.0

7
9
3

0
 

0
.0

8
8
2

3
 

0
.0

9
5
3

8
 

0
.1

0
0
6

9
 

0
.1

0
4
0

4
 

W
O

A
 

0
.0

1
1

8
2
 

0
.0

2
3
0

9
 

0
.0

3
3
6

5
 

0
.0

4
3
4

7
 

0
.0

5
2
6

1
 

0
.0

6
1
0

5
 

0
.0

6
8
4

8
 

0
.0

7
4
4

8
 

0
.0

7
8
7

3
 

0
.0

8
0
8

6
 

H
P

W
 

0
.0

1
1

7
7
 

0
.0

2
2
9

9
 

0
.0

3
3
5

0
 

0
.0

4
3
2

7
 

0
.0

5
2
3

6
 

0
.0

6
0
7

5
 

0
.0

6
8
1
1
 

0
.0

7
4
0

6
 

0
.0

7
8
2

6
 

0
.0

8
0
3

7
 

K
o

b
e,

 

Ja
p

an
 

W
it

h
o

u
t 

T
M

D
 

0
.1

9
0
6

8
 

0
.3

7
6
5

8
 

0
.5

5
5
6

8
 

0
.7

2
2
9

7
 

0
.8

7
4
3

9
 

1
.0

0
6
2

9
 

1
.1

1
5

5
1
 

1
.1

9
9
5

6
 

1
.2

5
6
6

0
 

1
.2

8
5
4

1
 

P
S

O
 

0
.0

7
1
1

6
 

0
.1

3
9
5

9
 

0
.2

0
3
8

1
 

0
.2

6
2
6

7
 

0
.3

1
4
8

9
 

0
.3

5
9
2

3
 

0
.3

9
4
6

5
 

0
.4

2
0
3

7
 

0
.4

3
6
1

8
 

0
.4

4
1
3

6
 

W
O

A
 

0
.1

3
0
2

1
 

0
.2

5
6
0

7
 

0
.3

7
4
7

7
 

0
.4

8
3
7

3
 

0
.5

8
0
5

4
 

0
.6

6
3
0

9
 

0
.7

2
9
3

9
 

0
.7

7
7
7

5
 

0
.8

0
6
9

8
 

0
.8

1
6
3

5
 

H
P

W
 

0
.1

3
4
5

9
 

0
.2

6
4
6

9
 

0
.3

8
7
4

4
 

0
.5

0
0
2

0
 

0
.6

0
0
6

2
 

0
.6

8
6
2

5
 

0
.7

5
5
0

5
 

0
.8

0
5
3

6
 

0
.8

3
5
9

4
 

0
.8

4
6
0

2
 

L
a
n
d

er
s 

W
it

h
o

u
t 

T
M

D
 

0
.0

2
8
3

5
 

0
.0

5
5
8

1
 

0
.0

8
1
7

9
 

0
.1

0
5
7

4
 

0
.1

2
7
2

0
 

0
.1

4
5
7

6
 

0
.1

6
1
0

7
 

0
.1

7
2
8

4
 

0
.1

8
0
8

9
 

0
.1

8
5
0

2
 

P
S

O
 

0
.0

1
5
9

3
 

0
.0

3
1
2

7
 

0
.0

4
5
7

8
 

0
.0

5
9
2

1
 

0
.0

7
1
4

0
 

0
.0

8
2
1

2
 

0
.0

9
1
1

8
 

0
.0

9
8
3

7
 

0
.1

0
3
4

9
 

0
.1

0
6
3

7
 

W
O

A
 

0
.0

1
5
9

2
 

0
.0

3
1
3

0
 

0
.0

4
5
8

7
 

0
.0

5
9
4

0
 

0
.0

7
1
6

5
 

0
.0

8
2
3

9
 

0
.0

9
1
4

1
 

0
.0

9
8
5

5
 

0
.1

0
3
5

4
 

0
.1

0
6
2

4
 

H
P

W
 

0
.0

1
5
3

4
 

0
.0

3
0
1

5
 

0
.0

4
4
1

9
 

0
.0

5
7
2

2
 

0
.0

6
9
0

2
 

0
.0

7
9
3

6
 

0
.0

8
8
0

4
 

0
.0

9
4
8

7
 

0
.0

9
9
6

7
 

0
.1

0
2
2

9
 

M
an

ji
l,

 

