Predicting Post-Fire Behavior of Green Geopolymer Mortar Containing Recycled Concrete Aggregate via GEP Approach

Document Type : Regular Article

Authors

1 M.Sc., Department of Civil Engineering, Faculty of Engineering and Technology, Maziar University, Royan, Iran

2 Professor, Department of Road and Transportation, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran

3 M.Sc., Department of Petroleum Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

In the present study, 20 models were developed using gene expression programming (GEP) to predict the compressive strength and mass loss of geopolymer mortar (GPM) containing recycled concrete aggregate (RCA) exposed to elevated temperatures. To do so, the results of 160 specimens manufactured out of 32 different mixture designs in an experimental effort were used. In developing the models, 80% of the total datasets were employed in the training phase, with the remaining 20% used in the validation phase. Three input variables were taken into account, namely the applied temperature (T), recycled concrete aggregate (RCA) replacement level, and superplasticizer (SP) addition percentage. The training and validation phases with the coefficient of determination of 0.95 to 0.99 demonstrated that there was proper consistency between results predicted by the proposed models and the experimental results. Moreover, the results of statistical analyses gave another reason for the ability of GEP to predict both the compressive strength and mass loss of GPM containing recycled concrete aggregate under elevated temperatures.

Highlights

Google Scholar

Keywords

Main Subjects


[1]     J. Xie, Y. Guo, L. Liu, Z. Xie, Compressive and flexural behaviours of a new steel-fibre-reinforced recycled aggregate concrete with crumb rubber, Constr. Build. Mater. 79 (2015) 263–272. https://doi.org/10.1016/j.conbuildmat.2015.01.036.
[2]     A. Shishegaran, F. Daneshpajoh, H. Taghavizade, S. Mirvalad, Developing conductive concrete containing wire rope and steel powder wastes for route deicing, Constr. Build. Mater. 232 (2020) 117184. https://doi.org/10.1016/j.conbuildmat.2019.117184.
[3]     S. Kou, C. Poon, Effect of the quality of parent concrete on the properties of high performance recycled aggregate concrete, Constr. Build. Mater. 77 (2015) 501–508. https://doi.org/10.1016/j.conbuildmat.2014.12.035.
[4]     N.A. Madlool, R. Saidur, M.S. Hossain, N.A. Rahim, A critical review on energy use and savings in the cement industries, Renew. Sustain. Energy Rev. 15 (2011) 2042–2060. https://doi.org/10.1016/j.rser.2011.01.005.
[5]     E. Worrell, L. Price, N. Martin, C. Hendriks, L.O. Meida, Carbon dioxide emissions from the global cement industry, Annu. Rev. Energy Environ. 26 (2001) 303–329. https://doi.org/10.1146/annurev.energy.26.1.303.
[6]     R.J. Thomas, S. Peethamparan, Alkali-activated concrete: Engineering properties and stress–strain behavior, Constr. Build. Mater. 93 (2015) 49–56. https://doi.org/10.1016/j.conbuildmat.2015.04.039.
[7]     T. Luukkonen, Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, M. Illikainen, One-part alkali-activated materials: A review, Cem. Concr. Res. 103 (2018) 21–34. https://doi.org/10.1016/j.cemconres.2017.10.001.
[8]     V. Bilek, J. Hurta, P. Done, L. Zidek, Development of alkali-activated concrete for structures – Mechanical properties and durability, Perspect. Sci. 7 (2016) 190–194. https://doi.org/10.1016/j.pisc.2015.11.031.
[9]     E. Gartner, H. Hirao, A review of alternative approaches to the reduction of CO 2 emissions associated with the manufacture of the binder phase in concrete, Cem. Concr. Res. 78 (2015) 126–142. https://doi.org/10.1016/j.cemconres.2015.04.012.
[10]    M.C.G. Juenger, F. Winnefeld, J.L. Provis, J.H. Ideker, Advances in alternative cementitious binders, Cem. Concr. Res. 41 (2011) 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012.
