Investigating the Performance of Neural Network Based Group Method of Data Handling to Pan's Daily Evaporation Estimation (Case Study: Garmsar City)

Document Type : Regular Article


1 Faculty of Civil Engineering, Semnan University, Semnan, Iran

2 Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran


Evaporation is a complex and nonlinear phenomenon due to the interactions of different climatic factors. Therefore, advanced models should be used to estimate evaporation. In the present study, the Neural Network-Based Group Method of Data Handling was used to estimate and simulate the evaporation rate from the pan in the synoptic station of Garmsar city located in Semnan province, Iran. For this purpose, the daily meteorological data of evaporation, minimum and maximum temperature, wind speed, relative humidity, air pressure, and sunny hours of the said station during the nine years (2009-2018) were used. The percent of data on training, test, number of the used layers, and the highest number of neurons were considered as 60%, 40%, 5%, and 30%, respectively. The studied method's accuracy was investigated using the statistical parameter of Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and correlation coefficient, and. Sensitivity analysis of the input parameters was performed using the GMDH-NN model. This study showed that R2, RMSE, and MAE values in the test phase were obtained as 0.84, 2.65, and 1.91, respectively, in the most optimal state. From the third layer onwards, the amount of the best mean squared errors of the ‎Validation data have converged to 0.062, and it is not affordable to use more layers ‎for the modeling of the evaporation pan in the Garmsar station.‎ The standard deviation and mean amounts of the errors are -0.1210 and 2.552 ‎respectively.‎ The amounts of the best mean squared errors of the validation data are presented. ‎It shows that although the layers are increased, the amounts of the mean squared ‎errors have not changed considerably. (Maximum 0.003). The sensitivity analysis results showed that the two input parameters of minimum temperature and relative humidity percent have a higher effect on evaporation pan modeling than other input parameters.


