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In the present study, 20 models were developed using gene 

expression programming (GEP) to predict the compressive 

strength and mass loss of geopolymer mortar (GPM) 

containing recycled concrete aggregate (RCA) exposed to 

elevated temperatures. To do so, the results of 160 specimens 

manufactured out of 32 different mixture designs in an 

experimental effort were used. In developing the models, 

80% of the total datasets were employed in the training 

phase, with the remaining 20% used in the validation phase. 

Three input variables were taken into account, namely the 

applied temperature (T), recycled concrete aggregate (RCA) 

replacement level, and superplasticizer (SP) addition 

percentage. The training and validation phases with the 

coefficient of determination of 0.95 to 0.99 demonstrated 

that there was proper consistency between results predicted 

by the proposed models and the experimental results. 

Moreover, the results of statistical analyses gave another 

reason for the ability of GEP to predict both the compressive 

strength and mass loss of GPM containing recycled concrete 

aggregate under elevated temperatures. 

Keywords: 

Geopolymer mortar; 

Recycled concrete aggregate; 
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1. Introduction 

Increasing costs and depleting natural resources have forced humanity to turn towards recycling 

and reusing waste materials. Although this issue has become relevant to the construction industry 
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in recent years, the use of recycled waste materials in this industry has not yet become 

commonplace around the world. In this regard, one strategy is to use construction and demolition 

(C&D) waste materials as alternative aggregates in new concrete [1,2]. With regard to a lower 

quality of recycled aggregate concrete (RAC) compared with conventional concrete, many 

experimental efforts have been conducted by researchers to find solutions for improving the 

RAC quality. It has been demonstrated that using recycled concrete aggregate (RCA) in concrete 

lowers the elastic modulus, compressive strength, and freeze-thaw resistance while increasing 

the creep, drying shrinkage, water absorption, and carbonation speed in comparison with using 

natural aggregate. However, these properties can be enhanced through designing a proper mix 

and adding mineral admixtures [3]. 

Portland cement (PC) is a commonly used material as the main binder in construction activities. 

Estimates say that around 12–15% of the entire industrial energy input is consumed in the 

cement production [4]. Along with technological progress in PC production, the associated 

energy consumption, together with adverse emissions, have declined. Nevertheless, even the 

most efficient cement production facilities still consume up to 4 GJ energy and release around 

one ton carbon dioxide (CO2) per each ton of cement produced [5]. As a result, cement 

production industry is responsible for a huge volume of greenhouse gas (GHG) emissions into 

the atmosphere, which in turn exacerbates the climate change effects. Considering the fact that 

protecting the environment is becoming more and more important, discovering a viable 

alternative to PC seems to be of particular significance. In this regard, to replace ordinary 

Portland cement (OPC), geopolymer materials have emerged as likely options [6–8]. 

Employing geopolymer materials has advantages regarding environmental protection since doing 

so curbs greenhouse gases (GHGs) released due to producing cement [9]. Multiple industrial by-

products can be used as geopolymers, namely ground granulated blast furnace slag and fly ash 

[10–12]. To make slag-based geopolymer concrete (GPC), alkaline solutions including sodium 

silicate (Na2SiO3) and sodium hydroxide (NaOH) can be utilized to activate the slag [6]. A 

number of factors affect the mechanical properties of slag-based GPC, which include the type of 

alkali activator solution and its dosage, raw materials, curing conditions, and solution-to-binder 

ratio. [13–16]. Due to its quick strength attainment, the initial strength of slag-based GPC is a 

rather high, such that the one-day strength can reach up to 60 MPa [17]. A majority of studies in 

the literature have found the elastic modulus of slag-based GPC to be near that calculated for 

OPC concrete by different codes in the range of 10–40 GPa [17–19]. Furthermore, during the 

hydration of geopolymer materials, the main product is calcium aluminosilicate hydrate (C-A-S-

H). As reported by Walkley et al. [20], the principal product of the reaction of any geopolymer 

material is a cross-linked sodium- and aluminum-substituted calcium silicate hydrate (C-(N)-A-

S-H)-type gel. In addition, As reported by Myers et al. [21], the principal substance formed 

during the activation of blast furnace slag is a calcium aluminosilicate hydrate (C-A-S-H) gel. 

In general, when conventional concrete is subjected to high temperatures, strength loss occurs 

due to the hydrogen decomposition in Ca(OH)2, C-S-H phase, and other hydrated compounds 

[22]. In the study of Peng et al. [23], the decomposition of C–S–H began at 560 ℃, and it 

converted to C2S and C3S at 800 ℃. It was also found that the content of Ca(OH)2 in 
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conventional concrete declined when the applied temperature went above 450 ℃. Many 

researchers have focused on the resistance of slag-based GPC to high temperatures. Given that 

slag-based GPC lacks Ca(OH)2, it is expected to demonstrate better behavior relative to OPC 

concrete during fire [24]. The superior resistance of slag-based GPC to high temperatures is 

associated with the content of Ca(OH)2 in slag-based geopolymer paste. Jumppanen et al. [25] 

noted that after hydration, the content of Ca(OH)2 in slag-based geopolymer pastes is low, thus 

Ca(OH)2 dehydroxylation does not control their performance in fire. Hence, the spalling 

resistance of slag-based GPC in fire is greater than conventional concrete. Mao-Chieh Chi et al. 

