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A hybrid algorithm is presented that combines strong points of 

Particle Swarm Optimization (PSO) and Generalized Reduced 

Gradient (GRG) algorithm to keep a good compromise between 

exploration and exploitation. The hybrid PSO-GRG quickly 

approximates the optimum solution using PSO as a global search 

engine in the first phase of the search process. The solution 

accuracy is then improved during the second phase of the search 

process using the GRG algorithm to probe locally for a proper 

solution(s) in the vicinity of the current best position obtained by 

PSO. The k-nearest neighbors (k-NN)-based Purely Uniform 

Distributed (PUD) initial swarm is also applied to increase the 

convergence speed and reduce the number of function evaluations 

(NFEs). Hybridization between both algorithms allows the 

proposed algorithm to accelerate throughout the early stages of 

optimization using the high exploration power of PSO whereas, 

promising solutions will possess a high probability to be exploited 

in the second phase of optimization using the high exploitation 

ability of GRG. This prevents PUD-based hybrid PSO-GRG from 

becoming trapped in local optima while maintaining a balance 

between exploration and exploitation. The competence of the 

algorithm is compared with other state-of-the-art algorithms on 

benchmark optimization problems having a wide range of 

dimensions and varied complexities. Appraising offered algorithm 

performance revealed great competitive results on the Multiple 

Comparison Test (MCT) and Analysis of Variance (ANOVA) test. 

Results demonstrate the superiority of hybrid PSO-GRG compared 

to standard PSO in terms of fewer NFEs, fast convergence speed, 

and high escaping ability from local optima. 
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1. Introduction  

Complex engineering optimization problems usually include a large number of non-convex, non-

linear and non-differentiable constraints and objective functions. Exact optimization algorithms 

do not efficiently solve Constrained Optimization Problems (COPs) that have nonlinear and non-

differentiable search space, objective and constraint functions [1]. Recently, many metaheuristic 

algorithms derived from nature have been developed and employed to cope with COPs [2ï4]. 

Among them, the Swarm Intelligence Optimization (SIO) algorithms, inspired by natural 

phenomena and biological behaviors, are considered as a kind of bionic random method, which 

can deal with certain high-dimensional intricate and variable optimization problems due to its 

better computing performance and simple model [5]. Swarm intelligence systems typically 

comprise simple agents, that follow extremely simple rules and interact with each other and their 

surroundings. Although each agent alone can be considered unintelligent, interactions between 

multiple agents lead to the emergence of intelligent collective behavior [6]. Particle Swarm 

Optimization (PSO) [7], Ant Colony Optimization (ACO) [8], Artificial Bee Colony (ABC) 

algorithms [9], Firefly Algorithm (FA) [10], Glow Worm Optimization (GWO) algorithm [11], 

Bat Algorithm (BA) [12], Lion Optimization Algorithm (LOA) [13], Grey Wolf Optimization 

(GWO) algorithm [14], Monarch Butterfly Optimization (MBO) [15], Krill Herd Optimization 

(KHO) algorithm [16], Elephant Herding Optimization (EHO) [17], Cuckoo Search (CS) [18] are 

in the class of SIO algorithms. These algorithms have been analyzed over time by researchers in 

various areas [19ï28]. The SIOs have exhibited good performance in different engineering fields 

including feature selection [29], structural weight minimization [30ï34], shape and topology 

optimization [35ï37], damage detection [38ï40], and performance-based design optimization 

[41]. 

Among all global search algorithms, PSO has been applied and proven useful on a wide range of 

engineering COPs such as the optimal design of truss structures [42ï45], structural damage 

detection [46], topology optimization [47ï49], and reliability-based design optimization [50ï52]. 

PSO algorithm can efficiently handle non-linear, non-convex, and non-differentiable design 

spaces since it does not require prior knowledge about the search space, internal variable 

transformations, or other manipulations to handle constraints [53].  

Despite the efficiency of the SIO algorithms, none of these algorithms is capable of offering 

adequately superior performance to solve all optimization problems [2,23]. There are also some 

disadvantages to SIO utilization. First, effective parameters tuning of SIO algorithms is a 

challenging task for various swarm-based algorithms. Premature convergence and/or trapping in 

local optima is also another problem encountered when using SIO algorithms. For instance, 

although BA is potent in local search, occasionally it may get trapped in some local optimum, 

thus it is not capable of carrying out global search well [54,55], PSO can sometimes find local 

optima or exhibit slow convergence speed.  

