Shape optimization of gravity dams using a nature-inspired approach

Document Type: Regular Article


1 M.Sc. Graduate, Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University, Semnan, Iran

2 M.Sc. Student, Department of Civil Engineering, University of Science and Culture, Tehran, Iran

3 Assistant Professor, Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University, Semnan, Iran

4 Lecturer, Department of Civil Engineering, Robat Karim Branch, Islamic Azad University, Tehran, Iran

5 Professor, Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University, Semnan, Iran


In water infrastructures design problems, small changes in their geometries lead to a major variation in the construction time and costs. Dams are such important water infrastructures, which have different types regarding their materials and their behavior to endure loads. In the current paper, invasive weed optimization (IWO) algorithm is employed to find the best shape of a concrete gravity dam (Tilari Dam, India). Stress and stability were considered as design constraints, based on the following models: Model I (M1): upstream dam face is inclined and Model II (M2): upstream dam face is vertical. Optimization using IWO for M1 showed 20% reduction in cross-sectional area as compared to prototype. Although results obtained using IWO showed no changes in comparison with the algorithms in the literature (i.e., differential evolution, charged system search, colliding bodies optimization, and enhanced colliding bodies optimization), it converged faster. But results for M2 revealed 26% reduction in cross-sectional area.


Main Subjects

[1]     Moffett M, Fazio MW, Wodehouse L. A world history of architecture. Laurence King Publishing; 2003.
[2]     Chen S-H. Hydraulic Structures. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. doi:10.1007/978-3-662-47331-3.
[3]     Ferdowsi A, Farzin S, Mousavi S-F, Karami H. Hybrid bat & particle swarm algorithm for optimization of labyrinth spillway based on half & quarter round crest shapes. Flow Meas Instrum 2019;66:209–17. doi:10.1016/j.flowmeasinst.2019.03.003.
[4]     Hojjati SH, Salehi Neyshabouri SAA. The objective design of triangular bucket for dam’s spillway using Non-dominated Sorting Genetic Algorithm II: NSGA-II. Sci Iran 2017;24:19–27. doi:10.24200/sci.2017.2373.
[5]     A F, S-F M, S F, H K, M E, M A. Optimal Design and Hydraulic Performance Improvement of Labyrinth Spillway using Cuckoo Search Algorithm. Iran J Irrig Drain 2019;5:1086–97.
[6]     Hassanvand MR, Karami H, Mousavi S-F. Use of multi-criteria decision-making for selecting spillway type and optimizing dimensions by applying the harmony search algorithm: Qeshlagh Dam Case Study. Lakes Reserv Res Manag 2019;24:66–75. doi:10.1111/lre.12250.
[7]     Norouzi R, Daneshfaraz R, Ghaderi A. Investigation of discharge coefficient of trapezoidal labyrinth weirs using artificial neural networks and support vector machines. Appl Water Sci 2019;9:148. doi:10.1007/s13201-019-1026-5.
[8]     Ehteram M, Karami H, Mousavi S-F, Farzin S, Kisi O. Evaluation of contemporary evolutionary algorithms for optimization in reservoir operation and water supply. J Water Supply Res Technol - Aqua 2018;67:54–67. doi:10.2166/aqua.2017.109.
[9]     Karami H, Mousavi SF, Farzin S, Ehteram M, Singh VP, Kisi O. Improved Krill Algorithm for Reservoir Operation. Water Resour Manag 2018;32:3353–72. doi:10.1007/s11269-018-1995-4.
[10]    Choopan Y, Emami S. Optimal Operation of Dam Reservoir Using Gray Wolf Optimizer Algorithm (Case Study: Urmia Shaharchay Dam in Iran). J Soft Comput Civ Eng 2019;3:47–61.
[11]    Rezaeeian A, Davoodi M, Jafari MK. Determination of Optimum Cross Section of Earth Dams Using Ant Colony Optimization Algorithm. Sci Iran 2018:0–0. doi:10.24200/sci.2018.21078.
[12]    Ghazvinian H, Karami H, Farzin S, Mousavi SF. Effect of MDF-Cover for Water Reservoir Evaporation Reduction, Experimental, and Soft Computing Approaches. J Soft Comput Civ Eng 2020;4:98–110. doi:10.22115/scce.2020.213617.1156.
[13]    A K, P Z. Stability based optimum design of concrete gravity dam using CSS, CBO and ECBO algorithms. Int J Optim Civ Eng 2015;5:419–31.