[26] attributed the higher strength of geopolymers relative to cement mortars to the different 

structure and composition of the formed C-S-H. The properties of sodium silicate-activated 

geopolymer materials after exposure to temperatures of up to 1200 ℃ were addressed by Zuda et 

al. [27]. The findings suggested the significant capacity of these materials for use in practical 

applications. Following heating at elevated temperatures, it was observed that in the binder, the 

calcium silicate hydrate (C-S-H) matrix was slowly replaced with a new akermanite-based 

structure. 

Moreover, after heating up to 1200 ℃, the porosity of the materials increased significantly. In 

another work, the researchers observed both thermal conductivity and thermal diffusivity of slag-

based geopolymer materials to decline after the exposure increased above 400 ℃; hence, the 

effectiveness of these materials for high-temperature applications is resulted [28]. Guerrieri et al. 

[29] addressed the residual compressive strength of OPC concrete, mixed OPC/slag (50/50) 

concrete, and slag-based GPC activated by sodium silicate and hydrated lime after experiencing 

high temperatures of up to 1200 ℃. Based on the findings, although the slag-based GPC lacked 

Ca(OH)2, it exhibited proper behavior in the temperature range of 400-800 ℃, which was 

consistent with the results of the OPC and the mix slag/cement concretes. The authors attributed 

the reduction in the strength of slag-based GPC activated by powdered sodium silicate and 

hydrated lime at high temperatures to greater thermal incompatibility of aggregate-slag-based 

geopolymer paste, which was notably greater than that in the concretes containing other binders. 

In another work, Guerrieri et al. [30] addressed the strength of slag-based geopolymer paste 

activated by sodium silicate after exposure to heat. Based on the findings, the slag-based 

geopolymer paste experienced a fast strength reduction of around 60% when exposed to 100 and 

200 ℃, and a further strength reduction of around 30% at 800 ℃. After exposure to 1200 ℃, 

total strength loss occurred. 

As the volume of waste concrete obtained after the repair and renovation of deteriorating 

infrastructures increases, finding sites to dispose of waste materials has become a challenge [31]. 

Moreover, a huge volume of natural aggregate is required for concrete production, which is, in 

turn, diminishing natural aggregate (NA) sources at a rapid rate, leading to environmental issues 

[32]. Therefore, the use of RCA in concrete is becoming more widespread as a viable solution for 

environmental problems associated with waste materials. This strategy can alleviate stress on 

natural aggregate quarries and waste landfills and protect the environment in return. In general, 

concrete made with RCA has shown a lower compressive strength relative to concrete made with 

NA [33]; however, the results of experiments conducted by Kathirvel et al. [34] demonstrated 

that by using 50% RCA in the mix, the compressive strength and water absorption of slag-based 
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GPC increased. Kathirvel et al. [35] addressed the variation of engineering and durability 

properties of slag-based GPC containing RCA cured under ambient conditions. Here, slag-based 

GPC mixes with different fractions of RCA replacing NA, namely 0, 25, 50, 75, and 100%, were 

examined. The concretes where 50 and 100% of NA were replaced with RCA demonstrated the 

greatest strength and the better behavior relative to the OPC concrete, respectively. Shi Cong 

Kou et al. [36] observed that in comparison with the concrete containing NA, the concrete 

containing RCA experienced fewer mechanical and durability properties reductions after 

exposure to heat. Several studies have already addressed the performance of slag-based GPC 

containing RCA under high temperatures. However, the performance of slag-based geopolymer 

mortar (GPM) made with RCA in fire and the thermal compatibility between the aggregate and 

the slag-based geopolymer paste have not been investigated. 

Given the cost- and time-consuming nature of fabricating concrete artifacts in the laboratory to 

determine the mechanical properties, especially durability, in this work, the authors employed 

soft computing methods for predicting post-fire properties of GPM fabricated with RCA. 

Furthermore, to predict various concrete properties, a number of these techniques including 

fuzzy logic [37,38], artificial neural networks [39–44], nature-inspired algorithms [45,46] and 

genetic algorithms [47–51] have already been utilized in the literature. As a somewhat new 

modeling technique, gene expression programming (GEP) [52] has been shown to be better able 

to obtain mathematical relationships for experimental results than conventional regression 

techniques and neural networks [53,54]. With respect to the aforementioned discussion, this 

study attempted to contribute to filling the above research gap by developing accurate models for 

predicting the post-fire GPM properties. In this regard, the materials used in making green 

mortar and the method employed to develop the prediction models make this study a novel one 

regarding the prediction models for the mortar post-fire properties. GEP was used for the first 

time in the current work to examine the compressive strength and mass loss of slag-based GPM 

containing RCA after exposure to heat. 

2. Utilized Data 

The data of an experimental program were utilized for training and validating GEP models. The 

goal of this work was to explore the effect of RCA inclusion on the compressive strength and fire 

resistance of slag-based GPM exposed to high temperatures to be able to improve the aggregate-

slag-based geopolymer paste compatibility. In the experimental program, the residual 

compressive strength and other properties of the slag-based GPM containing 11 different 

replacement ratios of RCA, namely 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100%, were 

explored after exposure to the ambient temperature of 23 and high temperatures of 200, 400, 600, 

and 800 ℃. To that end, the compressive strength and the mass loss were measured after thermal 

loading. According to the results, the use of 30% RCA in the slag-based GPM enhanced the 

behavior at ambient and high temperatures. In addition, as observed in the petrographic images, 

the cohesion between RCA and slag-based geopolymer paste was stronger at high temperatures. 