In recent years, many algorithms with different strategies have been proposed to cope with the 

above-mentioned issues [56ï59]. Parameter tuning, hybridization, and better initializing are the 

most common methods that have been used in literature. Gupta and Deep have proposed a hybrid 
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algorithm based on the combination of the ABC with the sine cosine algorithm aiming to 

improve both the local and global search capabilities of the standard ABC algorithm [60]. In 

2020, Yildizdan and Baykan have suggested a new hybrid BA-ABC algorithm to improve the 

diversity and global search capability of the BA using the ABC algorithm, while the inertia 

weight was also added to the velocity formula to enhance the exploration ability of BA [61]. Yue 

and Zhang [62] were proposed a hybrid Grasshopper Optimization Algorithm (GOA) with BA 

for global optimization. In this study, the local search operation of the BA and the Levy flight 

with variable coefficient together with the random search strategy was employed to balance the 

exploration and exploitation capability of the proposed hybrid algorithm. Yue et al. have 

introduced a novel hybrid algorithm named FWGWO, which accordingly, the exploration 

capability of the fireworks algorithm with the exploitation ability of the GWO has been 

combined through the setting a balance coefficient [63]. Authors in [64ï66] employed several 

PSO-based hybridized algorithms such as the PSO-SA, PSO-GA, and PSO-GSA, for different 

optimization problems. Fuzzy logic, Chaos strategy, Elitism approach, Quantum strategy, and 

opposite-based learning are some other methods that have been utilized by researchers to 

ameliorate the performance of the standard PSO [67ï69]. 

In this study, a new hybrid optimization algorithm is proposed based on the PSO and Generalized 

Reduced Gradient (GRG) algorithm to improve the local search ability of the standard PSO. The 

Purely Uniform Distributed (PUD) initial swarm is also implemented as an efficient strategy to 

enhance the convergence speed of the optimization procedure. The proposed hybrid PSO-GRG 

algorithm with PUD operator is called the PGP method and introduced in detail and implemented 

successfully for some mathematical and engineering COPs having various dimensions and varied 

complexities. The efficiency and accuracy of the proposed algorithm are also compared with 

other state-of-the-art algorithms by performing the Multiple Comparison Test (MCT) and 

Analysis of Variance (ANOVA) test.  

The remainder of the paper is organized as follows. Details of the original PSO and GRG 

algorithms are presented in Sect. 2 and 3, respectively. In Sect. 4, the proposed hybrid PSO-GRG 

with the PUD operator is presented. In Sect. 5, the experimental results are provided for the 

nonlinear benchmark functions. Finally, the summary and concluding remarks are discussed in 

Sect. 6. 

2. Particle swarm optimization (PSO) 

The PSO algorithm was proposed by Kennedy and Eberhart [7] based on the flocking behavior 

and social cooperation of birds. In this algorithm, the position of each particle is considered as a 

potential solution to the optimization problem. In PSO, the position of each particle in a swarm 

approaches the optimum solution using its velocity vector ὠ, personal experience ὖὦὩίὸ, and 

the best experience of the swarm ὋὦὩίὸ. 

In the first iteration of the PSO, the initial swarm with ὖ particles is generated by distributing a 

uniform random population in the search space. During the optimization process, the position 

vector ὢ ὼȟȣȟὼ  and velocity vector ὠ ὺȟȣȟὺ  of each particle is updated concerning 
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the personal best position ὖὦὩίὸὼ ȟȣȟὼ , and best position of the swarm ὋὦὩίὸ

ὼ ȟȣȟὼ  as follows: 

ὠ Ὦ ‗ὠ Ὦ ὶὧ ὖὦὩίὸὮ ὢ Ὦ ὶὧ ὋὦὩίὸὮ ὢ Ὦ  (1) 

ὢ Ὦ ὢ Ὦ ὠ Ὦ (2) 

where ὖ is the swam size; D is the dimension of the search space, k is the current iteration 

number; ὢ Ὦ and ὠ Ὦ are the position and velocity of the i-th particle Ὥ ρȟςȟȣȟὖ in the j-th 

dimension, respectively Ὦ ρȟςȟȣȟὈ; ‗ is the constriction factor; ὧ and ὧ, respectively, are the 

personal (cognitive) and social learning constant; ὶ and ὶ are random numbers between [0-1], 

and is the inertia weight factor used to keep a balance between the exploration and exploitation  

power of the algorithm. The linearly decreasing inertia weight factor is applied in this study 

[51,52]. 