[11]    N.R. Rakhimova, R.Z. Rakhimov, A review on alkali-activated slag cements incorporated with supplementary materials, J. Sustain. Cem. Mater. 3 (2014) 61–74. https://doi.org/10.1080/21650373.2013.876944.
[12]    A. Hossein Rafiean, E. Najafi Kani, A. Haddad, Mechanical and Durability Properties of Poorly Graded Sandy Soil Stabilized with Activated Slag, J. Mater. Civ. Eng. 32 (2020) 04019324. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002990.
[13]    M. Chi, Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete, Constr. Build. Mater. 35 (2012) 240–245. https://doi.org/10.1016/j.conbuildmat.2012.04.005.
[14]    F. Collins, J.. Sanjayan, Microcracking and strength development of alkali activated slag concrete, Cem. Concr. Compos. 23 (2001) 345–352. https://doi.org/10.1016/S0958-9465(01)00003-8.
[15]    T. Bakharev, J.G. Sanjayan, Y.-B. Cheng, Effect of elevated temperature curing on properties of alkali-activated slag concrete, Cem. Concr. Res. 29 (1999) 1619–1625. https://doi.org/10.1016/S0008-8846(99)00143-X.
[16]    S.A. Bernal, R. Mejía de Gutiérrez, A.L. Pedraza, J.L. Provis, E.D. Rodriguez, S. Delvasto, Effect of binder content on the performance of alkali-activated slag concretes, Cem. Concr. Res. 41 (2011) 1–8. https://doi.org/10.1016/j.cemconres.2010.08.017.
[17]    Y. Ding, J.-G. Dai, C.-J. Shi, Mechanical properties of alkali-activated concrete: A state-of-the-art review, Constr. Build. Mater. 127 (2016) 68–79. https://doi.org/10.1016/j.conbuildmat.2016.09.121.
[18]    F.G. Collins, J.G. Sanjayan, Workability and mechanical properties of alkali activated slag concrete, Cem. Concr. Res. 29 (1999) 455–458. https://doi.org/10.1016/S0008-8846(98)00236-1.
[19]    K.-H. Yang, A.-R. Cho, J.-K. Song, Effect of water–binder ratio on the mechanical properties of calcium hydroxide-based alkali-activated slag concrete, Constr. Build. Mater. 29 (2012) 504–511. https://doi.org/10.1016/j.conbuildmat.2011.10.062.
[20]    B. Walkley, A. Kashani, M.-A. Sani, T.D. Ngo, P. Mendis, Examination of alkali-activated material nanostructure during thermal treatment, J. Mater. Sci. 53 (2018) 9486–9503. https://doi.org/10.1007/s10853-018-2270-z.
[21]    R.J. Myers, S.A. Bernal, R. San Nicolas, J.L. Provis, Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model, Langmuir. 29 (2013) 5294–5306. https://doi.org/10.1021/la4000473.
[22]    E.T. Stepkowska, J.M. Blanes, F. Franco, C. Real, J.L. Pérez-Rodrı́guez, Phase transformation on heating of an aged cement paste, Thermochim. Acta. 420 (2004) 79–87. https://doi.org/10.1016/j.tca.2003.11.057.
[23]    G.-F. Peng, Z.-S. Huang, Change in microstructure of hardened cement paste subjected to elevated temperatures, Constr. Build. Mater. 22 (2008) 593–599. https://doi.org/10.1016/j.conbuildmat.2006.11.002.
[24]    M. Guerrieri, J. Sanjayan, Investigation of the Cause of Disintegration of Alkali-Activated Slag at Temperature Exposure of 50°C, J. Mater. Civ. Eng. 23 (2011) 1589–1595. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000313.
[25]    U.-M. Jumppanen, U. Diederichs, K. Hinrichsmeyer, Material properties of F-concrete at high temperatures, VTT Technical Research Centre of Finland, 1986.
[26]    M.C. Chi, R. Huang, W.H. Lu, Strength and Resistance of Alkali-Activated Slag Concrete to High Temperature, Appl. Mech. Mater. 193–194 (2012) 431–434. https://doi.org/10.4028/www.scientific.net/AMM.193-194.431.
[27]    L. Zuda, Z. Pavlík, P. Rovnaníková, P. Bayer, R. Černý, Properties of Alkali Activated Aluminosilicate Material after Thermal Load, Int. J. Thermophys. 27 (2006) 1250–1263. https://doi.org/10.1007/s10765-006-0077-7.
[28]    L. Zuda, P. Rovnaník, P. Bayer, R. Černý, Thermal Properties of Alkali-activated Slag Subjected to High Temperatures, J. Build. Phys. 30 (2007) 337–350. https://doi.org/10.1177/1744259106075234.
