[1] Lee C, Hong SJ, Kim D, Lee W. Assessment of Compression Index of Busan and Incheon Clays with Sedimentation State. Mar Georesources Geotechnol 2015;33:23–32. https://doi.org/10.1080/1064119X.2013.764947.
[2] Nagaraj TS, Srinivasa BR, Murthy S. A critical reappraisal of compression index euqations. Geotechnique 1987:135–6.
[3] Shimobe S, Spagnoli G. A General Overview on the Correlation of Compression Index of Clays with Some Geotechnical Index Properties. Geotech Geol Eng 2022;40:311–24. https://doi.org/10.1007/s10706-021-01888-8.
[4] Onyelowe KC, Ebid AM, Nwobia L, Dao-Phuc L. Prediction and performance analysis of compression index of multiple-binder-treated soil by genetic programming approach. Nanotechnol Environ Eng 2021;6. https://doi.org/10.1007/s41204-021-00123-2.
[5] Gregory AS, Whalley WR, Watts CW, Bird NRA, Hallett PD, Whitmore AP. Calculation of the compression index and precompression stress from soil compression test data. Soil Tillage Res 2006;89:45–57. https://doi.org/10.1016/j.still.2005.06.012.
[6] McCabe BA, Sheil BB, Long MM, Buggy FJ, Farrell ER, Quigley P. Discussion: Empirical correlations for the compression index of Irish soft soils. Proc Inst Civ Eng Geotech Eng 2016;169:90–2. https://doi.org/10.1680/jgeen.15.00101.
[7] Alkroosh I, Alzabeebee S, Al-Taie AJ. Evaluation of the accuracy of commonly used empirical correlations in predicting the compression index of Iraqi fine-grained soils. Innov Infrastruct Solut 2020;5:1–10. https://doi.org/10.1007/s41062-020-00321-y.
[8] Danial Mohammadzadeh S, Kazemi SF, Mosavi A, Nasseralshariati E, Tah JHM. Prediction of compression index of fine-grained soils using a gene expression programming model. Infrastructures 2019;4:1–12. https://doi.org/10.3390/infrastructures4020026.
[9] Singh A, Noor S. Soil Compression Index Prediction Model for Fine Grained Soils. Int J Innov Eng Technol 2012;1:4.
[10] Al-khafaji AW. Compression Index Equations 2018.
[11] Yoon GL, Kim BT, Jeon SS. Empirical correlations of compression index for marine clay from regression analysis. Can Geotech J 2004;41:1213–21. https://doi.org/10.1139/t04-057.
[12] Park H Il, Lee SR. Evaluation of the compression index of soils using an artificial neural network. Comput Geotech 2011;38:472–81. https://doi.org/10.1016/j.compgeo.2011.02.011.
[13] Onyejekwe S, Kang X, Ge L. Assessment of empirical equations for the compression index of fine-grained soils in Missouri. Bull Eng Geol Environ 2015;74:705–16. https://doi.org/10.1007/s10064-014-0659-8.
[14] Ghanizadeh AR, Ghanizadeh A, Asteris PG, Fakharian P, Armaghani DJ. Developing bearing capacity model for geogrid-reinforced stone columns improved soft clay utilizing MARS-EBS hybrid method. Transp Geotech 2023;38:100906. https://doi.org/10.1016/j.trgeo.2022.100906.
[15] Cavaleri L, Barkhordari MS, Repapis CC, Armaghani DJ, Ulrikh DV, Asteris PG. Convolution-based ensemble learning algorithms to estimate the bond strength of the corroded reinforced concrete. Constr Build Mater 2022;359:129504.
[16] Tan WY, Lai SH, Teo FY, Armaghani DJ, Pavitra K, El-Shafie A. Three Steps towards Better Forecasting for Streamflow Deep Learning. Appl Sci 2022;12. https://doi.org/10.3390/app122412567.
[17] Shan F, He X, Jahed Armaghani D, Zhang P, Sheng D. Success and challenges in predicting TBM penetration rate using recurrent neural networks. Tunn Undergr Sp Technol 2022;130:104728. https://doi.org/10.1016/j.tust.2022.104728.
[18] Skentou AD, Bardhan A, Mamou A, Lemonis ME, Kumar G, Samui P, et al. Closed-Form Equation for Estimating Unconfined Compressive Strength of Granite from Three Non-destructive Tests Using Soft Computing Models. Rock Mech Rock Eng 2022:https://doi.org/10.1007/s00603-022-03046-9.
[19] Indraratna B, Armaghani DJ, Correia AG, Hunt H, Ngo T. Prediction of resilient modulus of ballast under cyclic loading using machine learning techniques. Transp Geotech 2022:100895.
[20] Ghanizadeh AR, Delaram A, Fakharian P, Armaghani DJ. Developing Predictive Models of Collapse Settlement and Coefficient of Stress Release of Sandy-Gravel Soil via Evolutionary Polynomial Regression. Appl Sci 2022;12:9986. https://doi.org/10.3390/app12199986.