Ὧ 
  Ὧ

ὑ
 (3) 

where ὑ is the maximum iteration number; and   and   denoted the maximum and 

minimum values for inertia weight factor, used in the first and last iterations, respectively.  

In this algorithm, the velocity vector is limited to ρπςπϷ of each dimension size to control 

the particle's step size of each particle. After updating the velocity and position, the existent 

particles within the search space are evaluated. If the objective function related to the current 

position is better than the individual best position, the ὖὦὩίὸ of each particle will be replaced by 

the current position. Moreover, if a particle position is better than the current best solution 

obtained by the entire swarm, the ὋὦὩίὸ will also be updated. The search process will be 

continued until the stop conditions are met. 

3. Generalized reduced gradient (GRG) algorithm 

The GRG algorithm is robust local search algorithms, which is based on the linearizing of the 

non-linear objective function and constraints at a local solution by applying the Taylor expansion 

equation and the linear optimization methods [70]. Given that inequality constraints can always 

be converted to equalities through the addition of slack variables (ί), an equality-constrained 

NLP model can be formed as follows: 

ὓὭὲȡὪύ   

(4) ὛόὦὮὩὧὸ ὸέȡ Ὤύ π     Ὥ ρȟςȟȣȟὲὩή 

ὰ ύ ό 

where ύ ύȟύȟȣȟύ  contains the original design variables ὼ and the slack variables ί, and 

the vectors ὰ and ό denote the lower and upper bounds for ί, respectively. The gradient of the Ὢ 
can be defined as: 

ᶯὪᾀ
Ὢ

ᾀ
ȟ
Ὢ

ᾀ
ȟȣȟ

Ὢ

ᾀ
  (5) 
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ᶯὪώ
Ὢ

ώ
ȟ
Ὢ

ώ
ȟȣȟ

Ὢ

ώ
  (6) 

where two vectors ᾀ with NI elements, and ώ with ND elements are partitioned from the vector 

ύ. The Jacobian matrix (ὐ) of the constraints is also partitioned in the same manner. The 
differential of the constraints and objective function can then be written as follows: 

ὨὪ  ɳ ὪᾀὨᾀᶯὪώὨώ (7) 

ὨὬ ὐὨᾀὐὨώ π (8) 

where Ὠᾀ and Ὠώ are vectors of differential displacements in ᾀ and ώȟ respectively. Solving for 

Ὠώ in terms of Ὠᾀ gives: 

Ὠώ  ὐ ὐὨᾀ (9) 

 
Fig. 1. Flowchart of the GRG algorithm. 



 H. Varaee
 
et al./ Journal of Soft Computing in Civil Engineering 5-2 (2021) 86-119 91 

Substituted Ὠώ from Eq. (9) into Eqs. (7) and (8) and rearranging the results, the reduced 

gradient ᶯὪ can be defined as: 

ᶯὪᾀ  ɳ Ὢᾀ ᶯὪώὐ ὐ (10) 

The potential constraint strategy can also be employed to treat all constraints in the sub-problem 

as equality constraints [71]. Accordingly, a search direction is found so that for any small 

movement, the present active constraints stay in an exactly active manner. The NewtonïRaphson 

algorithm is employed to draw back into the constraint boundary if some active constraints are 

not precisely satisfied due to the nonlinearity of the constraint functions. Thusly, the GRG 

method works nearly like the gradient projection algorithm [72]. 

Fig. 1, shows the general flowchart of the GRG algorithm. More details about GRG have been 

presented in [73,74]. 

