[1] Babaei M, Moniri A. Use of Tuned Mass Dampers in Controlling the Vibrations of Steel Structures with Vertical Irregularity of Mass. Comput Eng Phys Model 2018;1:83–94. https://doi.org/10.22115/cepm.2018.137303.1035.
[2] Vishwakarma PN, Mishra P, Sharma SK. Characterization of a magnetorheological fluid damper a review. Mater Today Proc 2022;56:2988–94. https://doi.org/10.1016/j.matpr.2021.11.143.
[3] Al-Fahdawi OA., Barroso LR, Soares RW. Adaptive Neuro-Fuzzy and Simple Adaptive Control Methods for Alleviating the Seismic Responses of Coupled Buildings with Semi-active Devices: Comparative Study. Soft Comput Civ Eng 2019;3:1–20. https://doi.org/10.22115/SCCE.2019.199731.1128.
[4] Ferdaus MM, Rashid MM, Hasan MH, Rahman MA. Optimal design of Magneto-Rheological damper comparing different configurations by finite element analysis. J Mech Sci Technol 2014;28:3667–77. https://doi.org/10.1007/s12206-014-0828-5.
[5] Nagarajaiah S, Sahasrabudhe S. Seismic response control of smart sliding isolated buildings using variable stiffness systems: an experimental and numerical study. Earthq Eng Struct Dyn 2006;35:177–97. https://doi.org/10.1002/eqe.514.
[6] Gutierrez Soto M, Adeli H. Placement of control devices for passive, semi-active, and active vibration control of structures. Sci Iran 2013;20:1567–78.
[7] Hashemi MR, Vahdani R, Gerami M, Kheyroddin A. A New Approach to the Optimal Placement of the Viscous Damper Based on the Static Force Distribution Pattern. Period Polytech Civ Eng 2022;66:866–75. https://doi.org/10.3311/PPci.17238.
[8] Wani ZR, Tantray M. Study on integrated response-based adaptive strategies for control and placement optimization of multiple magneto-rheological dampers-controlled structure under seismic excitations. J Vib Control 2022;28:1712–26. https://doi.org/10.1177/10775463211000483.
[9] Dyke SJ, Spencer Jr. BF, Sain MK, Carlson JD. Experimental Verification of Semi-Active Structural Control Strategies using Acceleration Feedback. Proc. 3rd Int. Conf. Motion Vib. Control, vol. 3, 1996, p. 291–6.
[10] Qu WL, Xu YL. Semi-active control of seismic response of tall buildings with podium structure using ER/MR dampers. Struct Des Tall Build 2001;10:179–92. https://doi.org/10.1002/tal.177.
[11] Zhou L, Chang C-C, Wang L-X. Adaptive Fuzzy Control for Nonlinear Building-Magnetorheological Damper System. J Struct Eng 2003;129:905–13. https://doi.org/10.1061/(asce)0733-9445(2003)129:7(905).
[12] Renzi E, Serino G. Testing and modelling a semi-actively controlled steel frame structure equipped with MR dampers. Struct Control Heal Monit 2004;11:189–221. https://doi.org/10.1002/stc.36.
[13] Yan G, Zhou LL. Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers. J Sound Vib 2006;296:368–82. https://doi.org/10.1016/j.jsv.2006.03.011.
[14] Amini F, Ghaderi P. Optimal locations for MR dampers in civil structures using improved Ant Colony algorithm. Optim Control Appl Methods 2012;33:232–48. https://doi.org/10.1002/oca.991.
[15] Askari M, Li J, Samali B. Cost-effective multi-objective optimal positioning of magnetorheological dampers and active actuators in large nonlinear structures. J Intell Mater Syst Struct 2017;28:230–53. https://doi.org/10.1177/1045389X16649449.
[16] Lopes MA, Soeiro FJCP, Santos da Silva JG. Structural optimization of concrete volume for machine foundation using genetic algorithms. J Soft Comput Civ Eng 2019;3:62–81. https://doi.org/10.22115/SCCE.2019.203066.1129.
[17] Sanaei E, Babaei M. Cellular Automata in Topology Optimization of Continuum Structures. Int J Eng Sci Technol 2011;3. https://doi.org/10.4314/ijest.v3i4.68539.