Ir
an

 

W
it

h
o

u
t 

T
M

D
 

0
.0

2
9
7

3
 

0
.0

5
8
1

0
 

0
.0

8
3
9

1
 

0
.1

0
6
4

7
 

0
.1

2
5
9

9
 

0
.1

4
2
5

8
 

0
.1

5
5
9

8
 

0
.1

6
5
4

3
 

0
.1

7
1
6

5
 

0
.1

7
4
9

2
 

P
S

O
 

0
.0

1
8
3

0
 

0
.0

3
5
8

1
 

0
.0

5
1
6

3
 

0
.0

6
5
2

2
 

0
.0

7
6
5

0
 

0
.0

8
5
9

2
 

0
.0

9
3
2

9
 

0
.0

9
8
6

3
 

0
.1

0
1
9

9
 

0
.1

0
3
8

9
 

W
O

A
 

0
.0

2
1
4

6
 

0
.0

4
1
6

5
 

0
.0

5
9
4

7
 

0
.0

7
4
6

6
 

0
.0

8
7
7

0
 

0
.0

9
8
7

6
 

0
.1

0
7
3

2
 

0
.1

1
3

3
1
 

0
.1

1
8

2
0
 

0
.1

2
1
0

4
 

H
P

W
 

0
.0

2
1
5

8
 

0
.0

4
1
8

6
 

0
.0

5
9
7

5
 

0
.0

7
5
0

6
 

0
.0

8
8
1

7
 

0
.0

9
9
3

6
 

0
.1

0
8
0

4
 

0
.1

1
4

1
4
 

0
.1

1
9

3
2
 

0
.1

2
2
1

8
 

 



 M. Mashayekhi et al./ Journal of Soft Computing in Civil Engineering 7-4 (2023) 72-92 87 

Table 8 

Percentage of displacement reduction for different far-field GM records (%). 

GM records Case 
Story 

Mean 
1 2 3 4 5 6 7 8 9 10 

Northridge 

PSO 34.01 34.02 33.98 33.89 33.73 33.50 33.19 32.82 32.37 31.82 33.33 

WOA 48.40 48.45 48.60 48.83 49.11 49.22 49.11 48.98 48.79 48.52 48.80 

HPW 48.72 48.77 48.91 49.13 49.40 49.69 50.03 50.43 50.77 50.52 49.64 

Duzce, 

Turkey 

PSO 23.71 23.29 22.81 22.25 21.66 21.04 20.40 19.65 18.76 17.68 21.13 

WOA 23.30 22.71 22.09 21.56 21.07 20.54 19.92 19.65 19.73 20.18 21.08 

HPW 24.00 23.41 22.78 22.25 21.75 21.28 20.66 20.39 20.47 20.90 21.79 

Hector Mine 

PSO 59.27 58.97 58.55 58.20 57.92 57.68 57.47 57.22 56.88 56.44 57.86 

WOA 67.54 67.75 67.91 67.95 67.79 67.42 66.99 66.59 66.29 66.15 67.24 

HPW 67.68 67.89 68.05 68.09 67.94 67.58 67.17 66.78 66.48 66.35 67.40 

Kobe, Japan 

PSO 62.68 62.93 63.32 63.67 63.99 64.30 64.62 64.96 65.29 65.66 64.14 

WOA 31.71 32.00 32.56 33.09 33.61 34.11 34.61 35.16 35.78 36.49 33.91 

HPW 29.42 29.71 30.28 30.81 31.31 31.80 32.31 32.86 33.48 34.18 31.62 

Landers 

PSO 43.81 43.97 44.03 44.01 43.87 43.66 43.39 43.09 42.79 42.51 43.51 

WOA 43.83 43.92 43.91 43.82 43.67 43.48 43.25 42.98 42.76 42.58 43.42 

HPW 45.89 45.98 45.97 45.88 45.74 45.56 45.34 45.11 44.90 44.71 45.51 

Manjil, Iran 

PSO 38.45 38.36 38.47 38.74 39.28 39.74 40.19 40.38 40.58 40.61 39.48 

WOA 27.83 28.31 29.13 29.87 30.40 30.73 31.19 31.51 31.14 30.81 30.09 

HPW 27.44 27.94 28.80 29.50 30.02 30.31 30.73 31.01 30.49 30.15 29.64 

 

  

(a) (b) 

Fig. 11. a) Bar chart of the percentage of displacement reduction, b) Probability distribution functions 

(PDFs) for the percentage of displacement reduction. 