4. Proposed hybrid PSO-GRG algorithm 

In this study, the GRG algorithm is used to enhance the local search and exploitation ability of 

the PSO in some iterations of the search process. Furthermore, the PUD operator is also applied 

to increase the convergence rate and reduce the total Number of Function Evaluations (NFEs). 

Given that COPs are mostly complex and time-consuming, reducing the NFEs is an imperative 

issue. Details of the proposed PUD-based hybrid algorithm are presented in the next subsections.  

4.1. Purely uniform distributed swarm 

Although, the standard PSO starts with a group of randomly generated particles, however, the 

search space may not effectively be covered by a uniformly distributed swarm. As a result, as 

shown in Fig. 2, random generation of the swarm may lead to creating the particle density in 

some subspaces of the search spaces, so that some adjacent particles may practically exist at a 

very close distance, which will achieve relatively similar fitness during the search process. 

Furthermore, as shown in Fig. 2, some subspaces may not even cover by random generation of 

the initial swarm. Therefore, the size of the population should be greatly increased to efficiently 

cover the overall search space for high dimension and/or complex problems. The existence of 

such conditions leads to an increase in the total NFEs and, as a result, increases the computation 

time of the optimization process.  

In this study, the purely uniform distributed random particles are generated to probe the more 

efficiently the search domain. The promise of employing the PUD operator for generating the 

initial swarm is that the performance of the algorithm could be enhanced by avoiding checking 

particles with the same fitness so that no two particles are evaluated at a distance less than a 

certain radius from each other. For this purpose, the distance between the two adjacent particles 

is calculated using a k-nearest neighbors (k-NN) method that is a non-parametric algorithm for 

both classification and regression [75]. Also, the devoid subspaces of the search space should be 

covered as much as possible by particles from the initial swarm. Accordingly, after producing an 

initial swarm, all particles of the swarm are evaluated at a specified neighborhood during the first 
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stage, and then the dense particles in the neighborhood are exited from the swarm. Ultimately, 

these modifications result in the generation of an initial swarm so that the particles with the same 

fitness functions have been removed. Fig. 3(a), illustrates the PUD-based generated initial swarm 

for a two-dimensional search space. To efficiently explore the problem space as completely as 

possible in the second stage, a certain number of particles are randomly generated through the 

uniform distribution and added to the current swarm. The vicinity evaluation process is 

performed again using k-NN for all particles of the swarm. As shown in Fig. 3(b), this process 

considerably increases the probability of covering the entire search space. Figs. 4, shows the 

flowchart of the proposed k-NN-based PUD operator. 

 
Fig. 2. Initial swarm generated by randomly uniform distribution (n=100). 

  
a) b) 

Fig. 3. Purely uniform distributed initial random swarm; a) n=44, b) n=100. 
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Fig. 4. Flowchart of the proposed PUD operator. 

4.2. General steps of the hybrid PSO-GRG with PUD operator 

In the proposed hybrid PSO-GRG algorithm, the GRG algorithm is summoned by satisfying the 

conditions of convergence. For this purpose, the best solution obtained by PSO is utilized as a 
starting point for the GRG during the local search process. Using the GRG gradient-based 

algorithm will lead to locally improve the optimal position in the vicinity of the starting point, as 

described in Section 3. After converging the GRG-based local search process, the termination 

condition(s) of the algorithm is checked. If the termination criteria are not passed, the solution 

obtained by the GRG algorithm is considered as a global best position (GBP) and, consequently, 

the PSO algorithm will continue the optimization process to achieve the new best position. As 
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shown in Fig. 5, this cycle continues until satisfying all convergence conditions. Therefore, the 

quality of the optimum solution is improved in each series cycle of the algorithm by utilizing the 

GBP obtained by PSO as a starting point for the GRG algorithm. Eventually, the solution 

obtained by the GRG algorithm is presented as the final solution of the proposed hybrid PSO-

GRG. It should be mentioned that the maximum NFEs and/or the maximum number of iteration 

could be considered as the general termination condition(s) of the proposed hybrid algorithm. In 

this paper, the GRG algorithm is employed if the best solution of PSO does not improve after 

every 10 cycles. 