Altogether, using these two material types, namely slag, and RCA, in combination, shows a high 

ability to promote producing clean, sustainable, and eco-friendly green mortar. The 

Supplementary File can be referred for more details regarding the experimental results. To better 

develop the models, the details of the experimental program are given below. 
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2.1. Materials 

To manufacture the specimens, ground granulated blast-furnace slag (GGBFS) provided from 

Sepahan Cement Company, Isfahan, Iran, was used. GGBFS is a by-product of the steel 

production industry. For the slag, Table 1 shows the physical properties and chemical 

composition obtained from X-ray fluorescence test. 

Table 1 

Chemical and physical properties of slag. 
Chemical Properties (%) Physical Properties 

CaO SiO2 MgO Specific surface, Blaine (m
2
/gr) 

43.13 32.21 7.32 360 

Al2O3 SO3 TiO2 Specific gravity 

6.8 3.54 2.13 2.7 

MnO K2O Na2O Particle diameter (μm) 

1.98 1.81 1 1-15 

 

To activate GGBFS, a solution consisting of NaOH and Na2SiO3 mixed together was used as an 

activator. NaOH, 98%, extra pure in the form of flakes, was utilized. Moreover, the constituents 

of the Na2SiO3 solution by volume were 29.8% SiO2, 10.2% Na2O, and 60% H2O; thus, the silica 

modulus was determined as 2.9. In compliance with ASTM C33 [55], Fig. 1 gives the upper and 

lower bounds for the size of NA and RCA in mixes. 

 
Fig. 1. The sieve analysis of NA and RCA and the upper and lower bounds according to ASTM C33. 

River sand was employed as the NA, and fine aggregate was RCA obtained from concrete waste. 

Table 2 gives the characteristics of RCA and NA. 

Table 2 

Characteristics of NA and RCA. 
Aggregate Bulk density (Kg/m

3
) Specific gravity Water absorption (%) Fineness modulus 

NA 1680 2.66 1 2.94 

RCA 1376 2.34 2.5 2.6 

 

Note that water absorption of fine aggregate was considered in the calculations, and the 

aggregate particles were in the saturated-surface-dry (SSD) condition. Moreover, a 
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polycarboxylate-based liquid superplasticizer (SP) with 40% solid content was poured to obtain a 

suitable workability, determined by the flow cone test, as suggested by ASTM C230 [56]. 

2.2. Preparing mortar 

Ten different RCA replacement ratios were considered to prepare the slag-based GPM mixes. 

The mixes were made by replacing 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100% of the NA 

volume with RCA, which were labeled as RA
0
, RA

10
, RA

20
, RA

30
, RA

40
, RA

50
, RA

60
, RA

70
, 

RA
80

, RA
90

, and RA
100

, respectively. In addition, the slag-sand and water-solids ratios was 0.4 

and 0.42, respectively. Table 3 gives the fractions of different constituents in the mortar mixes. 

Table 3 

The mixture proportions used for the slag-based GMP. 
Mixture Water/Solids Na2SiO3 solution (g) NaOH solution (g) Slag (g) RCA (g) NA (g) SP (%) 

RA
0
 0.42 191.25 63.75 510 0 1275 0 

RA
0

+1     0 1275 0.01 

RA
10

-1     127.5 1147.5 0.01 

RA
10

     127.5 1147.5 0.02 

RA
10

+1     127.5 1147.5 0.03 

RA
20

-1     255 1020 0.03 

RA
20

     255 1020 0.04 

RA
20

+1     255 1020 0.05 

RA
30

-1     382.5 892.5 0.05 

RA
30

     382.5 892.5 0.06 

RA
30

+1     382.5 892.5 0.07 

RA
40

-1     510 765 0.07 

RA
40

     510 765 0.08 

RA
40

+1     510 765 0.09 

RA
50

-1     637.5 637.5 0.09 

RA
50

     637.5 637.5 0.10 

RA
50

+1     637.5 637.5 0.11 

RA
60

-1     765 510 0.11 

RA
60

     765 510 0.12 

RA
60

+1     765 510 0.13 

RA
70

-1     892.5 382.5 0.13 

RA
70

     892.5 382.5 0.14 

RA
70

+1     892.5 382.5 0.15 

RA
80

-1     1020 255 0.15 

RA
80

     1020 255 0.16 

RA
80

+1     1020 255 0.17 

RA
90

-1     1147.5 127.5 0.17 

RA
90

     1147.5 127.5 0.18 

RA
90

+1     1147.5 127.5 0.19 

RA
100

-1     1275 0 0.19 

RA
100

     1275 0 0.20 

RA
100

+1     1275 0 0.21 

 

The preparation procedure of the alkaline solution was as follows: NaOH was diluted in water 

and put at ambient temperature for 24 hours; this was done to decrease the rapid setting of the 

solution as a result of heat. Note that the concentration was constant and equal to 12 M. 

Afterward, the NaOH solution was mixed with Na2SiO3, with the Na2SiO3/NaOH ratio of 3. 

Table 4 gives the mix design parameters that were constant for all slag-based GPM mixes. 

https://www.astm.org/Standards/C230
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Table 4 

Constant parameters for slag-based GPM mixes. 
Parameter Value 

Na2SiO3/NaOH solution ratio  3 

Sand-slag ratio 2.5 

Alkali solution-slag ratio 0.5 

NaOH solution concentration (M) 12 

Water-solids ratio 0.42 

 

The ASTM C305 [57] recommendations was followed in the preparation of the slag-based GPM. 