Figure 11(a) shows that using the HPW algorithm in seismic excitation under Northridge, Duzce, 

Hector Mine, and Landers earthquakes has caused a greater reduction in the displacement of 

floors than the other two algorithms. As a result, this algorithm has provided more optimum 

parameters for the passive-tuned mass damper. Figure 11(b) shows that due to the nearly equal 

extracted responses’ standard deviation of all three algorithms, the distribution of the responses 

is likewise equal, and eventually, RTR variability is nearly the same per three algorithms. 
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6.3.2. Example 2 

This example investigates another 10-story frame with a TMD attached to the top floor and 

undergoing seismic loading (El Centro earthquake). The properties of this building are shown in 

Table 9. Like the first example, TMD stiffness and damping values are defined as variables of 

the optimization algorithm. The lower and upper bounds of stiffness are 0 and 500 kN/m, 

respectively, and the lower and upper bounds of the damping coefficient are 0 and 150 kN.s/m, 

respectively. The optimal TMD values estimated in this research and previous research are 

shown in Table 10. The optimal value of cd and kd obtained from the PSO algorithm is 404.76 

and 194.78% higher than the optimal value obtained from the WOA algorithm. Like the previous 

example, the WOA and HPW algorithms have predicted the lowest optimal value of cd and kd, 

and the optimal values of WOA and HPW algorithms are close to each other. 

The maximum absolute displacement of each floor relative to the ground (in both controlled and 

uncontrolled) and the percentage of displacement reduction are shown in Tables 11 and 12, also 

changes in the objective function versus the number of iterations for the second example in three 

optimization algorithms are depicted in Fig. 12(a) to 12(c). Also, the time history of floor 

displacement of the structure from the first floor to the tenth floor is shown in Fig. 13(a) to 13(j). 

The HPW algorithm has predicted a greater reduction in displacement than the other two 

algorithms (PSO algorithm, 26.91%, WOA algorithm, 26.88%, and HPW algorithm, 28.09). 

According to Fig. 12, the PSO, WOA, and HPW algorithms have converged to the optimum 

solution before 20, 50, and 40 iterations, respectively. 

Table 9 

Properties of the building for Example 2. 

Story Mass (ton) Stiffness (kN/m) Damping (kN.s/m) 

1 179 62470 805.863 

2 170 52260 674.154 

3 161 56140 724.206 

4 152 53020 683.958 

5 143 49910 643.839 

6 134 46790 603.591 

7 125 43670 563.095 

8 116 40550 523.098 

9 107 37430 482.847 

10 98 34310 442.592 

Table 10 

Stiffness and damping coefficient of the TMD for Example 2. 

TMD parameters 
Optimum values 

Ref. [28] Ref. [17] Ref. [26] PSO WOA HPW 

cd (kN.s/m) 104.4 48.9 30.23 119.85 29.61 25.33 

kd (kN/m) 464.1 437.4 355.76 493.50 253.36 289.87 
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Table 11 

Maximum absolute displacement of each floor relative to the ground (m). 

Story 
Without 

TMD 

With TMD 

Ref. [3] Ref. [6] Ref. [28] Ref. [17] Ref. [26] PSO WOA HPW 

1 0.041 0.034 0.036 0.036 0.034 0.030 0.0291 0.0320 0.0303 

2 0.088 0.074 0.079 0.077 0.065 0.065 0.0624 0.0687 0.0650 

3 0.129 0.106 0.114 0.113 0.094 0.094 0.0923 0.0996 0.0941 

4 0.166 0.136 0.147 0.145 0.120 0.120 0.1195 0.1272 0.1206 

5 0.197 0.163 0.177 0.172 0.143 0.143 0.1391 0.1497 0.1461 

6 0.222 0.187 0.206 0.194 0.163 0.163 0.1552 0.1667 0.1675 

7 0.252 0.213 0.236 0.219 0.186 0.186 0.1822 0.1786 0.1849 

8 0.286 0.239 0.267 0.245 0.209 0.209 0.2182 0.1928 0.1987 

9 0.313 0.261 0.292 0.266 0.229 0.229 0.2441 0.2069 0.2092 

10 0.327 0.276 0.310 0.281 0.242 0.242 0.2565 0.2153 0.2171 

 

Table 12 

Percentage of displacement reduction (%). 