[29]    M. Guerrieri, J. Sanjayan, F. Collins, Residual compressive behavior of alkali-activated concrete exposed to elevated temperatures, Fire Mater. 33 (2009) 51–62. https://doi.org/10.1002/fam.983.
[30]    M. Guerrieri, J. Sanjayan, F. Collins, Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures, Mater. Struct. 43 (2010) 765–773. https://doi.org/10.1617/s11527-009-9546-3.
[31]    X. Ren, L. Zhang, Experimental study of interfacial transition zones between geopolymer binder and recycled aggregate, Constr. Build. Mater. 167 (2018) 749–756. https://doi.org/10.1016/j.conbuildmat.2018.02.111.
[32]    N.K. Bui, T. Satomi, H. Takahashi, Mechanical properties of concrete containing 100% treated coarse recycled concrete aggregate, Constr. Build. Mater. 163 (2018) 496–507. https://doi.org/10.1016/j.conbuildmat.2017.12.131.
[33]    J.M.. Gómez-Soberón, Porosity of recycled concrete with substitution of recycled concrete aggregate, Cem. Concr. Res. 32 (2002) 1301–1311. https://doi.org/10.1016/S0008-8846(02)00795-0.
[34]    P. Kathirvel, S.R.M. Kaliyaperumal, Influence of recycled concrete aggregates on the flexural properties of reinforced alkali activated slag concrete, Constr. Build. Mater. 102 (2016) 51–58. https://doi.org/10.1016/j.conbuildmat.2015.10.148.
[35]    K. Parthiban, K. Saravana Raja Mohan, Influence of recycled concrete aggregates on the engineering and durability properties of alkali activated slag concrete, Constr. Build. Mater. 133 (2017) 65–72. https://doi.org/10.1016/j.conbuildmat.2016.12.050.
[36]    S.C. Kou, C.S. Poon, M. Etxeberria, Residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures, Cem. Concr. Compos. 53 (2014) 73–82. https://doi.org/10.1016/j.cemconcomp.2014.06.001.
[37]    S. Akkurt, G. Tayfur, S. Can, Fuzzy logic model for the prediction of cement compressive strength, Cem. Concr. Res. 34 (2004) 1429–1433. https://doi.org/10.1016/j.cemconres.2004.01.020.
[38]    A. Shishegaran, H. Taghavizade, A. Bigdeli, A. Shishegaran, Predicting the Earthquake Magnitude along Zagros Fault Using Time Series and Ensemble Model, Soft Comput. Civ. Eng. 3 (2019) 67–77.
[39]    G. Hosseini, Capacity Prediction of RC Beams Strengthened with FRP by Artificial Neural Networks Based on Genetic Algorithm, J. Soft Comput. Civ. Eng. 1 (2017) 93–98.
[40]    H. Naderpour, A.H. Rafiean, P. Fakharian, Compressive strength prediction of environmentally friendly concrete using artificial neural networks, J. Build. Eng. 16 (2018) 213–219. https://doi.org/10.1016/j.jobe.2018.01.007.
[41]    H. Naderpour, K. Nagai, P. Fakharian, M. Haji, Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods, Compos. Struct. 215 (2019) 69–84. https://doi.org/10.1016/j.compstruct.2019.02.048.
[42]    H. Naderpour, D. Rezazadeh Eidgahee, P. Fakharian, A.H. Rafiean, S.M. Kalantari, A new proposed approach for moment capacity estimation of ferrocement members using Group Method of Data Handling, Eng. Sci. Technol. an Int. J. 23 (2020) 382–391. https://doi.org/10.1016/j.jestch.2019.05.013.
[43]    D. Rezazadeh Eidgahee, A.H. Rafiean, A. Haddad, A Novel Formulation for the Compressive Strength of IBP-Based Geopolymer Stabilized Clayey Soils Using ANN and GMDH-NN Approaches, Iran. J. Sci. Technol. Trans. Civ. Eng. 44 (2020) 219–229. https://doi.org/10.1007/s40996-019-00263-1.
[44]    H. Naderpour, P. Fakharian, A synthesis of peak picking method and wavelet packet transform for structural modal identification, KSCE J. Civ. Eng. 20 (2016) 2859–2867. https://doi.org/10.1007/s12205-016-0523-4.
[45]    M. Yazdani, F. Jolai, Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm, J. Comput. Des. Eng. 3 (2016) 24–36. https://doi.org/10.1016/j.jcde.2015.06.003.