The next step was casting the fresh mortar in molds with oiled inner surfaces and curing them for 

24 hours. Finally, all the specimens were demolded and cured for 28 days in wet conditions. 

2.3. Test procedure 

The compression tests were conducted on the 50 × 50 × 50 mm cubic mortars specimens prior to 

and following thermal loading in compliance with ASTM C109 [58]. The specimens were kept 

in the laboratory environment after the end of the 28-day curing. For thermal loading, the 

specimens were put in an electric furnace and heated at a thermal loading rate of 5 ℃/min and 2 

hours soaking time until reaching the target temperature. To achieve a steady-state thermal 

distribution, the specimens were maintained in the furnace for two hours. Then, the furnace was 

switched off, and the specimens were left in it for 24 h to slowly cool down. Finally, the residual 

compressive strength and mass loss were measured. Note that to reduce error, for each individual 

mix, three similar specimens were tested, for which the mean of the measured values was 

considered and reported in the paper. 

3. GEP models and parameters 

3.1. Gene expression programming 

Koza [59] proposed genetic programming (GP) in 1992 as a branch of genetic algorithms (GAs). 

GP and GAs differ from each other mainly in terms of how the solution is represented, in that the 

solution to GP is a computer program while the solution of GA is a string of numbers Gene 

expression programming (GEP) is a linear variant of GP. Linear variants of GP clearly 

differentiate between the genotype and phenotype of an individual. In GP’s linear variants, linear 

strings are used to represent the individuals [60]. GEP has five main components which include 

function set, terminal set, fitness function, control parameters, and stop criterion. For 

representing a solution to a problem, GEP employs a fixed length of character strings, contrary to 

the parse-tree representation in conventional GP. Computer models in tree-like structures 

[expression trees (ETs)] are used to further show the solutions. GEP is advantageous in many 

respects one of which is the highly simplified generation of genetic diversity, due to the function 

of genetic operators at chromosome level. Also, GEP has a specific multi-genic feature, allowing 

programs of greater complexity consisting of multiple sub-programs to evolve. Every GEP gene 

has a list of fixed-length symbols which can be any element from the function and terminal sets. 

Fundamental mathematical operators (+, −, *, /) or any other function defined by user can be in 

the function set. However, numerical and logical constants or variables can exist in the terminal 

set. The function set and terminal set must have the closure property; each function must be able 

https://www.astm.org/Standards/C305
https://www.astm.org/Standards/C109
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to take any value of data type that can be returned by a function or assumed by a terminal. What 

follows is a typical GEP gene having specified terminal and function sets, ∕.𝑙𝑜𝑔 .+ .+ .𝑎.5.𝑏.𝑐, 
where a, b and c are variables, and 5 is a constant. To be able to read easily, the periods are used 

to separate the elements. Karva notation or K-expression is a name given to the preceding 

expression. Conversion is the term given to the information decoding process from K-expression 

to expression trees is called. This process is conducted according to sets of rules, and it begins 

from the first location in the K-expression, corresponding to the root of the ET, and then reads 

through the string one by one. For instance, Fig. 2 gives a typical representation of the preceding 

sample gene, where a–c are variables + and / are the plus and division signs, respectively). 

 
Fig. 2. Typical illustration of an expression tree. 

Moreover, the mathematical representation for the preceding GEP gene is as follows, 𝑙𝑜𝑔(𝑏 +

 𝑐)∕(𝑎 + 5), where a, b, and c are variables. The inverse conversion of an ET into a K-

expression is possible. To do this, in each ET layer from root layer down to the deepest layer, the 

nodes are recorded from left to right form the string. GEP genes are fixed in length, which is 

predetermined for a given problem, as mentioned above. Therefore, in GEP, the gene lengths are 

invariant, and the sizes of the corresponding ETs are those that vary. It implies the existence of a 

number of redundant elements not beneficial for mapping the genome. Therefore, the valid 

length of a K-expression can be the same as or smaller than that of the GEP gene. GEP uses a 

head–tail approach to ensure that a genome selected randomly is valid. Every gene in GEP 

consists of a head and a tail. The head includes a number of mathematical operators, variables, 

and constants (+, −, *, /, sin, cos, 1, a, b and c) utilized for encoding a mathematical formula, 

while the tail only involves constants and variables (1, a, b and c) known as terminal symbols 

[60]. 

Fig. 3 gives a schematic illustration of the basic steps of GEP. In GEP, the roulette wheel 

sampling with elitism is used to select and copy the individuals into the next generation 

according to the fitness [61]. Doing so ensures the survival and cloning of the best individual to 

the next generation. By performing one or more genetic operations on chosen chromosomes, 

variation is introduced in the population. These operations involve crossover, mutation, and 

rotation. Via the rotation, two subparts of the element sequence in a genome are rotated with 

respect to a point selected randomly. This operation is also capable of considerably reshaping the 

ETs [62]. 
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Fig. 3. The flowchart of a GEP algorithm. 

The GEP model development procedure can include the following steps [63]: 

a. Choosing the fitness function, 

b. Selecting the functions set and the terminals set to obtain chromosomes, 

c. Selecting the architecture of chromosomes, 

d. Selecting the linking function, and 

e. Selecting the genetic operators. 