Story Ref. [3] Ref. [6] Ref. [28] Ref. [17] Ref. [26] PSO WOA HPW 

1 17.07 12.20 12.20 17.07 25.37 29.11 21.95 26.10 

2 15.91 10.23 12.50 18.18 25.56 29.10 21.93 26.14 

3 17.83 11.63 12.40 18.60 26.67 28.43 22.79 27.05 

4 18.07 11.45 12.65 19.28 27.40 28.00 23.37 27.35 

5 17.26 10.15 12.69 18.78 27.41 29.41 24.01 25.84 

6 15.77 7.21 12.61 17.12 26.35 30.09 25.04 24.55 

7 15.48 6.35 13.10 16.67 26.06 27.71 29.12 26.63 

8 16.43 6.64 14.34 17.48 26.61 23.70 32.58 30.52 

9 16.61 6.71 15.02 17.57 26.54 22.02 33.89 33.16 

10 15.60 5.20 14.07 16.82 25.78 21.56 34.15 33.61 

Mean 16.60 8.78 13.16 17.76 26.37 26.91 26.88 28.09 

 

   
(a) (b) (c) 

Fig. 12. Variation of objective function versus the number of iterations. a) PSO, b) WOA, and c) HPW. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

 

 

 

(j) 
Fig. 13. Time history displacement during the El Centro excitation. a) first floor, b) second floor, c) third 

floor, d) 4
th
 floor, e) 5

th
 floor, f) 6

th
 floor, g) 7

th
 floor, h) 8

th
 floor, i) 9

th
 floor, j) top floor. 

7. Conclusion 

The primary purpose of this study was to estimate the optimum parameters of a passive mass 

damper to reduce the system’s response under earthquake loading. The emphasis on the inactive 

type of TMD damper is because this type of TMD does not delay responding to the system 

reaction and usually requires lower costs than other types. The particle swarm optimization 

(PSO) algorithm, whale optimization algorithm (WOA), and the combination of these two 

algorithms (Hybrid PSO-WOA or HPW) have been used to determine the optimum stiffness and 

damping of TMD. The system’s response was obtained using the transient integration methods in 
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OpenSees and controlled by the state-space equation. In the first example, a 10-story shear frame 

with similar properties on each floor, and in the second example, a 10-story shear frame with 

different properties on each floor under the seismic loading of the El Centro earthquake is 

presented to demonstrate the effectiveness of the proposed method. The optimal value predicted 

for cd and kd from the PSO algorithm in example 1 is 1.74 and 1.23 times the optimal value 

predicted by the WOA algorithm, respectively. Also, the optimal value predicted for cd and kd 

from the PSO algorithm in example 2 is 4.05 and 1.98 times the optimal value predicted by the 

WOA algorithm, respectively. In both examples, the WOA and HPW algorithms have predicted 

the lowest optimal value of cd and kd, and the optimal values of WOA and HPW algorithms are 

near each other, and the HPW algorithm has predicted a near each other reduction in 

displacement than the other two algorithms. Moreover, The effect of ground motion (GM) record 

change on the three algorithms’ performance by considering six far-field GM records provided in 

the FEMA P695 methodology was assessed in the first example. Like the earlier outcomes, the 

HPW algorithm has provided more optimum parameters for the passive-tuned mass damper, and 

RTR variability is approximately the same per three algorithms. The practical advantage of using 

these algorithms, among other metaheuristic optimization algorithms, is that these algorithms 

have the most uncomplicated relationships and the slightest need for external parameters. The 

proposed methods have good performance and are recommended as three approximate and rapid 

methods for the optimal design of these dampers. 
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