[14]    F. S. Design of gravity dam by genetic algorithms. Int J Civ Environ Eng 2011;3:187–92.
[15]    Khatibinia M, Khosravi S. A hybrid approach based on an improved gravitational search algorithm and orthogonal crossover for optimal shape design of concrete gravity dams. Appl Soft Comput 2014;16:223–33. doi:10.1016/j.asoc.2013.12.008.
[16]    R D, C. S. Optimal design of gravity dam using differential evolution algorithm. Int J Optim Civ Eng 2015;5:255–66.
[17]    CHITI H, KHATIBINIA M, AKBARPOUR A, NASERI HR. Reliability–based design optimization of concrete gravity dams using subset simulation. Int J Optim Civ Eng 2016;6:329–48.
[18]    Khatibinia M, Chiti H, Akbarpour A, Naseri HR. Shape optimization of concrete gravity dams considering dam–water–foundation interaction and nonlinear effects. IUST 2016;6:115–34.
[19]    Memarian T, Shahbazi Y. Integrated Metaheuristic Differential Evolution Optimization Algorithm and Pseudo Static Analysis of Concrete Gravity Dam. Civ Eng J 2017;3:617–25.
[20]    Zhang M, Li M, Shen Y, Zhang J. Isogeometric shape optimization of high RCC gravity dams with functionally graded partition structure considering hydraulic fracturing. Eng Struct 2019;179:341–52. doi:10.1016/j.engstruct.2018.11.005.
[21]    Chassiakos AP, Rempis G. Evolutionary algorithm performance evaluation in project time-cost optimization. J Soft Comput Civ Eng 2019;3:16–29.
[22]    Javidrad F, Nazari M, Javidrad HR. An Innovative Optimized Design for Laminated Composites in terms of a Proposed Bi-Objective Technique. J Soft Comput Civ Eng 2020;4:1–28.
[23]    Aiyelokun O, Ojelabi A, Agbede O. Performance Evaluation of Machine Learning Models in Predicting Dry and Wet Climatic Phases. Soft Comput Civ Eng 2020;4:29–48.
[24]    Kalman Sipos T, Parsa P. Empirical Formulation of Ferrocement Members Moment Capacity Using Artificial Neural Networks. J Soft Comput Civ Eng 2020;4:111–26. doi:10.22115/scce.2020.221268.1181.
[25]    Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput 1997;1:67–82. doi:10.1109/4235.585893.
[26]    Mehrabian AR, Lucas C. A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 2006;1:355–66. doi:10.1016/j.ecoinf.2006.07.003.
[27]    Asgari H-R, Bozorg Haddad O, Pazoki M, Loáiciga HA. Weed Optimization Algorithm for Optimal Reservoir Operation. J Irrig Drain Eng 2016;142:04015055. doi:10.1061/(ASCE)IR.1943-4774.0000963.
[28]    Azizipour M, Ghalenoei V, Afshar MH, Solis SS. Optimal Operation of Hydropower Reservoir Systems Using Weed Optimization Algorithm. Water Resour Manag 2016;30:3995–4009. doi:10.1007/s11269-016-1407-6.
[29]    Ehteram M, P. Singh V, Karami H, Hosseini K, Dianatikhah M, Hossain M, et al. Irrigation Management Based on Reservoir Operation with an Improved Weed Algorithm. Water 2018;10:1267. doi:10.3390/w10091267.
[30]    A. F. Optimization of labyrinth spillway geometry using metaheuristic algorithms under climate change. M.Sc. thesis. Semnan University, Semnan, Iran. 2019.
[31]    R S, K. P. Differential evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report TR-95-012. Int Comput Sci Berkeley, Calif 1995.
[32]    Kaveh A, Talatahari S. A novel heuristic optimization method: charged system search. Acta Mech 2010;213:267–89. doi:10.1007/s00707-009-0270-4.
[33]    Kaveh A, Mahdavi VR. Optimal Design of Truss Structures with Continuous Variables Using Colliding Bodies Optimization. Colliding Bodies Optim, Cham: Springer International Publishing; 2015, p. 39–86. doi:10.1007/978-3-319-19659-6_3.
[34]    Kaveh A, Ilchi Ghazaan M. Enhanced colliding bodies optimization for design problems with continuous and discrete variables. Adv Eng Softw 2014;77:66–75. doi:10.1016/j.advengsoft.2014.08.003.
[35]    Yang X-S, editor. Nature-Inspired Algorithms and Applied Optimization. vol. 744. Cham: Springer International Publishing; 2018. doi:10.1007/978-3-319-67669-2.
[36]    Ehteram M, Singh VP, Ferdowsi A, Mousavi SF, Farzin S, Karami H, et al. An improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration. PLoS One 2019;14:e0217499. doi:10.1371/journal.pone.0217499.
[37]    Ferdowsi A, Mousavi S-F, Farzin S, Karami H. Optimization of dam’s spillway design under climate change conditions. J Hydroinform 2020;22:916–36. doi:10.2166/hydro.2020.019.