Google Scholar


Main Subjects

[1]     Helfer F, Lemckert C, Zhang H. Impacts of climate change on temperature and evaporation from a large reservoir in Australia. J Hydrol 2012;475:365–78. doi:10.1016/j.jhydrol.2012.10.008.
[2]     Ghazvinian H, Karami H, Farzin S, Mousavi SF. Effect of MDF-Cover for Water Reservoir Evaporation Reduction, Experimental, and Soft Computing Approaches. J Soft Comput Civ Eng 2020;4:98–110. doi:10.22115/scce.2020.213617.1156.
[3]     Sima S, Ahmadalipour A, Tajrishy M. Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation. Remote Sens Environ 2013;136:374–85. doi:10.1016/j.rse.2013.05.014.
[4]     Ghazvinian H, Farzin S, Karami H, Mousavi SF. Investigating the Effect of using Polystyrene sheets on Evaporation Reduction from Water-storage Reservoirs in Arid and Semiarid Regions (Case study: Semnan city). J Water Sustain Dev 2020;7:45–52. doi:10.22067/jwsd.v7i2.81748.
[5]     Torres EA, Calera A. Bare soil evaporation under high evaporation demand: a proposed modification to the FAO-56 model. Hydrol Sci J 2010;55:303–15. doi:10.1080/02626661003683249.
[6]     Wang L, Niu Z, Kisi O, Li C, Yu D. Pan evaporation modeling using four different heuristic approaches. Comput Electron Agric 2017;140:203–13. doi:10.1016/j.compag.2017.05.036.
[7]     Ghazvinian H, Karami H, Farzin S, Mousavi SF. Experimental Study of Evaporation Reduction Using Polystyrene Coating, Wood and Wax and its Estimation by Intelligent Algorithms. Irrig Water Eng 2020;11:147–65. doi:10.22125/iwe.2020.120727.
[8]     Miralles DG, Jiménez C, Jung M, Michel D, Ershadi A, McCabe MF, et al. The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets. Hydrol Earth Syst Sci 2016;20:823–42. doi:10.5194/hess-20-823-2016.
[9]     Teng J, Yasufuku N, Liu Q, Liu S. Experimental evaluation and parameterization of evaporation from soil surface. Nat Hazards 2014;73:1405–18. doi:10.1007/s11069-014-1138-z.
[10]    Kumar N, Arakeri JH. Experimental and numerical investigation of evaporation from line sources of water in low porosity surfaces. J Hydrol 2019;569:795–808. doi:10.1016/j.jhydrol.2019.01.001.
[11]    Zheng J, Chen L, Wang J, Zhou Y, Wang J. Thermodynamic modelling and optimization of self-evaporation vapor cooled shield for liquid hydrogen storage tank. Energy Convers Manag 2019;184:74–82. doi:10.1016/J.ENCONMAN.2018.12.053.
[12]    Irmak S, Haman DZ, Jones JW. Evaluation of Class A Pan Coefficients for Estimating Reference Evapotranspiration in Humid Location. J Irrig Drain Eng 2002;128:153–9. doi:10.1061/(ASCE)0733-9437(2002)128:3(153).
[13]    Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO. Estimating Evapotranspiration using Artificial Neural Network. J Irrig Drain Eng 2002;128:224–33. doi:10.1061/(ASCE)0733-9437(2002)128:4(224).
[14]    Moghaddamnia A, Ghafari Gousheh M, Piri J, Amin S, Han D. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv Water Resour 2009;32:88–97. doi:10.1016/j.advwatres.2008.10.005.
[15]    Wang L, Kisi O, Hu B, Bilal M, Zounemat-Kermani M, Li H. Evaporation modelling using different machine learning techniques. Int J Climatol 2017;37:1076–92. doi:10.1002/joc.5064.
[16]    Shimi M, Najjarchi M, Khalili K, Hezavei E, Mirhoseyni SM. Investigation of the accuracy of linear and nonlinear time series models in modeling and forecasting of pan evaporation in IRAN. Arab J Geosci 2020;13:59. doi:10.1007/s12517-019-5031-7.
[17]    Sebbar A, Heddam S, Djemili L. Kernel extreme learning machines (KELM): a new approach for modeling monthly evaporation (EP) from dams reservoirs. Phys Geogr 2020:1–23. doi:10.1080/02723646.2020.1776087.
[18]    Qasem SN, Samadianfard S, Kheshtgar S, Jarhan S, Kisi O, Shamshirband S, et al. Modeling monthly pan evaporation using wavelet support vector regression and wavelet artificial neural networks in arid and humid climates. Eng Appl Comput Fluid Mech 2019;13:177–87. doi:10.1080/19942060.2018.1564702.
[19]    Patle GT, Chettri M, Jhajharia D. Monthly pan evaporation modelling using multiple linear regression and artificial neural network techniques. Water Supply 2020;20:800–8. doi:10.2166/ws.2019.189.
[20]    Adnan RM, Malik A, Kumar A, Parmar KS, Kisi O. Pan evaporation modeling by three different neuro-fuzzy intelligent systems using climatic inputs. Arab J Geosci 2019;12:606. doi:10.1007/s12517-019-4781-6.
[21]    J. M. Bruton, R. W. McClendon, G. Hoogenboom. ESTIMATING DAILY PAN EVAPORATION WITH ARTIFICIAL NEURAL NETWORKS. Trans ASAE 2000;43:491–6. doi:10.13031/2013.2730.