3.2. Proposed models and statistical parameters 

This study was the first attempt to utilize the GEP modeling for predicting the compressive 

strength and mass loss of the slag-based GPM containing RCA exposed to elevated temperatures. 

The tool used to model data was the GeneXproTools program [64]. Here, the loss of mass and 

strength were estimated via taking various parameters into account. In the end, a comparison was 

made between the modeling and empirical results. 

An experimental procedure was carried out on specimens with different variables, so that the two 

above properties could be predicted. The input variables were the exposure temperature (T), 

recycled concrete aggregate (RCA) replacement level, and superplasticizer (SP) content, and the 

output variables were the compares strength and loss of mass. Table 5 gives the lower and upper 

boundaries for the input and output variables. For the models, eighty percent of the specimens 
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from the total dataset were selected randomly as the training set, with the other twenty percent 

employed as the testing set. 

Table 5 

Boundaries of input and output variables employed in GEP modeling. 
Input variables Lower bound Upper bound 

Applied heat (℃) 23 800 

RCA replacement (%) 0 100 

Superplasticizer (%) 0 0.2 

Output variables   

Compressive strength (MPa) 4.8 66.3 

Mass loss (%) 0 14.08 

 

Here, twenty GEP models, namely GEP1 to GEP20, were utilized. Among the GEP models, 

those with higher coefficients of determination were selected. Then, the selected models were 

evaluated against each other to assess the impact of elevated temperatures and RCA content on 

the strength and mass loss of slag-based GPM. To obtain the minimum error, the stiffness 

function having the best fitness was chosen. For statistical evaluation of errors occurring 

inevitably, five stiffness functions were used in the training and testing phases. These functions 

were the absolute fraction of variance (R
2
), root mean square error (RMSE), mean absolute error 

(MAE), relative absolute error (RAE), and root relative squared error (RRSE), expressed as Eqs. 

(2)-(6), respectively. 
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In the above equations, o, t, and n are the output value, target value, and number of all the 

collected data, respectively. The aim of considering all these error values is choosing the best 

model. The presentation of models were conducted based on the parameters and functions with 

and without considering the weight of the functions given in Table 6. It should be noted in all 
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approaches the values of mutation, inversion, and transposition have been considered as 0.044, 

0.1, and 0.1, respectively. 

Table 6 

Utilized parameters for each GEP approach. 
Models 

set 

Chromosomes Head 

size 

Number of 

genes 

Linking 

function 

Fitness function Constant per 

gene 

Number of 

functions 

GEP1 30 10 3 Addition Absolute error 

with SR 
2 6

a,1
 

GEP2 26 12 3 Multiplication Absolute error 

with SR 
2 6

a,1
 

GEP3 40 14 4 Addition Absolute error 

with SR 
2 6

a,1
 

GEP4 35 12 3 Multiplication Absolute error 

with SR 
2 7

b,1
 

GEP5 35 8 3 Addition Absolute error 

with SR 
2 8

c,2
 

GEP6 30 12 3 Addition Absolute error 

with SR 
2 4

d,1
 

GEP7 30 8 2 Addition Absolute error 

with SR 
2 6

a,1
 

GEP8 30 10 3 Addition Absolute error 

with SR 
2 6

a,1
 

GEP9 40 12 4 Addition Absolute error 

with SR 
1 10

e,4
 

GEP10 30 9 3 Addition Absolute error 

with SR 
2 7

b,1
 

GEP11 60 8 3 Addition Absolute error 

with SR 
2 7

f,1
 

GEP12 30 10 3 Addition Absolute error 

with SR 
2 13

g,1
 

GEP13 30 8 3 Addition RRSE 2 8
c,1

 

GEP14 30 8 3 Addition RRSE 1 4
h,1

 

GEP15 30 8 3 Addition RRSE 2 7
b,1

 

GEP16 30 12 3 Multiplication RRSE 2 9
i,2

 

GEP17 30 10 3 Addition RRSE 2 6
j,3

 

GEP18 40 12 4 Addition RRSE 1 8
k,4

 

GEP19 30 12 3 Addition RRSE 2 13
g,1

 

GEP20 30 12 3 Addition RRSE 2 12
l,4

 
1 The "+, −, ∗" functions had a weight 4 times weight of other functions 
2 The "+, −, ∗" functions had a weight 7 times weight of other functions 
3 The "∗" function had a weight 4 times weight of other functions 
4 The "+, −, ∗" functions had a weight 3 times weight of other functions 
a The +, −, ∗, /, sqrt, x3 functions were employed 
b The +, −, ∗, /, sqrt, x3, x2 functions were employed 
c The +, −, ∗, /, sqrt, x3, x2, 3Rt functions were employed 
d The +, −, ∗, / functions were employed 
e The +, −, ∗, /, sqrt, exp, sin, cos, atan, ln functions were employed 
f The +, −, ∗, sqrt, x3, x2, 3Rt functions were employed 
g The +, −, ∗, /, sqrt, x5, x4, x3, x2, 3Rt, 4Rt, 5Rt, ln functions were employed 
h The +, −, ∗, /, sqrt functions were employed 
i The +, −, ∗, /, sqrt, x3, exp, sin, cos functions were employed 
j The +, ∗, sqrt, x3, x2, pow functions were employed 
k The +, −, ∗, /, exp, sin, cos, atan functions were employed 
l The +, −, ∗, /, sqrt, x4, x3, x2, 3Rt, 4Rt, exp, ln functions were employed 

The GEP models were used to develop formulas in the form of Eq. (7) to determine the 

compressive strength and mass loss, 
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( ), ,y f T SP RCA=  (7) 

4. Results and discussion 

Based on the above discussion, the formulas developed using the GEP models are expressed 

mathematically in Tables 7 and 8 and represented as ETs in Figs. 4 and 5. In the formulas given 

in the tables, d0, d1 and d2 refer to T, SP and RCA, respectively. For compressive strength, Fig. 4 

shows the expression trees of the best models, namely GEP13, GEP16, GEP18 and GEP19. 