 
Fig. 5. The general flowchart of the proposed hybrid PGP algorithm. 
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The hybridization between PSO and GRG allows the proposed algorithm to accelerate 

throughout the early stages of the search process using the high exploration power of PSO 

whereas, in the later stages of optimization, promising solutions will possess a high probability to 

be exploited using the exploitation ability of the GRG. This prevents PSO-GRG from becoming 

trapped in local optima while maintaining a good compromise between exploration and 

exploitation. The general flowchart of the PSO-GRG with the PUD operator is depicted in Fig. 5. 

4.3. The constraint handling approach 

In this paper, a penalty-based constraint handling approach is considered to solve COPs. The 

search domain in the COPs includes feasible and infeasible spaces. For the feasible solutions, all 

the constraints are met. In contrast, in the infeasible space, at least one of the constraints is 

violated. Hence, the constraint functions can be taken into scrutiny through the penalty functions. 

This implies that constraints can be considered in the target function in one way or another. A 

penalty function can be defined as: 

Ὂὼ  Ὢὼ ὬὯὌὼȟὼɴ ὛṒὙ  (11) 

where ὪØ denotes the target (objective) function; ὬὯ denotes the dynamic penalty value at 

iteration Ὧ; and Ὄὼ is a penalty factor, defined as: 

Ὄὼ  — ήὼ  ήὼ    (12) 

where ήὼ πȟὫ ὼ ȟὭ ρȟȣȟά. The function ήὼ is a relative violation function for the 

i-th constraint Ὣ ὼ; —ήὼ  denotes the multi-segment assignment function; and ήὼ  

denotes the power of the penalty function. 

In this method, the initial penalty should be considered as the lowest possible value. The penalty 

value should also be increased in every iteration as the algorithm proceed [76]. Thus, the initial 

value selection and the updating strategy for the penalty coefficient are the main problems of the 

penalty function methods. If the considered penalty value is too small, the algorithm may 

generate a solution outside the feasible region. On the contrary, if the value is too large, 

approaching the boundary outside the feasible region might be arduous as well as the boundary 

might remain un-surveyed. Moreover, at least one of the constraints is usually active at the 

optimum solution. Therefore, searching the entire feasible zone, including the boundaries, is also 

momentous [77].  

In this paper, the penalty parameters are selected based on the recommendations suggested in 

[78]. If ήὼ ρ, then  ήὼ ρȟ otherwise  ήὼ ς. Moreover, if ήὼ πȢππρ, 

then — ήὼ ρπ, else if πȢππρήὼ πȢρ then — ήὼ ςπ, else if ήὼ ρ, then 

— ήὼ ρππ; otherwise — ήὼ σππ, and ὬὯ is set to ὯЍὯ where Ὧ is the current 

cycle number.  
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5. Results 

The efficiency and applicability of the proposed PSO-GRG and PGP (PSO-GRG with PUD 

operator) algorithms in solving mathematical and engineering design optimization benchmark 

COPs are investigated in this section. For each test problem, the results of the proposed 

algorithms including the Best, Average, Worst, Standard deviation (Std.), Median, total NFEs, 

and the average rank based on these performance indices are presented in comparison to the 

results of the PSO, FA, CA, ABC, and CBO algorithms. The parameter settings for all compared 

algorithms are set based on the recommendations of the literature (Table 1). The population size 

is set to ςπὨ for all algorithms, where Ὠ is the dimension of each problem. The maximum 

number of iterations is set to 100 and each problem is solved 25 times using Matlab 2016a on the 

personal computer with Intel È Core i7-7500 CPU @ 2.70 GHz. 

Table 1 

Parameter settings of all compared algorithms in solving COPs. 

Algorithm Parameter setting References 

PSO 

PSO-GRG 

PGP 

Cognitive coefficient = 2, Social coefficient = 2, Start inertia weight = 0.6, 

Final inertia weight = 0.6. 

[79] 

FA 
Gamma = 1, Beta = 2, Alpha = 0.2; Mutation coefficient damping ratio = 

0.98, m = 2. 
[80] 

CA Acceptance ratio = 0.35, alpha = 0.25, Beta = 0.5. [81] 

ABC 
Number of bee = population size, Number of food = population size / 2, 

Limit = 50. 