[22]    Keskin ME, Terzi Ö. Artificial Neural Network Models of Daily Pan Evaporation. J Hydrol Eng 2006;11:65–70. doi:10.1061/(ASCE)1084-0699(2006)11:1(65).
[23]    Ashrafzadeh A, Kişi O, Aghelpour P, Biazar SM, Masouleh MA. Comparative study of time series models, support vector machines, and GMDH in forecasting long-term evapotranspiration rates in northern Iran. J Irrig Drain Eng 2020;146:4020010.
[24]    Alsumaiei AA. Utility of Artificial Neural Networks in Modeling Pan Evaporation in Hyper-Arid Climates. Water 2020;12:1508. doi:10.3390/w12051508.
[25]    Al-Mukhtar M. Modeling the monthly pan evaporation rates using artificial intelligence methods: a case study in Iraq. Environ Earth Sci 2021;80:39. doi:10.1007/s12665-020-09337-0.
[26]    Ashrafzadeh A, Malik A, Jothiprakash V, Ghorbani MA, Biazar SM. Estimation of daily pan evaporation using neural networks and meta-heuristic approaches. ISH J Hydraul Eng 2020;26:421–9. doi:10.1080/09715010.2018.1498754.
[27]    Singh A, Singh RM, Kumar ARS, Kumar A, Hanwat S, Tripathi VK. Evaluation of soft computing and regression-based techniques for the estimation of evaporation. J Water Clim Chang 2021;12:32–43. doi:10.2166/wcc.2019.101.
[28]    Ghazvinian H, Bahrami H, Ghazvinian H, Heddam S. Simulation of Monthly Precipitation in Semnan City Using ANN Artificial Intelligence Model. J Soft Comput Civ Eng 2020;4:36–46. doi:10.22115/scce.2020.242813.1251.
[29]    Naderpour H, Rezazadeh Eidgahee D, Fakharian P, Rafiean AH, Kalantari SM. A new proposed approach for moment capacity estimation of ferrocement members using Group Method of Data Handling. Eng Sci Technol an Int J 2020;23:382–91. doi:10.1016/j.jestch.2019.05.013.
[30]    Naderpour H, Nagai K, Fakharian P, Haji M. Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods. Compos Struct 2019;215:69–84. doi:10.1016/j.compstruct.2019.02.048.
[31]    Ivakhnenko AG. Polynomial Theory of Complex Systems. IEEE Trans Syst Man Cybern 1971;SMC-1:364–78. doi:10.1109/TSMC.1971.4308320.
[32]    Farlow SJ. Self-organizing methods in modeling: GMDH type algorithms. Vol 54 CrC Press 1984.
[33]    Ehteram M, Karami H, Farzin S. Reservoir Optimization for Energy Production Using a New Evolutionary Algorithm Based on Multi-Criteria Decision-Making Models. Water Resour Manag 2018;32:2539–60. doi:10.1007/s11269-018-1945-1.
[34]    Basser H, Karami H, Shamshirband S, Jahangirzadeh A, Akib S, Saboohi H. Predicting optimum parameters of a protective spur dike using soft computing methodologies – A comparative study. Comput Fluids 2014;97:168–76. doi:10.1016/j.compfluid.2014.04.013.
[35]    Ghazvinian H, Mousavi S-F, Karami H, Farzin S, Ehteram M, Hossain MS, et al. Integrated support vector regression and an improved particle swarm optimization-based model for solar radiation prediction. PLoS One 2019;14:e0217634. doi:10.1371/journal.pone.0217634.
[36]    Ehteram M, Karami H, Mousavi S-F, Farzin S, Kisi O. Evaluation of contemporary evolutionary algorithms for optimization in reservoir operation and water supply. J Water Supply Res Technol - Aqua 2018;67:54–67. doi:10.2166/aqua.2017.109.
[37]    Dianatikhah M, Karami H, Hosseini K. Generation of Clean Hydropower Energy in Multi-Reservoir Systems Based on a New Evolutionary Algorithm. Water Resour Manag 2020;34:1247–64.
[38]    Karbasi M. Forecasting of Daily Reference Evapotranspiration at Ahvaz synoptic station using wavelet-GMDH hybrid model. J Water Soil Conserv 2016;23:323–30. doi:10.22069/jwfst.2016.9610.2385.
[39]    Traore S, Wang Y-M, Kerh T. Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone. Agric Water Manag 2010;97:707–14. doi:10.1016/j.agwat.2010.01.002.
[40]    Nourani V, Sayyah Fard M. Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Adv Eng Softw 2012;47:127–46. doi:10.1016/j.advengsoft.2011.12.014.
[41]    Piri J, Amin S, Moghaddamnia A, Keshavarz A, Han D, Remesan R. Daily Pan Evaporation Modeling in a Hot and Dry Climate. J Hydrol Eng 2009;14:803–11. doi:10.1061/(ASCE)HE.1943-5584.0000056.
[42]    Abusada SM. The essentials of groundwater resources of Kuwait. Kuwait Inst Sci Res Rep No KISR 1988;2665.
[43]    Brutsaert W. Evaluation of some practical methods of estimating evapotranspiration in arid climates at low latitudes. Water Resour Res 1965;1:187–91. doi:10.1029/WR001i002p00187.
[44]    Linacre ET. Estimating U.S. Class A Pan Evaporation from Few Climate Data. Water Int 1994;19:5–14. doi:10.1080/02508069408686189.