[18] Hasançebi O, Çarbaş S, Doğan E, Erdal F, Saka MP. Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures. Comput Struct 2009;87:284–302. https://doi.org/10.1016/j.compstruc.2009.01.002.
[19] Rajeev S, Krishnamoorthy CS. Discrete optimization of structures using genetic algorithms. J Struct Eng 1992;118:1233–50.
[20] Akbari M, Henteh M. Comparison of Genetic Algorithm (GA) and Particle Swarm Optimization Algorithm (PSO) for Discrete and Continuous Size Optimization of 2D Truss Structures. J Soft Comput Civ Eng 2019;3:76–97. https://doi.org/10.22115/SCCE.2019.195713.1117.
[21] Fathali MA, Hoseini Vaez SR. Optimum performance-based design of eccentrically braced frames. Eng Struct 2020;202:109857. https://doi.org/10.1016/j.engstruct.2019.109857.
[22] Abedini H, Hoseini Vaez SR, Zarrineghbal A. Optimum design of buckling-restrained braced frames. Structures 2020;25:99–112. https://doi.org/10.1016/j.istruc.2020.03.004.
[23] Babaei M, Mollayi M. An improved constrained differential evolution for optimal design of steel frames with discrete variables. Mech Based Des Struct Mach 2020;48:697–723. https://doi.org/10.1080/15397734.2019.1657890.
[24] Seraji N, Babaei M. Discrete sizing optimization of steel structures using modified fireworks algorithm n.d.
[25] Sanaei E, Babaei M. Topology optimization of structures using cellular automata with constant strain triangles. Int J Civ Eng 2012;10:179–88.
[26] Camp C V., Bichon BJ, Stovall SP. Design of Steel Frames Using Ant Colony Optimization. J Struct Eng 2005;131:369–79. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(369).
[27] Kaveh A, Talatahari S. An improved ant colony optimization for the design of planar steel frames. Eng Struct 2010;32:864–73. https://doi.org/10.1016/j.engstruct.2009.12.012.
[28] Talatahari S, Nouri M, Tadbiri F, Branch S, Azad I. OPTIMIZATION OF SKELETAL STRUCTURAL USING. Int J Optim Civ Eng 2012;2:557–71.
[29] Farshchin M, Maniat M, Camp C V., Pezeshk S. School based optimization algorithm for design of steel frames. Eng Struct 2018;171:326–35. https://doi.org/10.1016/j.engstruct.2018.05.085.
[30] Pezeshk S, Camp C V., Chen D. Design of Nonlinear Framed Structures Using Genetic Optimization. J Struct Eng 2000;126:382–8. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(382).
[31] Babaei M. Multi-objective optimal number and location for steel outrigger-belt truss system. J Eng Sci Technol 2017;12:2599–612.
[32] Babaei M, Sanaei E. Multi-objective optimal design of braced frames using hybrid genetic and ant colony optimization. Front Struct Civ Eng 2016;10:472–80. https://doi.org/10.1007/s11709-016-0368-4.
[33] Babaei M, Mollayi M. Multi-objective Optimization of Reinforced Concrete Frames Using NSGA-II Algorithm. Eng Struct Technol 2016;8:157–64. https://doi.org/10.3846/2029882X.2016.1250230.
[34] Ghasemof A, Mirtaheri M, Karami Mohammadi R. Effects of demand parameters in the performance-based multi-objective optimum design of steel moment frame buildings. Soil Dyn Earthq Eng 2022;153:107075. https://doi.org/10.1016/j.soildyn.2021.107075.
[35] Ghasemof A, Mirtaheri M, Karami Mohammadi R. Multi-objective optimization for probabilistic performance-based design of buildings using FEMA P-58 methodology. Eng Struct 2022;254:113856. https://doi.org/10.1016/j.engstruct.2022.113856.
[36] Jung H-J, Spencer BF, Lee I-W. Control of Seismically Excited Cable-Stayed Bridge Employing Magnetorheological Fluid Dampers. J Struct Eng 2003;129:873–83. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(873).
[37] Ok S-Y, Kim D-S, Park K-S, Koh H-M. Semi-active fuzzy control of cable-stayed bridges using magneto-rheological dampers. Eng Struct 2007;29:776–88. https://doi.org/10.1016/j.engstruct.2006.06.020.