[82] 

CBO Coefficient of restitution = ρ ÉÔÅÒȾÍÁØ)Ô. [83] 

 

5.1. Benchmark mathematical constrained test problems 

In this section, a challenging mathematical problem with highly non-linear objective functions 

and constraints with various dimensions is assessed to demonstrate the efficacy of the proposed 

algorithm. For this purpose, Keane's bump problem that is known as a challenging multimodal 

COP with a highly bumpy surface is investigated [84,85]: 

-ÉÎÉÍÉÚÅ Ὢὼ ὧέίὼ ς ὧέίὼ Ⱦ Ὥὼ

Ȣ

 (13) 

3ÕÂÊÅÃÔ ÔÏȡ 

Ὣ ὼȡπȢχυ ὼ πȠ   

Ὣ ὼȡ ὼ χȢυὲ πȠ 

(14) 

where π ὼ ρπ  É  ρȢςȢȣȢÎ are the optimization variables and ὲ is the dimension of the 

problem. In Fig. 6, a 2-dimensional perspective view of Keaneôs bumpy function is presented. 
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Fig. 6. A perspective view of Keaneôs bumpy function without the constraints. 

Keane investigated this problem using a parallel GA with 12-bit binary encoding, crossover, 

inversion, mutation, niche forming, and a modified Fiacco-McCormick constraint penalty 

function [84]. For n=20, he obtained approximately the value of 0.76 after 20,000 NFEs. For 

n=50, the value close to 0.76 after 50,000 NFEs was obtained. Ghasemi et al also solved the 

problem with and without the use of rebirthing, for both n=20 and n=50 [86]. In their study, 

without the rebirthing technique, the algorithm was converged to an optimum value of 0.736 

after 15,800 NFEs. However, by applying the rebirthing technique, an optimum solution of 0.796 

was obtained with 31,800 NFEs. For the case n=50, the optimum solution obtained without 

rebirthing was 0.780 after 36,400 NFEs, while the algorithm converged to 0.820 by 41,000 NFEs 

after applying the rebirthing technique. 

The results of the PSO, FA, CA, ABC, CBO, and the proposed PSO-GRG and PGP algorithms 

for the Keaneôs bumpy function in the case of 5, 10, 20-and 50-dimension are summarized in 

Tables 2-5, respectively. The presented results in Tables 2-5 conclude that the proposed PGP 

algorithm achieved significantly better values than the other compared algorithms, especially for 

the NFEs which are found out in the lowest value by the proposed algorithm. It is worth 

mentioning that, for all cases under consideration, the solutions obtained by the proposed PSO-

GRG were enhanced after applying the PUD operator. As can be seen from Tables 2-5, for all 

dimensions except for n=50, the proposed PGP algorithm with PUD operator provided better 

solutions compared to standard PSO, PSO-GRG, and other compared algorithms in terms of the 

Best and Average of the results. It is also worth mentioning that, for n=50, more accurate 

optimum solutions are provided by the proposed PSO-GRG and the PGP algorithms. According 

to Table 5, the first constraint (Ὣ) is only active at both optimum solutions provided by the 

proposed algorithms. However, PGP converged after 22000 NFEs which is much lower than that 

of PSO-GRG (56000).  
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Table 2 

Comparison results of Keaneôs bumpy problem (n=5). 

  
PSO FA CA ABC CBO PSO-GRG PGP 

Best -0.634434 -0.599817 -0.634445 -0.634242 -0.634130 -0.634448 -0.634449 

Average -0.626494 -0.400488 -0.529209 -0.549381 -0.548245 -0.625281 -0.632458 

Worst -0.581363 -0.287488 -0.376375 -0.466548 -0.401325 -0.490594 -0.621936 

Std. 0.012689 0.087641 0.088487 0.047079 0.066905 0.029145 0.004184 

Median -0.634240 -0.405735 -0.555322 -0.548945 -0.556504 -0.634445 -0.634446 

Best Design 

ὼ 3.074789 3.086110 3.076389 3.057021 3.061141 3.075973 3.075468 

ὼ 2.994059 3.017713 2.991997 2.993556 3.008029 2.991598 2.992304 

ὼ 1.473922 1.410819 1.475373 1.472613 1.477723 1.474809 1.475700 

ὼ 0.235087 0.238800 0.235129 0.237445 0.233605 0.236236 0.236575 

ὼ 0.235162 0.239277 0.234883 0.234876 0.236858 0.233935 0.233442 

Constraints 
Ὣ -1.938E-04 -1.002E-03 -1.265E-06 -2.104E-03 -3.831E-03 -2.931E-06 -3.046E-7 