Also, for mass loss, Fig. 5 shows the ETs of the best models, namely to GEP16, GEP18, GEP19 

and GEP20. 

Table 7 

Mathematical formulas for compressive strength developed from GEP models. 

Models set Developed formulas for compressive strength 

GEP13 33 3
3 0 6 1 3

3 0 0 3

6 2 0

3 1
3 1 6

2 0

2

y c d c d c

c c d c

c d d

c d
c d c

d c

= ³ ³ + + +

+ + +
+

+

å õ-
³ + +æ ö

+ç ÷

 

GEP16 
( )( ) ()( )

( ) ( )

( ) ()( )( )( )

1 2 1
0 0 0 1

0

2 3 3
0 0 1 0

2
0 0 1 0 1

cos e cos

cos cos 2

cos sin sin sin

d d c
y d d c c

c

d d d c

c d d d d

+
= - + + - ³ ³

³ + + ³

- - - -

 

GEP18 ()( )( ) ( )( )( ) ( )( )

( ) ()( ) ( )( )( )

( )( ) ( )( )( )( )

()( )( ) ( )( ) ( )( )( )

1 0

0
1 0 0 0

1
1 0 0 2 0 0 0 0

2
0 0 0 2 0 0

cos 1 2 sin

1
1 0 0 0 0 0 0 0

sin tan cos cos 2

sin cos cos

sin tan cos cos 2

c

d d

d e c d c d

y d d c d c c d c

e c d c d d c

e

d d c c d c d c

-

-

+ + - + +

-

= + ³ + - + ³ + +

+ + - + - ³ +

+

+ ³ + - + ³ +

 

GEP19 

( )

( )( )

( )( )( ) ( )( )( )( )

3

33 5
0 0 1 1 1

6
3 3

0 0 1 1 2

2 26
2 1 1 0 0 1 1 0

2

y c d d c c

c d c d d

d c c c c d c c

å õ
= + - - - +æ ö
ç ÷

- ³ + + +

- - ³ ³ - + ³

 

C0 = -6.64113284707175; C3 = -5.82811975463118; C6 = -6.25782036805322 for GEP13 
C0 = -0.746177556688131; C1 = -5.28855250709555 for GEP16 

C0 = -1.31260109256264 for GEP18 

C0 = 8.82625812555315; C1 = 1.45481734672079 for GEP19 
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Table 8 

Mathematical formulas for mass loss developed from GEP models. 

Models set Developed formulas for mass loss 

GEP16 
( ) ( )( )( )
( )( )( )( )( )

( )( )( )( )( )

3
3

0 0 1 0 1

2
0 0 2 1 0 2 1 0

3 3
2 1 0 2

cos cos sin sin /

cos

cos cos cos

y c d c d d

d d d c c d d c

d c c d

= + + + ³

- - - + - ³ - ³

³ + +

 

GEP18 () ( )

( )( )( ) ( )( )

()( ) ( )( )

( )( )( )

2
0 2 2 0 0 2 1

1 2 1 1
0 1 0 0 2 1 2

1
0 0 1 0 2 0 1

0 2 0 0 0 0

cos /

tan sin tan tan

cos cos tan

cos 2

y c d d c c d d

d d c c d d d

c d d c d c d

c d d d c c

- - -

-

= ³ + + ³ ³ +

³ ³ - - ³ - +

³ - + - + - +

³ ³ - - ³

 

GEP19 

( ) ( )

( )( )( )

( ) ( )

3
5

25 33 2 2 1 1 0

0

9
0 0 1 1 1 1

1 1

8 3
1 1 2 0 0

/

/ 2

2

d
y d d c c d

d

d Ln d d c d c

d d d d d

å õå õ
æ ö= - - - - +æ ö
æ öç ÷ç ÷

- + - + +

- + + +

 

GEP20 ( ) ( )

( ) ( )

()( )() ( ) ( )( )

cos3 0cos / sin1 0 0

3
3

20 0 1 2 0 0

1 0

sin

3
3

sin cos
2

0 1sin cos

d
c d e d

e

d d c d c d

d d

y e

e

d d e e

å õå õå õ
æ - - öæ öæ öæ öæ öç ÷ç ÷ç ÷

å õ
+ ³ - ³ +æ öæ ö

ç ÷

= +

+

å õå õ
- - -æ öæ ö

ç ÷ç ÷

 

C0 = 5.55833613086337; C1 = -3.75041962950529 for GEP16 

C0 = 7.29911191137425; C1 = 1.75695059053316 for GEP18 
C1 = -6.47633289590136 for GEP19 

C0 = -7.22037415692618; C1 = -6.96462904751732 for GEP20 
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(b) 

 

 
(c) 

 
(d) 

Fig. 4. Expression trees of (a) GEP13, (b) GEP16, (c) GEP18 and (d) GEP19 models for compressive 

strength. 
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(c) 

 

 
(d) 

Fig. 5. Expression trees of (a) GEP16, (b) GEP18, (c) GEP19 and (d) GEP20 models for mass loss. 