[21] He B, Armaghani DJ, Lai SH. Assessment of tunnel blasting-induced overbreak: A novel metaheuristic-based random forest approach. Tunn Undergr Sp Technol 2023;133:104979. https://doi.org/10.1016/j.tust.2022.104979.
[22] Mittal M, Satapathy SC, Pal V, Agarwal B, Goyal LM, Parwekar P. Prediction of coefficient of consolidation in soil using machine learning techniques. Microprocess Microsyst 2021;82:103830. https://doi.org/10.1016/j.micpro.2021.103830.
[23] Ozer M, Isik NS, Orhan M. Statistical and neural network assessment of the compression index of clay-bearing soils. Bull Eng Geol Environ 2008;67:537–45. https://doi.org/10.1007/s10064-008-0168-8.
[24] Kurnaz TF, Dagdeviren U, Yildiz M, Ozkan O. Prediction of compressibility parameters of the soils using artificial neural network. Springerplus 2016;5:1801. https://doi.org/10.1186/s40064-016-3494-5.
[25] Kordnaeij A, Kalantary F, Kordtabar B, Mola-Abasi H. Prediction of recompression index using GMDH-type neural network based on geotechnical soil properties. Soils Found 2015;55:1335–45. https://doi.org/10.1016/j.sandf.2015.10.001.
[26] Nguyen MD, Pham BT, Ho LS, Ly HB, Le TT, Qi C, et al. Soft-computing techniques for prediction of soils consolidation coefficient. Catena 2020;195. https://doi.org/10.1016/j.catena.2020.104802.
[27] Benbouras MA, Kettab Mitiche R, Zedira H, Petrisor AI, Mezouar N, Debiche F. A new approach to predict the compression index using artificial intelligence methods. Mar Georesources Geotechnol 2019;37:704–20. https://doi.org/10.1080/1064119X.2018.1484533.
[28] Bentéjac C, Csörgő A, Martínez-Muñoz G. A comparative analysis of gradient boosting algorithms. Artif Intell Rev 2021;54:1937–67. https://doi.org/10.1007/s10462-020-09896-5.
[29] Farzin Kalantary. Prediction of compression index using artificial neural network. Sci Res Essays 2012;7. https://doi.org/10.5897/SRE12.297.
[30] Smiti A. A critical overview of outlier detection methods. Comput Sci Rev 2020;38:100306. https://doi.org/10.1016/j.cosrev.2020.100306.
[31] Wickham H, Stryjewski L. 40 Years of Boxplots. HadCoNz 2011:1–17.
[32] Drew JH, Glen AG, Leemis LM. Computing the cumulative distribution function of the Kolmogorov-Smirnov statistic. Comput Stat Data Anal 2000;34:1–15. https://doi.org/10.1016/S0167-9473(99)00069-9.
[33] Breiman L. Random Forests. Mach Learn 2001;45:5–32. https://doi.org/10.1023/A:1010933404324.
[34] He B, Lai SH, Mohammed AS, Muayad M, Sabri S, Ulrikh DV. Estimation of Blast-Induced Peak Particle Velocity through the Improved Weighted Random Forest Technique. Appl Sci 2022;12:5019. https://doi.org/https://doi.org/10.3390/app12105019.
[35] Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., New York, NY, USA: ACM; 2016, p. 785–94. https://doi.org/10.1145/2939672.2939785.
[36] Chen T, Guestrin C. XGBoost: Reliable Large-scale Tree Boosting System Tianqi. Proc. 22nd SIGKDD Conf. Knowl. Discov. Data Min., San Francisco, CA, USA: 2015, p. 13–7.
[37] Zhou J, Qiu Y, Zhu S, Armaghani DJ, Khandelwal M, Mohamad ET. Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization. Undergr Sp 2021;6:506–15. https://doi.org/10.1016/j.undsp.2020.05.008.
[38] Liashchynskyi P, Liashchynskyi P. Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS 2019:1–11.
[39] Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al. API design for machine learning software: experiences from the scikit-learn project 2013:1–15.
[40] Biau G, Scornet E. A random forest guided tour. Test 2016;25:197–227. https://doi.org/10.1007/s11749-016-0481-7.
[41] Hastie T et. all. Statistics The Elements of Statistical Learning. Springer Ser Stat 2009;27:745.
[42] Goldstein A, Kapelner A, Bleich J, Pitkin E. Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation. J Comput Graph Stat 2015;24:44–65. https://doi.org/10.1080/10618600.2014.907095.
[43] Tiwari B, Ajmera B. New Correlation Equations for Compression Index of Remolded Clays. J Geotech Geoenvironmental Eng 2012;138:757–62. https://doi.org/10.1061/(asce)gt.1943-5606.0000639.
[44] Akbarimehr D, Eslami A, Imam R. Correlations between Compression Index and Index Properties of Undisturbed and Disturbed Tehran clay. Geotech Geol Eng 2021;39:5387–93. https://doi.org/10.1007/s10706-021-01821-z.
[45] Erzin Y, MolaAbasi H, Kordnaeij A, Erzin S. Prediction of Compression Index of Saturated Clays Using Robust Optimization Model. J Soft Comput Civ Eng 2020;4:1–16. https://doi.org/10.22115/scce.2020.233075.1226.