Ὣ -0.786320 -0.786861 -0.786299 -0.786786 -0.786204 -0.786332 -0.786307 

NFE
 a
 n/ab n/ab 5,600 n/ab n/ab 5,600 5,200 

Average Rank  2.67 6.17 4.83 4.33 4.67 2.50 1.00 

Overall Rank 3 7 4 6 5 2 1 

a
 The required NFEs to find a solution with absolute error less than ρπ  
b
 The algorithm was not able to find a solution with absolute error less than ρπ within 10,000 NFEs 

 

Table 3 

Comparison results of Keaneôs bumpy problem (n=10). 

  
PSO FA CA ABC CBO PSO-GRG PGP 

Best -0.744044 -0.558783 -0.740216 -0.572987 -0.674613 -0.747299 -0.747305 

Average -0.717396 -0.373637 -0.633815 -0.507654 -0.606945 -0.741269 -0.741660 

Worst -0.649883 -0.262882 -0.491727 -0.466982 -0.550462 -0.693472 -0.693472 

Std. 0.024401 0.087521 0.076900 0.028318 0.036180 0.011460 0.015575 

Median -0.722268 -0.392195 -0.637958 -0.506425 -0.602725 -0.747286 -0.747287 

Best Design 

ὼ 3.136318 9.356265 3.129749 3.330347 3.126558 3.120992 3.124911 

ὼ 3.120114 3.109227 3.063582 3.245365 2.960576 3.069567 3.071144 

ὼ 3.023238 3.071965 3.014805 3.129597 2.942394 3.016382 3.014750 

ὼ 2.914836 0.281657 2.970186 3.056053 2.954436 2.956655 2.960695 

ὼ 1.414281 0.303940 0.359903 3.069894 2.954242 1.467547 1.466807 

ὼ 0.334365 2.990283 1.416733 0.482239 0.306420 0.367869 0.368655 

ὼ 0.389125 0.292132 0.389952 0.529499 1.465520 0.359778 0.364679 

ὼ 0.397362 0.281131 0.359083 1.657751 0.208071 0.358139 0.356782 

ὼ 0.355535 0.282255 0.343383 0.561539 0.134308 0.358082 0.353976 

ὼ  0.343091 1.416041 0.356475 0.010000 0.314868 0.352417 0.351564 

Constraints Ὣ -2.488E-02 -1.234E-03 -4.766E-04 -5.720E-03 -2.015E-01 -1.568E-05 -1.412E-5 

 
Ὣ -0.794290 -0.714868 -0.794615 -0.745703 -0.768435 -0.794301 -0.794214 

NFE 
a
 n/ab n/ab n/ab n/ab n/ab 7,600 5,200 

Average Rank  3.00 6.33 4.33 5.17 4.50 1.67 1.17 

Overall Rank 3 7 4 6 5 2 1 

a 
The required NFEs to find a solution with absolute error less than ρπ  
b
 The algorithm was not able to find a solution with absolute error less than ρπ within 20,000 NFEs 
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Table 4 

Comparison results of Keaneôs bumpy problem (n=20). 