Figs. 6-9 show the linear least square fit, fit line, and R
2
 values for the overall correlation of the 

best models. According to the figures, the proper correlation of the results of models GEP16 and 

GEP19 with the empirical results is clearly seen. 
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Fig. 6. Prediction versus empirical compressive strength scattering graph and curve fitting for GEP16. 

 
Fig. 7. Prediction versus empirical compressive strength scattering graph and curve fitting for GEP19. 

 
Fig. 8. Prediction versus empirical mass loss scattering graph and curve fitting for GEP16. 
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Fig. 9. Prediction versus empirical mass loss scattering graph and curve fitting for GEP19. 

Tables 9 and 10 list the values of other error functions. These tables give the values of error 

functions for the training and testing sets. In terms of both strength and mass loss, GEP16 and 

GEP19 demonstrated the best performance. To evaluate agreement between the prediction and 

empirical results, R
2
 is used, for which, values closer to 1 indicate good correlation between the 

model-predicted and empirical results [61]. Moreover, this function also determines how good a 

defined function fits on the data set. In this regard, the higher the value of R
2
 in the training 

phase, the better the fitness of the final function. Nevertheless, this might result in the model 

deviation to the extent that it can no longer consider the hidden data. This way a significant 

difference between the errors of the training and testing occurs, which in turn leads to greater 

regression values in both training and testing sets. 

Table 9 

Statistical errors for compressive strength prediction. 
Models Phase MAE RMSE RAE RRSE R

2
 Models Phase MAE RMSE RAE RRSE R

2
 

GEP1 Training 3.254 5.430 0.150 0.240 0.956 GEP11 Training 8.633 13.141 0.398 0.568 0.765 

 Validation 6.538 8.579 0.445 0.511 0.831  Validation 16.898 19.865 0.965 1.082 0.994 

GEP2 Training 4.424 7.095 0.211 0.318 0.919 GEP12 Training 8.495 12.252 0.426 0.557 0.741 

 Validation 3.342 4.572 0.164 0.204 0.964  Validation 6.608 9.888 0.307 0.438 0.819 

GEP3 Training 2.639 4.465 0.147 0.219 0.962 GEP13 Training 3.007 3.904 0.143 0.173 0.972 

 Validation 5.175 6.856 0.436 0.449 0.870  Validation 4.009 5.557 0.200 0.270 0.997 

GEP4 Training 3.475 4.749 0.165 0.212 0.958 GEP14 Training 4.401 4.986 0.212 0.226 0.949 

 Validation 8.658 10.065 0.558 0.511 0.809  Validation 3.145 4.031 0.190 0.194 0.991 

GEP5 Training 3.890 8.436 0.194 0.385 0.919 GEP15 Training 3.389 4.190 0.163 0.190 0.964 

 Validation 8.192 10.855 0.467 0.578 0.906  Validation 7.373 9.269 0.353 0.407 0.864 

GEP6 Training 4.197 6.140 0.196 0.273 0.941 GEP16 Training 1.781 2.155 0.079 0.092 0.992 

 Validation 7.619 8.950 0.608 0.554 0.841  Validation 3.050 3.573 0.250 0.244 0.941 

GEP7 Training 4.053 5.113 0.195 0.230 0.951 GEP17 Training 8.159 8.980 0.407 0.411 0.835 

 Validation 4.486 5.944 0.214 0.264 0.945  Validation 9.534 10.714 0.483 0.488 0.914 

GEP8 Training 3.167 4.133 0.157 0.186 0.966 GEP18 Training 2.371 3.005 0.111 0.134 0.985 

 Validation 4.433 6.460 0.239 0.324 0.947  Validation 3.606 4.834 0.219 0.238 0.955 

GEP9 Training 3.189 5.455 0.152 0.247 0.953 GEP19 Training 1.903 2.296 0.110 0.116 0.989 

 Validation 4.904 5.972 0.356 0.333 0.975  Validation 2.991 3.198 0.186 0.157 0.987 

GEP10 Training 4.148 5.801 0.205 0.267 0.936 GEP20 Training 3.367 4.258 0.161 0.187 0.965 

 Validation 4.391 5.044 0.187 0.208 0.964  Validation 6.252 7.317 0.352 0.385 0.996 
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Table 10 

Statistical errors for mass loss prediction. 
Models Phase MAE RMSE RAE RRSE R

2
 Models Phase MAE RMSE RAE RRSE R

2
 

GEP1 Training 1.354 2.156 0.350 0.448 0.859 GEP11 Training 1.429 2.682 0.418 0.618 0.718 

 Validation 1.696 2.102 0.651 0.650 0.844  Validation 3.007 3.677 0.681 0.701 0.849 

GEP2 Training 1.568 2.350 0.418 0.504 0.808 GEP12 Training 1.429 2.682 0.418 0.618 0.501 

 Validation 1.421 2.324 0.455 0.691 0.630  Validation 3.007 3.677 0.681 0.701 0.849 

GEP3 Training 1.285 2.067 0.334 0.431 0.856 GEP13 Training 1.282 1.442 0.347 0.315 0.901 

 Validation 2.694 3.369 1.063 1.073 0.989  Validation 3.145 3.392 0.954 0.777 0.546 