[46]    M. Yazdani, M. Babagolzadeh, N. Kazemitash, M. Saberi, Reliability estimation using an integrated support vector regression – variable neighborhood search model, J. Ind. Inf. Integr. 15 (2019) 103–110. https://doi.org/10.1016/j.jii.2019.03.001.
[47]    I.F. Kara, Empirical modeling of shear strength of steel fiber reinforced concrete beams by gene expression programming, Neural Comput. Appl. 23 (2013) 823–834. https://doi.org/10.1007/s00521-012-0999-x.
[48]    I. Ebtehaj, H. Bonakdari, No-deposition sediment transport in sewers using gene expression programming, J. Soft Comput. Civ. Eng. 1 (2017) 29–53.
[49]    A. Shishegaran, M. Saeedi, A. Kumar, H. Ghiasinejad, Prediction of air quality in Tehran by developing the nonlinear ensemble model, J. Clean. Prod. 259 (2020) 120825. https://doi.org/10.1016/j.jclepro.2020.120825.
[50]    P. Fakharian, H. Naderpour, A. Haddad, A.H. Rafiean, D.R. Eidgahee, A proposed model for compressive strength prediction of FRP-confined rectangular column in terms of Genetic expression Programming (GEP), Concr. Res. (2018).
[51]    M. Nematzadeh, A.A. Shahmansouri, M. Fakoor, Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers: Optimization and prediction via RSM and GEP, Constr. Build. Mater. 252 (2020) 119057. https://doi.org/10.1016/j.conbuildmat.2020.119057.
[52]    F. C., Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Springer, 2006.
[53]    A. Abd Elhakam, A.E. Mohamed, E. Awad, Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete, Constr. Build. Mater. 35 (2012) 421–427. https://doi.org/10.1016/j.conbuildmat.2012.04.013.
[54]    A. Shishegaran, M.R. Khalili, B. Karami, T. Rabczuk, A. Shishegaran, Computational predictions for estimating the maximum deflection of reinforced concrete panels subjected to the blast load, Int. J. Impact Eng. 139 (2020) 103527. https://doi.org/10.1016/j.ijimpeng.2020.103527.
[55]    ASTM, C33-18: Standard Specification for Concrete Aggregates, ASTM International, Philadelphia, PA, 2018, (n.d.).
[56]    ASTM, C230-14: Standard specification for flow table for use in tests of hydraulic cement, ASTM International, West Conshohocken, PA, 2014., (n.d.).
[57]    ASTM, C305-14: Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, ASTM International, West Conshohocken, PA, 2014., (n.d.).
[58]    ASTM, C109-16a: Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, West Conshohocken, PA, 2016., (n.d.).
[59]    J.R. Koza, J.R. Koza, Genetic programming: on the programming of computers by means of natural selection, MIT press, 1992.
[60]    C. Ferreira, Gene expression programming: a new adaptive algorithm for solving problems, ArXiv Prepr. Cs/0102027. (2001).
[61]    A.A. Shahmansouri, H. Akbarzadeh Bengar, E. Jahani, Predicting compressive strength and electrical resistivity of eco-friendly concrete containing natural zeolite via GEP algorithm, Constr. Build. Mater. 229 (2019) 116883. https://doi.org/10.1016/j.conbuildmat.2019.116883.
[62]    A.A. Shahmansouri, H. Akbarzadeh Bengar, S. Ghanbari, Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method, J. Build. Eng. 31 (2020) 101326. https://doi.org/10.1016/j.jobe.2020.101326.
[63]    A.A. Shahmansouri, H. Akbarzadeh Bengar, S. Ghanbari, Experimental investigation and predictive modeling of compressive strength of pozzolanic geopolymer concrete using gene expression programming, J. Concr. Struct. Mater. 5 (2020) 92–117.
[64]    GEPsoft GeneXproTools, Data Modeling & Analysis Software. https://www.gepsoft.com/, (n.d.).
[65]    M. Sarıdemir, Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash, Constr. Build. Mater. 24 (2010) 1911–1919. https://doi.org/10.1016/j.conbuildmat.2010.04.011.
[66]    M. Sarıdemir, Empirical modeling of splitting tensile strength from cylinder compressive strength of concrete by genetic programming, Expert Syst. Appl. (2011). https://doi.org/10.1016/j.eswa.2011.04.239.