  
PSO FA CA ABC CBO PSO-GRG PGP 

Best -0.71083 -0.42773 -0.66698 -0.49294 -0.53417 -0.803530 -0.803619 

Average -0.62331 -0.31443 -0.57056 -0.44184 -0.46866 -0.792628 -0.792712 

Worst -0.52547 -0.24313 -0.44121 -0.39734 -0.43106 -0.780758 -0.758546 

Std. 0.058073 0.042407 0.055441 0.021851 0.023259 0.006264 0.012396 

Median -0.64165 -0.31714 -0.57051 -0.44491 -0.46493 -0.792547 -0.792567 

Best Design 

ὼ 6.179856 7.895262 6.107420 9.413282 5.706031 3.161323 3.162461 

ὼ 3.339417 3.179144 3.082757 2.960146 2.431078 3.121573 3.128331 

ὼ 2.877750 6.229477 3.183959 3.089952 3.231847 3.100686 3.094792 

ὼ 3.028898 6.210913 3.106224 3.139072 2.876008 3.063361 3.061451 

ὼ 3.109965 0.130187 3.065760 3.113860 2.746013 3.024778 3.027929 

ὼ 3.216482 6.161879 1.068054 0.151008 2.789593 2.986022 2.993826 

ὼ 2.923089 0.116712 3.103356 3.006541 3.162986 2.975655 2.958669 

ὼ 2.873630 0.181137 0.652909 3.055659 2.823960 2.928689 2.921842 

ὼ 2.873586 0.221049 0.484927 3.086395 3.055117 0.492330 0.494825 

ὼ  0.261387 0.191882 0.294239 0.010000 2.897448 0.478291 0.488357 

ὼ  0.461674 3.009281 2.141949 0.010000 0.377123 0.473688 0.482317 

ὼ  2.476116 0.202544 0.914048 3.003675 1.046887 0.471621 0.476645 

ὼ  0.271598 5.997859 0.455738 3.178702 3.295561 0.469087 0.471296 

ὼ  0.521309 0.178230 0.562195 3.228055 0.010000 0.467744 0.466231 

ὼ  0.151406 3.001337 0.583698 3.399763 0.582466 0.460982 0.461420 

ὼ  0.399679 0.146228 0.217040 3.175888 0.223557 0.460596 0.456837 

ὼ  0.230483 3.128780 0.749454 0.010000 0.609969 0.451792 0.452459 

ὼ  0.428238 3.056438 0.314096 1.504638 0.244804 0.451123 0.448267 

ὼ  0.255280 0.132435 0.887907 0.937604 0.854372 0.451122 0.444247 

ὼ  0.410572 3.063635 0.397180 0.551531 0.604213 0.451122 0.440382 

Constraints 
Ὣ -0.34800 -0.03235 -0.19350 -0.19619 -0.92646 -4.288E-7 1.214E-10 

Ὣ -0.75806 -0.65044 -0.79085 -0.66649 -0.73621 -0.800389 -0.800449 

NFE 
a
 n/ab n/ab n/ab n/ab n/ab 22,000 16,000 

Average Rank  3.67 6.00 4.17 5.00 4.50 1.67 1.33 

Overall Rank 3 7 4 6 5 2 1 
a 
The required NFEs to find the solution with absolute error less than ρπ  
b
 The algorithm was not able to find a solution with absolute error less than ρπ within 40,000 NFEs 

 

The ANOVA and MCT results for different dimensional Keaneôs bumpy function are 

summarized in Fig. 7. To illustrate the performance of the hybrid PGP over other compared 

algorithms, the convergence history of the best solution is also presented in this figure. The box-

plot diagram, in the middle column, presents a box and whisker plot for the applied algorithm. 

On the right side of Fig. 7, the results of the MCT are also provided among the dierent 

optimizers where the red color lines signiýes the methods which are statistically dier with the 

proposed PGP algorithm. The fast convergence rate and superior performance of both the 

proposed PSO-GRG and PGP algorithms compared to other algorithms are quite obvious from 

Fig. 7. It can be seen that the results of the PSO-GRG are very close to the PGP algorithm. 

However, for all dimensions of Keaneôs bumpy function, except for n=50, the PGP showed faster 

convergence speed compared to standard PSO, PSO-GRG, and other compared algorithms. 

These results verify the superior performance of both proposed algorithms compared to the 

standard PSO algorithm. 
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Fig. 7. Convergence history and box-plot for the 5-, 10-, 20- and 50-D Keaneôs bumpy function. 

 

5.2 Constraint engineering problems 

In this section, six Constraint Engineering Problems (CEPs), including pressure vessel, welded 

beam, tension/compression spring, speed reducer, tabular column, and three-bar truss design 

optimization problem having various objective functions, constraints, and various design 

variables are investigated to demonstrate the performance and efficiency of the proposed 

algorithm. 