GEP4 Training 2.013 3.321 0.559 0.728 0.641 GEP14 Training 1.323 1.546 0.365 0.339 0.820 

 Validation 2.487 3.242 0.838 0.757 0.801  Validation 2.064 2.605 0.613 0.595 0.729 

GEP5 Training 1.249 1.949 0.334 0.410 0.871 GEP15 Training 1.621 1.789 0.437 0.387 0.850 

 Validation 3.166 3.553 2.089 1.956 0.902  Validation 0.665 0.957 0.201 0.232 0.985 

GEP6 Training 1.485 2.256 0.453 0.529 0.817 GEP16 Training 0.478 0.701 0.138 0.158 0.975 

 Validation 2.451 3.081 0.522 0.576 0.927  Validation 1.032 1.359 0.254 0.280 0.979 

GEP7 Training 1.421 2.368 0.398 0.526 0.793 GEP17 Training 0.904 1.098 0.223 0.225 0.913 

 Validation 2.566 3.295 0.696 0.703 0.789  Validation 1.781 2.105 0.878 0.829 0.453 

GEP8 Training 1.516 2.507 0.452 0.582 0.702 GEP18 Training 0.784 0.965 0.236 0.226 0.952 

 Validation 1.548 2.291 0.352 0.438 0.996  Validation 1.820 2.432 0.403 0.460 0.886 

GEP9 Training 0.965 1.687 0.288 0.401 0.872 GEP19 Training 0.730 0.940 0.234 0.229 0.948 

 Validation 3.873 4.177 0.790 0.781 0.501  Validation 0.757 1.309 0.142 0.228 0.964 

GEP10 Training 1.083 1.728 0.270 0.350 0.887 GEP20 Training 1.002 1.474 0.254 0.304 0.910 

 Validation 2.718 2.977 1.549 1.427 0.119  Validation 2.814 2.923 1.658 1.376 0.863 

 

In general, more sophisticated models give greater values since they have more tries and 

generations; hence, a goal was to achieve less complexity. In most developed models, R
2
 had a 

greater value in training set compared with the testing set. In this regard, R
2
 for the strength 

predictions changed in the range of 0.741-0.992 for the training set and in the range of 0.809-

0.997 for the testing set. Further, for mass loss prediction, the values of this function changed in 

the ranges of 0.501-0.975 and 0.261-0.996 for the training and testing sets, respectively. 

Altogether, the statistical differences between empirical and prediction results were small. 

Hence, to predict the strength and mass loss of slag-based GPM incorporating RCA under heat, 

all the developed models are applicable. Additionally, a reduction occurs in the efficiency of the 

models with an increase in the MAE, RMSE, RAE, and RRSE values. It is seen that the values of 

RMSE, RAE, MAE, and RRSE are greater for the training compared with the testing in several 

models. For compressive strength, GEP11, GEP12, and GEP17 and for mass loss, GEP4, 

GEP10, and GEP12 had high errors, suggesting their performance reduction. However, for 

compressive strength, GEP13, GEP16, GEP18, and GEP19 and for mass loss, GEP16, GEP18, 

GEP19, and GEP20 had the smallest errors in both training and testing sets. Hence, the higher 

prediction ability of the latter eight models compared with the former six models is concluded. 

For the strength models, the lowest and highest values of the RMSE error function were 2.155 

and 19.865 in the training of GEP16 and testing of GEP11, respectively. Also, for the mass loss 

models, the lowest and highest values of the above function were 0.556 and 4.177 in the training 

of GEP18 and testing of GEP9, respectively. Nevertheless, the difference between the lowest and 

highest values was relatively notable for MAE. In this regard, for compressive strength, the 

lowest value of MAE was 1.781 in the training of GEP16, whereas, the highest value was 16.898 
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in the testing of GEP11. Also, for the mass loss, the corresponding lowest and highest values 

were 0.478 in the training of GEP16 and 3.873 in the testing of GEP9, respectively. 

Altogether, the results establish the applicability of GEP to predict mass loss compressive 

strength. The applicability of this approach for compressive strength has already been established 

by previous researchers [65,66]. 

5. Conclusions 

It is well known that the compressive strength is the most important property of all concretes. In 

this study, for the first time, the GEP approach was used to evaluate the impact of the elevated 

temperatures on the eco-friendly geopolymer mortar (GPM) containing recycled concrete 

aggregate and propose formulas for its properties. Here, 20 models with different levels of input 

variables were proposed for estimating the compressive strength of GPM containing RCA. For 

running the models, data of experimental results were obtained from the experimental program. 

Most models yielded proper results in agreement with the empirical results. Another reason for 

GEP applicability for predicting compressive strength is the values of statistical error functions 

(R
2
, MAE, RMSE, RAE, RRSE). In this regard, statistical differences between empirical and 

predicted results were small. Thus, the proper performance of all the models in predicting the 

compressive strength and mass loss of eco-friendly slag-based GPM incorporating RCA exposed 

to elevated temperatures is resulted. Moreover, based on the values of statistical errors, GEP16 

and GEP19 had the best performance in terms of predicting both compressive strength and mass 

loss. The results of these two models correlated properly with the empirical results. This paper 

establishes that GEP can be used properly to predict the compressive strength and mass loss of 

eco-friendly GPM containing RCA and offer effective explicit formulas for many civil 

engineering problems. This approach can be used in future works to predict other properties of 

GPM containing RCA.  
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